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Background: Anosognosia is a significant symptom in patients with mild cognitive

impairment (MCI) while the underlying neurological mechanism behind it is still unclear.

Methods: A total of 121 subjects were included and classified into three groups,

including 39 normal controls (NCs), 42 individuals with MCI without anosognosia

(MCI-NA), and 40 individuals withMCI with anosognosia (MCI-A), based on their everyday

cognition (ECog) questionnaire (discrepancy score). Resting-state functional MRIs were

acquired from all the subjects, and the static amplitudes of low-frequency fluctuation

(sALFF) and dynamic ALFF (dALFF) variance were investigated to evaluate the intrinsic

functional network strength and stability, respectively, and both were corrected by age,

sex, education, and gray matter volume. Eventually, correlation analyses were conducted

to explore the relationship between brain activity changes and cognitive status in all

the subjects.

Results: No significant difference was found between MCI-A and MCI-NA (P > 0.05) in

cognitive ability. Regarding intrinsic brain activity, MCI-A had increased sALFF and dALFF

variance in the anterior cingulate cortex (ACC) relative to MCI-NA, as well as decreased

sALFF and dALFF variance in the precuneus relative to MCI-NA and controls. Moreover,

MCI-A had decreased sALFF in the inferior temporal gyrus (ITG) and paracentral lobule

(PCL) compared to MCI-NA. Among all the subjects, correlation analyses showed that

the sALFF and dALFF variance in the precuneus was related to the Ecog discrepancy

score (r = 0.232 and 0.235, respectively), immediate story recall (r = 0.200 and 0.277,

respectively), and delayed story recall (r = 0.255 and 0.298, respectively).

Conclusion: Alterations of intrinsic brain activation in the ACC and precuneus seem to

be associated with the anosognosia symptom in patients with MCI.

Keywords: anosognosia, mild cognitive impairment, Alzheimer’s disease, amplitudes of low-frequency fluctuation,

precuneus, cortical midline structures
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INTRODUCTION

A high prevalence of anosognosia symptoms (24.2–71.0%) is
reported in patients with Alzheimer’s disease (AD) (Mondragon
et al., 2019), and the frequency of which is usually associated
with the severity of dementia. Previous studies showed that
the frequency of anosognosia is around 10% in patients with
mild dementia, while in patients with severe dementia, the
number rises to 57% (Starkstein et al., 2006; Starkstein, 2014).
The term anosognosia was first introduced by Babinski to
refer to the phenomenon of denial of hemiplegia (Langer
and Levine, 2014). Anosognosia is a syndrome characterized
by a lack of awareness of one’s illness. Other terms like
“unawareness,” “lack of insight,” “impaired self-awareness,”
“denial,” and “impaired self-consciousness” have been used to
refer to this phenomenon (Markova and Berrios, 2006). Patients
with AD having anosognosia are unaware of their cognitive
and behavioral deficits (Sunderaraman and Cosentino, 2017;
Therriault et al., 2018). Clinically, the onset of anosognosia in AD
is significantly related to milder depression and anxiety, severe
caregiver burden, and dangerous behaviors (Starkstein, 2014).
At the prodromal AD stage, the patients with mild cognitive
impairment (MCI) who have anosognosia symptoms are more
likely to progress and eventually end upwith dementia (Edmonds
et al., 2014; Munro et al., 2018; Therriault et al., 2018). This
suggests that anosognosia is an independent risk factor of the
transition fromMCI to AD (Gerretsen et al., 2017).

In previous imaging studies, researchers explored the
mechanism behind anosognosia in patients with AD. Specifically,
structural MRI studies showed that the severity of anosognosia
is associated with greater gray matter atrophy in brain regions
like the hippocampus (Tondelli et al., 2018), the anterior
cingulate cortex (ACC) (Spalletta et al., 2014), and the superior
frontal gyrus (Fujimoto et al., 2017). Meanwhile, a resting-
state functional MRI (rs-fMRI) study showed that patients with
AD who have anosognosia had reduced intrinsic connectivity
between orbitofrontal and posterior cingulate cortex (PCC)
(Perrotin et al., 2015). Another task-based fMRI study revealed
the association between decreased functional activation of the
medial prefrontal cortex (MPFC) and anosognosia in patients
with AD during self-appraisal conditions (Zamboni et al., 2013).
Notably, the aforementioned brain regions are located in the
cortical midline structures (CMS) of the brain, related to the
self-referential process (Northoff et al., 2006).

In fMRI approaches, amplitudes of low-frequency fluctuation
(ALFF) measures the total power of a given time course within a
specific frequency range (Zang et al., 2007). To further elaborate,
static ALFF (sALFF) reflects the regional intrinsic functional
activity strength by quantifying the average ALFF signal, while
the dynamic ALFF (dALFF) mapping reflects the temporal
variability of intrinsic brain activity by evaluating the dynamic

brain activity using “sliding-window” approaches. The sALFF has

been used to investigate the spatial patterns of intrinsic brain
activity in patients with MCI and AD (Wang et al., 2011; Liu
et al., 2014). Recent fMRI studies have shown that brains are
remarkably active even in the absence of overt behavior (Allen
et al., 2014). The dALFF could reflect the temporal stability of the

intrinsic brain activity and has been used to investigate the time-
varying local brain activity in neuropsychiatric disorders, like
MCI and depression disorder (Li J. et al., 2019; Yu et al., 2019),
providing an opportunity to extract more network information,
enhancing our understanding of the properties of brain networks
in anosognosia.

Considering that the patients with MCI with anosognosia
(MCI-A) had an increased risk of disease progression, we aim
to explore the brain intrinsic functional activity in MCI-A by
using two fMRI metrics: sALFF and dALFF. We hypothesize that
MCI-A will present abnormal brain activity in the CMS regions.

MATERIALS AND METHODS

Participants
Data used in this article were acquired from the
AD Neuroimaging Initiative (ADNI) database
(www.adni.loni.usc.edu). ADNI is a longitudinal multicenter
study since 2004, and now contains ADNI-1, ADNI-GO,
ADNI-2, and ADNI-3. By the use of clinical, neuropsychological
assessment, gene, biospecimen, and imaging data, it aims to
investigate the biomarker of an early detection and progression
of AD. For updated information, see www.adni-info.org.

All the subjects in this study signed the written informed
consent as they joined the ADNI project. A total of 301
non-demented subjects (characterized as either NC group
or MCI) were identified from ADNI databases in January
2020. All subjects underwent structural MRI scans, resting-
state functional MRI (rsfMRI) scan, and comprehensive
neuropsychological assessments.

Normal controls were defined as: (1) clinical dementia rating
(CDR) = 0; (2) mini-mental state exam (MMSE) between 24
and 30 (inclusive); (3) normal Wechsler memory scale logical
memory, WMS-LM, delay recall performance (in detail: ≥ 9 for
subjects with 16 or more years of education;≥ 5 for subjects with
8–15 years of education; and ≥ 3 for subjects with 0–7 years of
education); (4) absence of significant impairment in cognitive
functions or activities of daily living. Subjects with MCI were
defined as (1) CDR= 0.5 with a memory box score of at least 0.5;
(2) MMSE between 24 and 30 (inclusive); (3) abnormal memory
function on theWMS–LM, delay recall (in detail:≤8 for 16 years
of education or more years of education, ≤ 4 for 8–15 years
of education, and ≤2 for 0–7 years of education); (4) general
cognition and functional performance sufficiently preserved such
that the site physician cannot make a diagnosis of AD at the time
of the screening visit. The exclusion criteria include the following:
(a) significant medical, neurological, and psychiatric illness;
(b) evident head trauma history; (c) use of non-AD-related
medication known to influence cerebral function; (d) clinical
depression; (e) alcohol or drug abuse. Of the 301 participants,
157 subjects, including 64 NCs and 93 patients with MCI met the
inclusion criteria after initial screening (Figure 1).

Anosognosia Assessment
The severity of anosognosia was evaluated with the discrepancy
score between patient and informant global ratings on the ECog
questionnaire (Farias et al., 2008), which measures an ability of
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an individual to perform daily activities compared with 10 years
ago. A study partner, such as a spouse or caregiver, who spent a
minimum of 10 h per week with the participant, also completed
the ECog questionnaire according to the cognitive abilities of
the participants. The ECog questionnaire consists of the global
cognition scale and 6 neuropsychological subscales, including
memory, language, visuospatial, planning, organization, and
divided attention. In our study, we choose the memory subscale
score calculated by averaging ratings for all 8 items as our
data source.

The discrepancy score is obtained by subtracting the study
partner report score from the self-report score of the participants.
The anosognosia threshold is obtained by using the mean and
SD in ECOG discrepancy score from our NC group. In order
to better control the variables, we choose the NC group with
a discrepancy score > 0 as the selected NC group in our
study. Then, we divided these 157 participants into three groups,
including 41 NCs, 49 MCI-NA (discrepancy score > 0), and 40
MCI-A (discrepancy score< 0). After excluding the subjects with
apparent head motion displacement and age mismatch, 121 non-
demented subjects were classified into the following three groups:
39 NCs, 42 MCI-NA, and 40 MCI-A.

Neuropsychological Assessment
Each subject completed a battery of comprehensive cognitive
assessments. Specifically, general cognition was assessed by
general mental status (MMSE); memory was accessed by auditory
verbal learning test (AVLT), immediate story recall (IST), and
the 30-min delayed story recall (DST); attention was accessed
by trail-making test part A (TMT-A); executive function was
accessed by trail-making test, part B (TMT-B); visuospatial
function was accessed by clock-drawing test (CDT), and language
abilities were accessed by the semantic verbal fluency (SVF,
animal part).

Neuroimaging Methods
Data Acquisition and Pre-processing
The T1-weighted structural images were obtained with the
following parameters: voxel size = 1.0mm × 1.0mm × 1.2mm;
flip angle = 9◦; echo time (TE) = 3.1ms; inversion time (TI)
= 900ms; repetition time (TR) = 2,300ms; 170 sagittal slices;
within plane FOV = 256mm × 256mm. Furthermore, the
rs-fMRI images were obtained with an echo-planar imaging
sequence using the following parameters: TE = 30ms; TR =

3,000ms; the number of slices = 48; slice thickness = 3.3mm;
spatial resolution = 3.31mm × 3.31mm × 3.31mm. All the
subjects underwent MRI scans with their eyes open focusing
on a cross, and keep at rest calmly according to the ADNI
scanning protocol.

Data pre-processing steps were performed using the Data
Processing Assistant for Resting-state fMRI (DPARSF, Yan and
Zang; http://rfmri.org/dpabi) based on Statistical Parametric
Mapping 12 (SPM12; www.fil.ion.ucl.ac.uk/spm). The first ten
volumes of the rs-fMRI images were removed due to the signal
equilibrium, and the adaptation of the subject to the scanning
noise. The remaining 130 images were corrected for both the
timing differences between each slice and head motion. Image

data with more than 2.5mm maximum displacement in any
of the x, y, or z directions or 2.5◦ of any angular motion
were discarded. T1-weighted images were co-registered to the
mean rs-fMRI image and spatially normalized to the Montreal
Neurological Institute (MNI) standard space based on rigid-body
transformation, then re-sampled into 3mm × 3mm × 3mm
cubic voxel. The resulting data were then spatially smoothed
with a 6-mm full-width at half-maximum (FWHM) Gaussian
kernel to reduce noise and residual differences in gyral anatomy.
Then, the removal of linear trends was performed. To control
the residual effects of motion and other non-neuronal factors, we
concluded covariates, including 24 head motion parameters and
signals of white matter and cerebrospinal fluid.

sALFF and dALFF Variance Calculation
The sALFF was examined using the DPARSF to reflect the
strength of intrinsic brain activity with the following procedures:
first, the time series were changed into the frequency domain with
a fast Fourier transformation at each voxel; then, across 0.01 to
0.08Hz, we computed and averaged the square root of the power
spectrum, which was taken as the sALFF at the given voxel.

The dALFF was computed using the DynamicBC software
(www.restfmri.net/forum/DynamicBC) to reflect the temporal
stability of intrinsic brain activity. According to a previous study
that window size in the range of 40 to 100s is suitable to capture
brain dynamics (Zalesky and Breakspear, 2015; Li K. C. et al.,
2019). Thus, we chose 20TR (the 60s) as window size and 1TR
as window step. Then, we obtained an ALFF map for each
sliding window, as well as the dALFF variance, which reflects
the temporal stability of intrinsic brain activity. The dALFF in
other window sizes (14TR, 26TR, and 33TR) with 1TR as the
window step were also analyzed (Supplementary Table 1 and
Supplementary Figures 1, 2). We repeated statistical analysis
by using different window sizes (14TR, 20TR, 26TR, and
33TR) and step width (2TR, 3TR) (Supplementary Table 4 and
Supplementary Figure 3).

Statistical Analysis
Demographics were analyzed with SPSS (version 23.0) using a
chi-squared test for categorical data (gender) and ANOVA for
continuous data (e.g., age, education). ANCOVA was performed
to explore the neuroimaging metric differences (including
sALFF and dALFF) between different groups with the gray
matter volume and age, sex, education as covariances. We
also repeated ALFF analysis using ANCOVA controlling for
age, sex, education, gray matter volume, and head motion
(Supplementary Table 2). Multiple comparisons correction was
performed using the Gaussian random field (GRF) method by
setting P < 0.01 at the height level and P < 0.05 at the cluster
level. Then, post-hoc analysis was performed to explore the
difference between groups by setting the threshold at P < 0.05.
Furthermore, the partial correlation was conducted to investigate
the relationship between neuroimaging metrics (sALFF and
dALFF variance in ROIs) and neuropsychological test scores
corrected by age, sex, education, and gray matter volume.
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RESULTS

Demographics
There is no significant difference in age, head motion, and
education among the three groups (P > 0.05). Regarding
neuropsychological scores, MCI-A had lower neuropsychological
test scores, including MMSE, IST, DST, AVLT, and SVF,
compared to the healthy controls (P < 0.05). Moreover, there is
no significant difference found between MCI-A and MCI-NA in
the neuropsychological scores (P > 0.05, Table 1).

Static and Dynamic ALFF Results
Mild cognitive impairment with anosognosia had increased
sALFF in the ACC compared to MCI-NA and decreased sALFF
compared to NC. In the precuneus, MCI-A showed decreased
sALFF compared to both theMCI-NA andNC. In addition,MCI-
A had decreased sALFF in the inferior temporal gyrus (ITG) and
paracentral lobule (PCL) compared to MCI-NA. Regarding the
dynamic metrics, MCI-A had increased dALFF variance in the
ACC than MCI-NA, and decreased dALFF variance than NC.
Decreased dALFF variance in the precuneus was observed in
MCI-A compared toMCI-NA andNC (Figures 2, 3 andTable 2).

Correlation Analysis
We found no significant correlational relationship between
the discrepancy score and MMSE score (p > 0.05,
Supplementary Table 5). The sALFF and dALFF variance
of the precuneus are significantly correlated with the Ecog

discrepancy score (r = 0.232, p = 0.012; r = 0.235, p = 0.011).
They are also correlated with IST (r = 0.200, p = 0.031; r =

0.277, p= 0.003) and DST scales (r= 0.255, p= 0.006; r= 0.298,
p = 0.001). Correlation results showed that sALFF and dALFF
variance of ACC are significantly related to IST (r = 0.355, p <

0.001; r= 0.408, p < 0.001) and DST scales (r= 0.322, p < 0.001;
r = 0.352, p < 0.001). But we found no significant correlations
between ALFF variance of ACC and Ecog discrepancy score (p >

0.05, Table 3 and Figure 4).

DISCUSSION

For the first time, the current study explored the intrinsic brain
activity change inMCI with anosognosia. The significant findings
of the current study are as follows: (1) MCI-A had increased
activity in the ACC and decreased activity in the precuneus, ITG,
and PCL; (2) brain activity alternations in the precuneus were
related to the memory function and anosognosia severity.

In the current study, MCI-A had decreased sALFF and dALFF
variance in the precuneus relative to MCI-NA and NC. The
default mode network (DMN) is a large-scale network consist
of multiple brain regions including the PCC, precuneus, medial
temporal lobes, and MPFC (Uddin et al., 2009; Therriault
et al., 2018), and the precuneus is a functional core of the
DMN (Utevsky et al., 2014). We found that the decreased
sALFF and dALFF variance in the precuneus of MCI-A as
previous studies reported that hypoactivation in DMNmight be a

TABLE 1 | Demographics information and neuropsychological scale of NC, MCI-NA, and MCI-A.

Demographic NC MCI-NA MCI-A F/χ2 P-value

characteristics N = 39 N = 42 N = 40

ECOG 0.64 (0.46) 0.93 (0.57) −0.78 (0.52) 126.01 0.000

Age 74.9 (6.03) 73.01 (6.84) 73.51 (6.66) 0.90 0.409

Education 16.44 (2.77) 16.45 (2.68) 16.73 (2.47) 0.15 0.860

Gender (F/M) 23/16 20/22 13/27 5.61 0.060

FD 0.13 (0.08) 0.13 (0.08) 0.15 (0.09) 0.371 0.691

General cognition

MMSE 28.97 (1.25) 27.98 (1.83)** 27.83 (1.80)** 5.655 0.005

Memory

IST 15.90 (3.17) 10.55 (3.41)*** 9.38 (4.13)*** 36.987 0.000

DST 14.92 (3.10) 8.81 (3.87)*** 7.13 (4.38)*** 45.504 0.000

AVLT 47.13 (11.59) 36.60 (11.20)*** 33.88 (9.75)*** 16.363 0.000

Language

SVF 21.28 (5.61) 18.45 (4.07)* 18.85 (4.74)* 4.01 0.021

Attention

TMT-A 34.21 (11.49) 36.33 (12.95) 38.20 (15.09) 0.896 0.411

Executive

TMT-B 90.28 (67.64) 104.07 (62.67) 105.80 (55.33) 0.743 0.478

Visuospatial

CDT 4.82 (0.39) 4.38 (1.04)* 4.48 (0.78) 3.428 0.036

Data are mean ± standard deviations. *, **, *** represents p < 0.05, p < 0.01, p < 0.001, respectively, meaning MCI-NA and MCI-A groups significantly different compared with NC.

MMSE, Mini-Mental State Exam; AVLT, Auditory Verbal Learning Test; IST, Immediate Story Recall; DST, Delayed Story Recall; TMT-A, Trail-Making Test Part A; TMT-B, Trail-Making Test

Part B; CDT, Clock-Drawing Test; SVF, Semantic Verbal Fluency; FD, framewise displacement.
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TABLE 2 | Brain areas with significant sALFF and dALFF variance difference among three groups.

Regions Cluster MNI Coordinate Peak

Voxels X Y Z Intensity

sALFF

Left precuneus 22 −3 −54 69 9.17

Left ACC 30 −3 15 −12 8.55

Left ITG 18 −57 −48 −24 11.57

Left PCL 21 −12 −33 66 11.13

dALFF variance

Left precuneus 12 −6 −48 66 9.14

Right ACC 13 3 30 −3 8.91

The difference of sALFF and dALFF variance between NC/MCI-NA/MCI-A groups (voxel P < 0.01, cluster P < 0.05, controlling for age, sex, education and gray matter volume, GRF

corrected). sALFF, static amplitudes of low-frequency fluctuation; dALFF, dynamic amplitudes of low-frequency fluctuation; MNI, Montreal Neurological Institute; ACC, anterior cingulate

cortex; ITG, inferior temporal gyrus; PCL, paracentral lobule.

FIGURE 1 | It illustrates the screening processing of NC, MCI-NA, and MCI-A. Finally, 121 participants were divided into three groups consist of 39 NCs (discrepancy

score > 0), 42 MCI-NA (discrepancy score > 0), and 40 MCI-A (discrepancy score < 0). MCI, mild cognitive impairment; ECog, Everyday Cognition; NC, normal

controls; MCI-A, MCI with anosognosia; MCI-NA, MCI without anosognosia; ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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FIGURE 2 | It illustrates the differences of sALFF and dALFF variance among NC, MCI-NA, and MCI-A. Specifically, (A) ANCOVA results of sALFF among NC,

MCI-NA, and MCI-A (voxel P < 0.01, cluster P < 0.05, controlling for age, sex, education, and gray matter volume, GRF corrected); (B) ANCOVA results of dALFF

variance among NC, MCI-NA, and MCI-A (voxel P < 0.01, cluster P < 0.05, controlling for age, sex, education, and gray matter volume, GRF corrected). sALFF, static

amplitudes of low-frequency fluctuation; dALFF, dynamic amplitudes of low-frequency fluctuation; ACC, anterior cingulate cortex; ITG, inferior temporal gyrus; PCL,

paracentral lobule.

FIGURE 3 | Box and whiskers illustrate the sALFF and dALFF variance differences among the three groups. Specifically, (A) the sALFF differences in the precuneus;

(B) the sALFF differences in ACC; (C) the sALFF differences in ITG; (D) the sALFF differences in PCL; (E) the dALFF variance differences in the precuneus; (F) the

dALFF variance differences in ACC; *, **, *** represents p < 0.05, p < 0.01, p < 0.001 after post-hoc analysis, meaning patient group MCI-A significantly different

compared with MCI-NA and NC.

sensitive and specific biomarker for incipient AD (Greicius et al.,
2004; Rombouts et al., 2005). This suggested that anosognosia
may be an early sign of AD in patients with MCI. On
the contrary, the precuneus also plays a pivotal role in the
CMS. The regions referred to CMS include the MPFC, ACC,

PCC, and precuneus, and the function of CMS is associated
with self-processing. Amongst, PCC and precuneus are related
to the integration process, like the linkage between stimuli
and personal context (Northoff and Bermpohl, 2004). A study
suggested a central role for the precuneus in a broad spectrum of
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TABLE 3 | Correlation between ALFF and neuropsychological scores among three groups corrected for age, sex, education, and gray matter volume.

s-Precuneus d-Precuneus s-ACC d-ACC

Correlation

coefficient

p-value Correlation

coefficient

p-value Correlation

coefficient

p-value Correlation

coefficient

p-value

ECOG 0.232 0.012b 0.235 0.011b −0.015 0.870 0.001 0.988

MMSE 0.102 0.274 0.080 0.393 0.034 0.714 0.121 0.196

IST 0.200 0.031b 0.277 0.003a 0.355 <0.001a 0.408 <0.001a

DST 0.255 0.006b 0.298 0.001a 0.322 <0.001a 0.352 <0.001a

AVLT 0.142 0.127 0.136 0.143 0.076 0.418 0.116 0.211

SVF 0.023 0.804 0.085 0.359 0.187 0.044b 0.209 0.024b

TMT-A −0.019 0.839 0.064 0.496 −0.072 0.443 −0.092 0.323

TMT-B −0.076 0.414 −0.099 0.289 −0.188 0.042 −0.141 0.129

CDT −0.038 0.681 0.016 0.867 0.086 0.357 0.120 0.199

ECOG, Everyday Cognition questionnaire (discrepancy score); MMSE, Mini-Mental State Exam; AVLT, Auditory Verbal Learning Test; IST, Immediate Story Recall; DST, Delayed Story

Recall; TMT-A, Trail-Making Test Part A; TMT-B, Trail-Making Test Part B; CDT, Clock-Drawing Test; SVF, Semantic Verbal Fluency; s-Precuneus, Precuneus sALFF; d-Precuneus,

Precuneus dALFF; s-ACC, Anterior cingulate cortex sALFF; d-ACC, Anterior cingulate cortex dALFF.
ap < 0.05, Bonferroni corrected. bp < 0.05, uncorrected.

FIGURE 4 | It shows the correlation between ALFF in precuneus and neuropsychological scores. Specifically, (A) represents the correlation between sALFF of

precuneus and Ecog discrepancy score (r = 0.232, p = 0.012); (B) represents the correlation between sALFF of precuneus and IST scale (r = 0.200, p = 0.031); (C)

represents the correlation between sALFF of precuneus and DST scale (r = 0.255, p = 0.006); (D) represents the correlation between dALFF variance of precuneus

and Ecog discrepancy score (r = 0.235, p = 0.011); (E) represents the correlation between dALFF variance of precuneus and IST scale (r = 0.277, p = 0.003); (F)

represents the correlation between dALFF variance of precuneus and DST scale (r = 0.298, p = 0.001). ECOG, Everyday Cognition questionnaire (discrepancy score;

IST, Immediate Story Recall; DST, Delayed Story Recall.

highly integrated tasks, including visuospatial imagery, episodic
memory retrieval, and self-processing operations. Thus, the
attenuated activation in the precuneus suggested that the
damaged self-related or self-referential process may result in the
anosognosia symptom. Decreased ALFF in the precuneus was
also observed in patients with anosognosia in other diseases
such as diffuse axonal injury (DAI) (Yao et al., 2015). Another
study on schizophrenia with anosognosia also found reduced

connectivity in the precuneus and ACC (Liemburg et al., 2012).
In the previous studies, hypometabolism was found in MCI-
A in the precuneus with the brain 18F-fluorodeoxyglucose
PET (FDG-PET) (Nobili et al., 2010). Patients with MCI-
A had significantly attenuated activation in CMS, indicating
that a self-appraisal fMRI task is sensitive to functional brain
changes associated with anosognosia in the patients with MCI
(Ries et al., 2007). Thus, the precuneus is a critical region for
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understanding the mechanism behind anosognosia in patients
with MCI. Nevertheless, whether the attenuated precuneus
activation results from self-processing impairment or one of
the early neuroimaging signs of the patients with MCI is
still unknown, thus requires further studies to elaborate the
neural mechanisms.

In this study, patients with MCI-A had increased activity
in the ACC compared to the patients with MCI-NA. ACC is
a part of a circuit involved in the formation of attention that
regulates both cognitive and emotional processing, responsible
for executive function (Margulies et al., 2007; Etkin et al., 2011).
ACCmight also be the hub in charge of error detection and error
correction (Bush et al., 2000). Carter et al. observed a transient
increase in the ACC activity using fMRI which occurred during
incorrect responses to performances and provided evidence for
the connection between ACC and error detection (Carter et al.,
1998). ACC is not only a part of CMS but also an essential part
of the self-referencing network (SRN). In a previous study, Bai
et al. explored the changes of resting-state SRN in the MCI. They
found that the dynamic changes are associated with increased
functional connectivity at baseline and a more longitudinal
diminish after follow-up (Bai et al., 2012). Another rs-fMRI
study revealed that increased functional connectivity in the
inferior frontal cortex and ACC is associated with anosognosia
in schizophrenia spectrum disorders (Gerretsen et al., 2014).
Amanzio et al. found that patients with AD with anosognosia
showed reduced activation in the medial prefrontal circuit,
particularly in the ACC during response inhibition (go/no-
go) task, and proposed that ACC dysfunction of the executive
monitoring system plays a particular role in anosognosia
(Amanzio et al., 2011). Structural and hypometabolic alterations
in ACC are also associated with anosognosia in patients with
AD (Guerrier et al., 2018). Thus, we speculate that anosognosia
is related to a temporary hyperactivation in ACC, maybe
the reaction to the function of error detection of ACC. As
the disease advances, hypoactivation could be seen in ACC.
However, we need to further investigate the neuroimaging
manifestations of anosognosia through long-term follow-up to
validate our speculation.

After correcting for age, sex, education, and gray matter
volume, we found that both sALFF and dALFF variance in
the precuneus is positively related to the Ecog discrepancy
score and recall delay scale. We, thus, hypothesized that
abnormal activation in the precuneus is related to the clinical
manifestations of patients with anosognosia, which showed poor
performance on the memory tasks. This hypothesis is consistent
with other studies revealing that the precuneus plays a significant
role in memory (Wagner et al., 2005; Cavanna and Trimble,
2006).

Although no significant difference in the neuropsychological
scores between MCI-A and MCI-NA was found, MCI-A had
a tendency of decreased memory performance compared with
MCI-NA. Previous research has confirmed that MCI-A performs
worse on memory-related scales (Bregman et al., 2020). In this
study, although no significant difference in memory performance
between the MCI-A and MCI-NA was found, the activity
strength of the precuneus brain area between the two groups has

already been significantly different. Moreover, we found that the
activity intensity of the precuneus is positively correlated with
the memory scale score and anosognosia degree. These results
implied that a significant decreased activity of the precuneus
might account for and predict the memory function decline
in patients with MCI-A compared to MCI-NA, which might
provide an additional reference for the early clinical management
of patients with MCI.

There is a limitation of the current study. There is still a
lack of consensus in anosognosia diagnosis. There are three
major ways to assess the lack of awareness (Clare, 2004; Vogel
et al., 2004; Starkstein et al., 2006; Starkstein, 2014; Tondelli
et al., 2018), which are as follows: (1) Clinician rating of
awareness of the illness of the patients, which looks like a
semi-structured interview dependent on the clinician judgment;
(2) Prediction–performance discrepancies, the discrepancies are
produced between expected performance and actual results
of the patients; (3) patient-caregiver discrepancy scores. To
better explore the anosognosia mechanism, a unified diagnostic
standard is necessary.

CONCLUSIONS

In conclusion, the abnormal brain activity in the precuneus
and the ACC reflected by sALFF and dALFF supported the
hypothesis that CMS regions play a vital role in the underlying
neural mechanism behind anosognosia. Decreased activity in the
precuneus may indicate a decline in memory function in patients
with anosognosia.
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