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Abstract

Motivation: High-throughput technologies allow comprehensive characterization of individuals on many molecular
levels. However, training computational models to predict disease status based on omics data is challenging.
A promising solution is the integration of external knowledge about structural and functional relationships into
the modeling process. We compared four published random forest-based approaches using two simulation studies
and nine experimental datasets.

Results: The self-sufficient prediction error approach should be applied when large numbers of relevant pathways
are expected. The competing methods hunting and learner of functional enrichment should be used when low
numbers of relevant pathways are expected or the most strongly associated pathways are of interest. The hybrid
approach synthetic features is not recommended because of its high false discovery rate.

Availability and implementation: An R package providing functions for data analysis and simulation is available at
GitHub (https://github.com/szymczak-lab/PathwayGuidedRF). An accompanying R data package (https://github.com/
szymczak-lab/DataPathwayGuidedRF) stores the processed and quality controlled experimental datasets down-
loaded from Gene Expression Omnibus (GEO).

Contact: szymczak@medinfo.uni-kiel.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression has been measured globally in patients and healthy
controls with microarrays for many years and next-generation
sequencing of RNA (RNA-Seq) nowadays enables even more
insights into the molecular basis of diseases. This detailed informa-
tion on the transcriptome, together with other omics layers, holds
the promise to improve diagnosis, prognosis and therapy response
prediction leading to personalized medicine.

Differential expression analysis is usually performed for each
gene separately. Similarly, all genes are used as input for machine
learning approaches to train mathematical models for stratifica-
tion of individuals e.g. based on disease status or for predicting
treatment response. However, interpretation of these gene level
results is often challenging. Statistical testing might result in
thousands of differentially expressed genes, sometimes with only

moderate or small effects, and the selection of parsimonious
prediction models usually leads to non-overlapping sets of genes
with similar prediction performance (Drier and Domany, 2011;
Ein-Dor et al., 2005).

A promising strategy to improve interpretability is to integrate
external knowledge about the functional relationships of the genes.
Detailed information about signaling and metabolic pathways has
been collected in databases such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000) and Reactome
(Croft et al., 2014), which are further integrated with other resour-
ces e.g. in the Molecular Signatures Database (MSigDB)
(Subramanian et al., 2005) or the ConsensusPathDB (Kamburov
et al., 2013). A detailed overview of available pathway databases
can be found at Pathguide (Bader et al., 2006), which currently lists
over 700 resources. Note that, in the following, we will utilize the
term pathway as a synonym of ‘gene set’ i.e. we only use
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information about pathway membership and ignore any further
topological or relationship information.

Many pathway analysis methods based on statistical tests have
been proposed which can be classified according to different criteria
(Ackermann and Strimmer, 2009; Khatri et al., 2012). One import-
ant aspect is the tested null hypothesis where competitive and self-
contained tests can be distinguished (Tian et al., 2005). The latter
uses only information within the given pathway and tests the null
hypothesis that the gene expression levels of the pathway are not
associated with the outcome. In contrast, in a competitive test the
association between the pathway genes and the outcome is com-
pared to the association between the genes outside the pathway and
the outcome. Hence, a competitive method selects a pathway when
the amount of differential expression of this pathway is significantly
larger compared to other pathways.

Pathway analysis methods have also been developed in the con-
text of machine learning approaches. In accordance with the cat-
egorization of statistical approaches based on the tested null
hypothesis, we here define a similar grouping based on the depend-
ency of a pathway specific result on the other pathways and genes.
A so called self-sufficient method uses only information provided by
the genes within a particular pathway. A straightforward strategy,
herein referred to as prediction error (PE), is to evaluate the predic-
tion performance of a model trained on a single pathway (Pang
et al., 2006). Another approach similarly trains separate models for
each pathway but uses the predictions as so called synthetic features
(SF) in a global prediction model (Pan et al., 2014). Since the global
model uses all SFs together, this is a hybrid approach. The two
remaining methods use a competing strategy. The pathway hunting
approach (Chen and Ishwaran, 2013), abbreviated as Hunting in the
following, calculates a pathway importance score based on gene im-
portance estimated by a global RF trained on all genes jointly. And
the learner of functional enrichment (LeFE) method uses a similar
approach as the competitive statistical tests by selecting pathways
whose genes have significantly higher importance than genes outside
the pathway (Eichler et al., 2007).

So far, these methods have mostly been compared to gene-based
prediction models or statistical tests. To the best of our knowledge,
no direct comparison of all the methods exists. Thus, our goal was
an extensive and systematic benchmark study to analyze their
strengths and weaknesses. As we were not involved in the original
development of any of the approaches the neutrality of the study is
ensured, which has been defined as one important characteristic of
benchmarking (Boulesteix et al., 2017). For a comprehensive evalu-
ation, it is necessary that the truth underlying the observed data is
known so that the power as well as false-positive findings can be
assessed. We generated synthetic gene expression data in two simu-
lation studies, the first one covering a simplified setting with specific
pathway characteristics and many causal pathways, and the second
one modeling a more realistic scenario. As simulated data can never
capture all of the characteristics of experimental data, we performed
an additional evaluation on a range of publicly available gene ex-
pression datasets from studies on different diseases and tissues.
Moreover, we also included two popular statistical approaches, the
fast implementation of the gene set enrichment method
(Subramanian et al., 2005), called FGSEA (Sergushichev, 2016), and
sigPathway (Tian et al., 2005).

2 Materials and methods

2.1 Pathway-guided random forest approaches
The different pathway analysis approaches use the popular RF algo-
rithm as base classifier. RF is a non-parametric ensemble method
based on classification and regression trees (Breiman, 2001). Each
tree is built on bootstrapped observations of the original sample and
optimal splits are determined using a random subset of all predictor
variables i.e. genes. Each tree predicts the class for a test observation
and the final prediction of the forest is generated by majority voting.
To interpret the prediction model, the importance of each gene can
be estimated based on a variety of measurements. An intuitive
choice is the reduction of impurity as induced by the splits in the for-
ests, the so-called Gini importance. However, it has been shown that
the Gini importance is biased if the predictor variables are of differ-
ent scales or frequencies (Nicodemus, 2011; Strobl et al., 2007). In
our comparison study we used a corrected Gini importance as imple-
mented by Nembrini et al. (2018).

For a fair comparison, the different pathway-guided RF
approaches (see Table 1 for an overview) were implemented in the R
package PathwayGuidedRF which is available at GitHub (https://
github.com/szymczak-lab/PathwayGuidedRF) and based on the RF
implementation in the R package ranger (Wright and Ziegler,
2017).

The parameters for RF and each method can be found in
Table 2. Instead of the default value for mtry (

ffiffiffi

p
p

with p denoting
the number of variables) we used a larger value, as recommended by
Genuer et al. (2008), as our study is focused on pathway importance
and not on prediction performance. The choice of p3=4 is motivated
by Ishwaran et al. (2011). As sensitivity analysis, we additionally re-
port results using the mtry values of

ffiffiffi

p
p

and 0.5p for each pathway
guided RF approach in the Supplementary File.

PE, Hunting and LeFE provide a P value for each pathway and
we selected pathways with a Benjamini–Hochberg adjusted P value
< 0.05 (Benjamini and Hochberg, 1995). Selection of important
pathways in the SF method is performed using the Boruta variable
selection approach (Kursa et al., 2010) which instead of a P value
returns one of the categories confirmed, tentative or unimportant
for each variable i.e. pathways. In our study, only confirmed path-
ways were selected.

2.1.1 Prediction error

The pathway-guided RF based on PE evaluates each pathway separ-
ately and it does not consider any of the genes outside the pathway.
A RF is trained for each pathway and the PE is estimated using the
out-of-bag samples (Pang et al., 2006). In the analysis of several ex-
perimental datasets presented in the original publication, pathways
with PEs smaller than an arbitrary threshold were selected. To pro-
vide a more objective criterion, we implemented a permutation test
for estimating empirical P values which was used in the original
publication only for the analysis of simulated data. Outcome values
are repeatedly permuted and, thus, any association with the predict-
or variables is destroyed. In each step, a new RF is trained and its
prediction performance is evaluated. To limit the number of

Table 1. Information about the different pathway guided RF approaches compared in the benchmarking study

Name Approach RF Type Selection criterion P value Ref. Citationsa

Hunting Pathway

hunting

All genes Competing Pathway specific importance Yes Chen and Ishwaran (2013) 19

LeFE LeFE pathway competing Comparison of importance of

genes within and outside

of the pathway

Yes Eichler et al. (2007) 11

PE PE Pathway Self-sufficient PE Yes Pang et al. (2006) 124

SF SFs Pathway Hybrid Importance of SFs No Pan et al. (2014) 10

aBased on Web of Science (October 2019).
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permutations and thus the number of RFs that need to be trained,
we use the permutation test approach proposed by Hediger et al.
(2019). Mean and standard deviation of all OOB PEs across path-
ways and permutations are estimated. The P values are then derived
using a normal distribution.

2.1.2 Synthetic features

The SF method (Pan et al., 2014) uses a two-stage approach. The
first step is performed separately for each pathway. A pathway spe-
cific RF is trained and used to predict case probabilities for each in-
dividual using the out-of-bag sample which for each tree consists of
those observations that were not in the bootstrap sample of that par-
ticular tree. The predictions of the pathway specific tree are a sum-
mary of the information within the pathway and stored as a single
variable called SF. The SFs of all pathway-based RFs are then used
as predictor variables in a new RF. In the original approach, this RF
was evaluated regarding its prediction performance only. However,
we are interested in using the approach to identify important path-
ways. We thus extended the method by pathway selection based on
the Boruta approach (Kursa et al., 2010), one of the two best per-
forming methods in our recent study comparing variable selection
methods for high dimensional data (Degenhardt et al., 2019). In
contrast to Vita (Janitza et al., 2018), the other well performing
method, Boruta can be applied in low dimensional settings. This ac-
tually is necessary in the second stage RF that is based on the SFs of
the respective pathways, resulting in relatively low numbers of
variables.

2.1.3 Hunting

The Hunting approach (Chen and Ishwaran, 2013) starts with a
standard RF using all genes as predictor variables and estimates vari-
able importance for each gene. A pathway importance score is calcu-
lated as the average of the importance scores of all genes belonging
to the pathway. A standardized version of this score (Z score) is cal-
culated using the formulas provided in (Chen and Ishwaran, 2013)
for the mean and standard deviation of random subsets of genes
with the same size. A P value is then estimated assuming an asymp-
totic standard normal distribution of the Z score under the null
hypothesis.

2.1.4 Learner of functional enrichment

The fourth approach under consideration is more similar to the stat-
istical gene set enrichment methods because the importance of genes
within the pathway is compared to the importance of genes outside
the pathway (Eichler et al., 2007). For a pathway of size k, a set of
l � k of genes not part of the pathway is randomly selected. The fac-
tor l is set using the parameter sample.factor. A RF is then trained
on the combined set of ðl þ 1Þ � k genes and the importance is deter-
mined for each gene. In the original manuscript, a permutation test
based on the test statistic of the t-test is proposed to compare the dif-
ference between the mean importance of the two groups of genes.
To reduce the computation time, we instead rely on standard statis-
tical tests. We reported results using the nonparametric Wilcoxon
rank sum test and included a comparison with the t-test and the
Kolmogorov–Smirnov test in the Supplementary File. The random

selection of genes outside the pathway as well as the subsequent P
value calculation is repeated several times (parameter: sample.runs).
Finally, the median P value is reported for each individual pathway.

2.2 Statistical pathway analysis methods
We included two commonly used statistical pathway analysis
approaches in our comparison study. The first method is the popular
gene set enrichment analysis (GSEA) (Subramanian et al., 2005) for
which we used the efficient implementation provided in the R pack-
age fgsea (Sergushichev, 2016). All genes are ranked based on differ-
ential expression e.g. using the absolute value of the test statistic of
the t-test in our study. The GSEA approach then tests if the genes in
the particular pathway are primarily found at the top of the ranked
list using a weighted Kolmogorov–Smirnov-like statistic. The second
method is called sigPathway (Tian et al., 2005) and it is imple-
mented in an R package with the same name. It calculates a pathway
level test statistic as a weighted sum of the gene level statistics (t-
statistic), which is then normalized for the size and correlation struc-
ture of the pathway. The P value is determined using the Wilcoxon
rank sum test.

Both statistical procedures were run as competitive and self-
contained tests by permutation on the gene or sample level, respect-
ively (denoted with the suffixes _G and _S). As for the RF-based
methods, P values were adjusted for multiple testing using the
Benjamini–Hochberg approach (Benjamini and Hochberg, 1995).

2.3 Simulation studies
The pathway analysis approaches were compared in two different
simulation studies based on case–control settings. In the first study,
artificial models of correlation patterns and pathway structures are
used to enable estimation of empirical power and detection of false-
positive results depending on several pathway parameters, such as
number of genes, correlation and amount of differential expression.
In contrast, the second study is based on correlation patterns and ef-
fect sizes observed in experimental gene expression datasets.

The R code to generate the synthetic datasets is available in our
R package PathwayGuidedRF (https://github.com/szymczak-lab/
PathwayGuidedRF). Code for simulation study 1 is partly based on
R code from Poisson et al. (2011) and for efficient generation of
multivariate normally distributed synthetic expression values the R
package Umpire (Zhang et al., 2012) was employed in simulation
study 2.

2.3.1 Simulation study 1

In simulation study 1, pathways were simulated independently i.e.
each gene belongs to only one pathway. Each pathway is defined by
the following three characteristics: the number of genes, the pairwise
correlation between genes within the pathway (correlation) and the
proportion of differentially expressed genes (prop.de). We simulated
one pathway for each combination of number of genes (20, 100,
200), correlation (0, 0.2, 0.6) and prop.de (0, 0.25, 0.5, 1) resulting
in 36 pathways with the majority being causal. We included an add-
itional null pathway (prop.de ¼ 0, correlation ¼ 0) with 1160 genes,
so that the total number of genes is 5000. For each pathway, we
simulated gene expression values for 100 samples using a

Table 2. Parameters used for the pathway-guided RF approaches

Approach Parameter Description Value

RF ntree Number of trees 1000

mtry Number of predictor variables selected at each split Number of variables3=4

nodesize Minimal number of individuals in terminal node 1a

PE no.perm Number of permutations for empirical P value 50

LeFE sample.factor Multiple of number of genes to be selected from Outside of the pathway 6b

sample.runs Number of repetitions of comparisons with genes outside of the pathway 75b

aDefault in ranger function.
bDefaults in original publication.
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multivariate normal distribution following the approach of Poisson
et al. (2011). The gene specific means were randomly drawn from
normal distributions with mean of 0 and variances 4s2 with s2 fol-
lowing an inverse v2 distribution (v�2

4 ). The covariance matrix was
determined based on the variances 4s2 and the specified correlation.
Depending on the number of genes and amount of signal (prop.de)
of the pathway, the corresponding number of genes were randomly
selected and the means in the first 50 samples were shifted according
to an effect size randomly drawn from an uniform distribution be-
tween 0.2 and 0.3. We generated 100 replicates with independent
sets of differentially expressed genes and different effect sizes. For
each replicate, we simulated two datasets to evaluate prediction per-
formance and stability of pathway identification. Furthermore, we
simulated a complete null scenario where none of the pathways con-
tains any differentially expressed genes. We used the same number
and structure of pathways as in the scenario with true effects.

Each of the RF-based and statistical methods described in the
previous subsection was applied to all of the 200 datasets and four
evaluation criteria were calculated. The first one is the sensitivity
assessing the proportion of the true pathways (with prop.de > 0)
being identified. The second criterion is the false discovery rate
(FDR) which denotes the frequency of falsely identified pathways
among all pathways selected by a particular approach. Sensitivity
and FDR were calculated for each of the 200 datasets independently.
In contrast, the two remaining parameters use the two datasets of
each replicate. Stability is calculated using Jaccard’s index (He and
Yu, 2010), which is defined as the ratio of the length of the intersec-
tion and the length of the union of the two sets of pathways selected
in the two datasets. Thereby, values of 1 and 0 indicate both sets
being identical or disjunct, respectively. To evaluate prediction per-
formance, a RF is trained on each dataset and classification error is
evaluated on the other dataset and vice versa. Only genes within
selected pathways are used for model building. Differences in the
four evaluation criteria between the different pathway approaches
across the simulation replicates were tested using the nonparametric
Friedman test, followed by pairwise comparisons using the paired
Wilcoxon test and Bonferroni adjustment of P values.

2.3.2 Simulation study 2

Simulation study 2 closely resembles correlation patterns and differ-
ential expression observed in experimental studies. The simulation is
based on two of the publicly available gene expression datasets used
in our evaluation on experimental data [whole blood: GSE50635
(Ko et al., 2013), kidney: GSE25902 (Naesens et al., 2011)]. Since
analysis results are similar, we present results on the whole blood
dataset in the main manuscript and provide information on the kid-
ney dataset in the Supplementary File.

Pairwise correlations between genes were estimated in the con-
trol individuals using the Pearson correlation coefficient. To esti-
mate differential expression a t-test assuming equal variances was
applied for each gene separately followed by multiple testing adjust-
ment using the Benjamini–Hochberg method (Benjamini and
Hochberg, 1995). Test statistics of genes with adjusted P value <
0.05 were converted to differences in mean expression values based
on the observed sample sizes of cases and controls and under the as-
sumption of equal standard deviations of 1 in both groups. Synthetic
gene expression values of all genes for 30 samples were simulated
using a multivariate normal distribution with means of 0 and the
estimated correlation matrix. Genes within a single pathway, the so-
called target pathway, were simulated to be differentially expressed
by shifting the mean values of the first 15 samples (¼cases) by ran-
domly drawn effect sizes from the estimated differences. We varied
the proportion of differentially expressed genes (prop.de ¼ 0.1,
0.25, 0.5, 0.75) and generated two datasets for each of the 100 repli-
cates. A schematic overview of the simulation process is given in
Supplementary Figure S1.

For our comparison, we calculated the empirical power to detect
the target pathway, corresponding to the frequency of replicates in
which the target pathway is selected. Furthermore, we reported the
frequency of additionally selected pathways among all analyzed
pathways for each replicate and method. Finally, we determined the

number of selected pathways that do not share any gene with the
target pathway for each replicate and method.

Similar as in simulation study 1, we simulated 100 replicates of a
complete null scenario where none of the pathways contains any dif-
ferentially expressed genes (prop.de ¼ 0) utilizing the whole blood

dataset. The methods were compared by the selection frequency of
each individual pathway.

2.3.3 Experimental datasets

To evaluate the pathway-guided RF approaches under realistic ana-

lysis settings with true biological mechanisms, we performed a com-
parison based on several gene expression datasets publicly available
in the NCBI GEO database (Barrett et al., 2012). The challenge in

analyzing real data in contrast to simulated data is that the truth is
unknown. To be able to use a particular pathway as a positive con-
trol, which should be detected by a well-performing method, we

decided to focus on the hallmark gene sets (Liberzon et al., 2015)
from the MSigDB (Subramanian et al., 2005). These pathways rep-

resent well-defined biological processes and were defined based, in-
ter alia, on selected gene expression datasets. We chose 9 hallmark
gene sets with overall 10 target pathways which were connected to a

human case–control dataset containing at least 15 individuals per
group. Table 3 shows that these datasets cover a range of different

diseases, tissues and types of microarrays. Some studies were per-
formed in a paired design. This property, however, was ignored in
our study since we are only interested in the relative performance of

the different methods. Clinical information and normalized expres-
sion measurements of each dataset were downloaded from GEO

using the Bioconductor package GEOquery version 2.50.5 (Davis
and Meltzer, 2007) and the following preprocessing and quality
control steps were performed, if the relevant information was avail-

able. Affymetrix control probes were removed and only probes
detected in more than 25% of the individuals (detection P value <
0.05) were kept. Probes were then log transformed (log2) if not al-

ready done and assigned to HGNC gene symbols using the annota-
tion information provided in GEO. Probes assigned to multiple

symbols were removed and symbols were corrected using the R
package HGNChelper version 0.7.1. Finally, the probe with the
largest median expression value for each symbol was selected.

Individuals were removed if they had aberrant global distribution of
expression values (determined based on boxplots and principal com-

ponent analysis) or the reported sex was inconsistent with sex esti-
mated based on expression values of sex specific genes such as
EIF1AY, RPS4Y1, UTY or XIST (Jansen et al., 2014; Toker et al.,
2016) (see Table 3 for datasets where individuals were excluded).
The final datasets are provided as SummarizedExperiment objects in

the R package DataPathwayGuidedRF available at GitHub (https://
github.com/szymczak-lab/DataPathwayGuidedRF).

In contrast to the simulation studies, three of the experimental
datasets (GSE20257, GSE25902, GSE50635) exhibit a large class
imbalance. It is well known that machine learning approaches and

variable importance measures are prone to biased results because of
the preference of the majority class (Blagus and Lusa, 2010). One
possible solution is downsampling where the number of samples in

each class is restricted by the size of the minority class. In the RF ap-
proach this procedure does not lead to data loss since a separate bal-

anced bootstrap sample is drawn for each tree in the forest. The
downsampling method is implemented in our R package.

Similar as in simulation study 2 we compared the methods based
on the frequency the respective target pathway(s) is/are selected
among all analyzed datasets and the frequency of additionally

selected pathways among all analyzed pathways for each replicate
and method.

For the run time investigation, a computer with 2 x Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10 GHz, 16 cores (32 threads) and

64 GB DDR4 RAM was used.
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3 Results

3.1 Simulation study 1
The focus of the first simulation study is on pathways with specific
characteristics. We simulated 36 pathways with different numbers
of genes (20, 100, 200), proportions of differentially expressed genes
(prop.de ¼ 0, 0.25, 0.5, 1) and pairwise correlation between genes
(correlation ¼ 0, 0.2, 0.6) as well as an additional null pathway
(prop.de ¼ 0 and correlation ¼ 0) to achieve the total number of
5000 genes. Each gene was assigned to a single pathway and mutu-
ally exclusive pathways were simulated. All pathway analysis meth-
ods under consideration were evaluated using several evaluation
criteria including sensitivity, FDR, stability and classification error.

Figure 1A and B each shows two of the criteria with the median
and interquartile ranges over 100 replicates given for each method
and an optimal approach would be in the upper left corner of each
of the plots (see also Supplementary Table S1 for results of statistical
tests). Classification errors are similar for all methods and they are
below 5% for each of the RF-based approaches. PE is one of the
most sensitive methods i.e. it detected 89% of the true pathways
(¼pathways with prop.de > 0). In addition, this method usually
identified none of the pathways with prop.de ¼ 0 (FDR ¼ 0) and the
stability i.e. the consistency of selected pathways across datasets
simulated under the same scenario, is high (88%). SF is the other ap-
proach with similar performance to PE. Hunting and LeFE have
again a FDR of 0, but low power to detect true pathways with sig-
nal. Only LeFE has a relatively high stability of 73%, whereas
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Hunting usually selects many different pathways in the two datasets
of each replicate (stability less than 40%).

The performance of Hunting is very similar if the number of
trees is increased from 1000 to 10 000 (Supplementary Fig. S2). A
comparison of different test statistics employed by the LeFE method
shows that results for the Kolmogorov–Smirnov test are nearly iden-
tical to those of the Wilcoxon test, but sensitivity and stability drop
substantially for the statistic of the t-test (Supplementary Fig. S2).

To analyze the impact of the mtry parameter in the RF algo-
rithm, we performed sensitivity analyses using a smaller and a larger
value of mtry (Supplementary Figs. S3–S6). Differences were negli-
gible for LeFE and small for PE and SF. The largest differences were
observed for Hunting where a smaller value of mtry was advanta-
geous but even with this setting the other approaches perform
better.

A comparative analysis of the selection frequency of each
simulated pathway is presented in Figure 1C. The high sensitivity
of PE and SF is demonstrated by their capability to detect path-
ways with strong signals in nearly all of the replicates as well as a
power of at least 28.5 and 14%, respectively, for pathways with
only very low numbers of differentially expressed genes (prop.de
¼ 0.25 and number of genes ¼ 20). Hunting and LeFE, however,
are only able to identify large pathways with 100% of differen-
tially expressed genes (prop.de ¼ 1) in more than 50% of the
replicates. While empirical power for pathways with at least 100
genes reaches 100% for LeFE, it is still considerably lower for
Hunting.

Figure 2 shows results of a complete null scenario where all
pathways were simulated with prop.de ¼ 0, so that each identified
pathway is a false positive finding. PE controls the number of false
results well across all the investigated correlation patterns, while
SF consistently shows selection frequencies of about 16% across
all the pathways. In contrast, pathways detected by Hunting
and LeFE have strong correlations. Notably, the number of false-
positive findings is less pronounced for small pathways with only
20 genes.

Compared to the RF-based approaches, the statistical method
sigPathway_S (using permutations on the sample level) is the worst
performing method (Fig. 1). Although FDR is also 0, the median
sensitivity is only 1%, stability is 8% and the classification error is
about 10%. Interestingly, the only pathways that are selected are
those with uncorrelated genes. The other statistical methods
(FGSEA with gene or sample level permutation) similarly show bad
performance (Supplementary Fig. S7). In contrast, sensitivity and
stability of sigPathway with gene level permutation are larger, how-
ever, FDR also increases to about 20%. The reason for this behavior

is that correlated pathways are selected independently of the level of
differential expression (Supplementary Fig. S7C).

3.2 Simulation study 2
The second simulation study is based on correlation patterns and ef-
fect sizes observed in two of the publicly available gene expression
studies used in the comparison based on experimental data (see next
subsection) which measured gene expression in two different tissues
(kidney and whole blood). Expression values observed in the con-
trols were used to estimate pairwise correlation and standardized ef-
fect sizes were determined based on differentially expression
analysis. For each dataset, only genes in a single pathway, called tar-
get pathway, were simulated to be differentially expressed.

Pairwise correlations between genes within each pathway show
values ranging from 0 to almost 1 (Supplementary Fig. S8) and low
correlation coefficients are more frequent than medium and high
coefficients (Supplementary Fig. S9). In each dataset, the corre-
sponding target pathway exhibits a typical correlation pattern.
However, the two datasets differ with respect to observed differen-
tial expression between cases and controls (Supplementary Fig.
S10). In the whole blood dataset, only 0.26% of the genes were dif-
ferentially expressed with small differences (maximum: 1.9). In con-
trast, the kidney dataset comprised substantially more differentially
expressed genes and the observed effect sizes were more variable
and thus included more extreme differences reaching absolute values
of more than 10. In general, low numbers of overlapping genes be-
tween the pathways are common, while higher numbers of overlap-
ping genes are very rare.

Figure 3 displays results of simulation study 2 utilizing the whole
blood expression data, using different proportions of differentially
expressed genes (prop.de). SF is the most powerful method by
detecting the target pathway in 100% of the replicates for all values
of prop.de. Furthermore, it also selects the largest number of add-
itional pathways ranging from approximately 10% for a low pro-
portion of differential expression (prop.de ¼ 0.1) to over 20% for a
large proportion (prop.de ¼ 0.75). In contrast to the other methods,
these additionally selected pathways frequently include those that
do not share any gene with the target pathway (Supplementary Fig.
S11A). This is in accordance with the results of the complete null
scenario where SF shows selection frequencies of more than 10% in
contrast to the other methods that almost never select any pathway
(Supplementary Fig. S12). The Hunting approach has a high empir-
ical power to select the target pathway for all values of prop.de and
selects additional pathways with a frequency ranging from approxi-
mately 4% to around 12%. LeFE and PE show high empirical
power for moderate to large amounts of differential expression
(prop.de ¼ 0.25, 0.5 and 0.75), while power for prop.de ¼ 0.1 is
reduced to 16 and 75.5%, respectively. However, LeFE rarely
selects additional pathways, while PE does this with frequencies that
are very low for prop.de ¼ 0.1 and that exceed 8% for prop.de ¼
0.75. SigPathway with sample level permutation (SigPathway_S)
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performs comparatively weak in this simulation study, since it is
considerably less powerful than the other methods. However, it also
has a low selection frequency of additional pathways.

The results for the simulation study utilizing the kidney expres-
sion data are similar (Supplementary Figs S11B and S13).

3.3 Experimental data
In addition to the simulation studies which could never include all
of the subtleties of experimental data, we compared the different
approaches on nine gene expression datasets. Each of them corre-
sponds to one or two (for the smoking dataset) particular MSigDB
hallmark gene set, denoted as target pathway in the following. PE
and SF were the most powerful methods since they detected 90% of
the target pathways (Fig. 4A). However, they also selected a very
high percentage of the additional pathways that were analyzed
(Fig. 4B). PE even identified all analyzed pathways in 50% of the
datasets. In contrast, Hunting and LeFE selected the target pathway
in only 10 and 40% of the datasets, respectively, but also identified
<25% additional pathways. Compared to the RF based methods,
sigPathway_S shows similar performance as SF and PE.

The runtimes are in the minutes range for LeFE and PE and in
the seconds range for Hunting and SF, as well as for sigPathway_S
(Supplementary Fig. S14).

4 Discussion

In this study, we compared four RF-based methods which aim to se-
lect pathways important for a good prediction. Our results show
that these methods can be separated into two groups with similar be-
havior and performance called self-sufficient (PE) and competing
(Hunting and LeFE) approaches. Due to their stronger background
dependency, competing methods feature a lower power, especially
when large numbers of causal pathways (simulation study 1) and/or
complex variable correlation patterns (experimental data) are pre-
sent. They, however, rarely select additional pathways that do not
or only marginally influence the outcome. This is especially obvious
in the results of experimental data where the self-sufficient method
selects almost all of the analyzed pathways while competitive meth-
ods select <25% of them.

The statistical approaches performed relatively weak in our
simulation studies. The reason for this poor performance is that the
simulated data have either small standardized effects (simulation
study 1) or low samples sizes (simulation study 2). The low power
of statistical pathway approaches under comparable scenarios has
also been demonstrated in a semi-synthetic simulation study
(Mathur et al., 2018) or with small microarray datasets where the
GSEA approach resulted in nominal P values > 0.05 for almost all
pathways (Tarca et al., 2013).

The runtime of the methods is acceptable, as it was in the sec-
onds or minutes range for the experimental datasets (comprising
19–33 cases and 16–96 controls as well as 12 483–19 014 genes).

Another time and also memory consuming part of our study was the
data generation in simulation study 2 since multivariate normally
distributed data were simulated based on large correlation matrices.
A more efficient alternative could be the semi synthetic approach
called Flexible Algorithm for Novel Gene set Simulation that was
proposed by Mathur et al. (2018). They introduced the desired
amount of differential expression into an experimental case–control
dataset and then generated bootstrap samples for their evaluation.

In this study, we only investigated classification settings.
However, for the analysis of quantitative and survival outcomes,
similar results can be expected, as demonstrated by other compari-
son studies, such as Degenhardt et al. (2019). In fact, Hunting was
proposed for the analysis of survival data (Chen and Ishwaran,
2013). We also restricted our analysis to microarray-based datasets.
However, we expect similar performance of the approaches for dif-
ferent technologies such as RNA-Seq or other type of omics data
(e.g. from genetics, epigenetics, proteomics or metabolomics). The
RF approach is internally rank-based and thus nonparametric.
Hence, it is applicable to predictor variables of different types (e.g.
categorical in genetics or proportions in methylation data) or that
are not normally distributed (e.g. counts in RNA-Seq or zero
inflated in mass spectrometry based data). Integrating several types
of omics data measured in the same individuals is also possible since
the used corrected Gini importance does not prefer predictor varia-
bles of a specific type.

For the approaches that were evaluated in this study various
variations are conceivable, e.g. alternative machine learning
methods could be applied. This would be straightforward for PE
because PEs are commonly reported for machine learning meth-
ods. Indeed, PE methods using regularized least squares classifiers
(Maglietta et al., 2007) have been proposed for pathway analysis.
The other approaches investigated in our study rely on importance
scores, which need to be provided by alternative prediction model-
ing tools.

Possible objectives for further research include the following
aspects. First, alternative importance measures might be of interest.
In particular, our recently developed method called Surrogate
Minimal Depth (Seifert et al., 2019) could be used to interrogate
relationships between pathways or between the genes within import-
ant pathways. Second, additional analyses are needed to evaluate
the effect of missing and misspecified pathway annotations on the
performance of the different approaches. Third, a major limitation
is the current focus on simple pathway membership, i.e. sets of
genes. However, pathways are actually defined by their interconnec-
tions such as biochemical reactions or regulatory and signaling
events. Several topology aware pathway analysis methods have been
proposed which have proven to be superior to methods solely based
on pathway membership (Ma et al., 2019; Nguyen et al., 2019).
Both of these pathway-based approaches analyze each pathway sep-
arately ignoring the fact that genes might be members of several or
many pathways. An alternative to detailed information on specific
biological processes are networks which summarize genome-wide
bimolecular interactions such as physical protein–protein interac-
tions or regulatory relationships. Differentially expressed genes can
be mapped onto those networks, followed by detection of disease
relevant subnetworks or modules (Choobdar et al., 2019). Further
research is needed to evaluate and compare machine-learning
approaches that can incorporate pathway topology or network in-
formation such as Pan et al. (2013) and And�el et al. (2015).

5 Conclusion

This study compared various methods for RF-guided pathway selec-
tion by analyzing different simulated and experimental datasets. We
observed relevant differences between competing (Hunting and
LeFE) and self-sufficient (PE) or hybrid methods (SF), leading to the
following advice for their application: SF is not recommended due
to its large number of false positive findings in scenarios of the com-
plete null hypothesis. PE should be applied when large numbers of
relevant pathways are expected. Hunting and LeFE, however,
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should be preferred if low numbers of relevant pathways are
expected or the most strongly associated pathways are of interest.
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