
RESEARCH ARTICLE Open Access

A genome-wide survey of copy number
variations reveals an asymmetric evolution
of duplicated genes in rice
Fengli Zhao1†, Yuexing Wang2†, Jianshu Zheng1†, Yanling Wen3†, Minghao Qu1, Shujing Kang1, Shigang Wu1,
Xiaojuan Deng1, Kai Hong1, Sanfeng Li2, Xing Qin1, Zhichao Wu1, Xiaobo Wang1, Cheng Ai1, Alun Li1,
Longjun Zeng1,4, Jiang Hu2, Dali Zeng2, Lianguang Shang1, Quan Wang1, Qian Qian1,2, Jue Ruan1* and
Guosheng Xiong1,4*

Abstract

Background: Copy number variations (CNVs) are an important type of structural variations in the genome that
usually affect gene expression levels by gene dosage effect. Understanding CNVs as part of genome evolution may
provide insights into the genetic basis of important agricultural traits and contribute to the crop breeding in the
future. While available methods to detect CNVs utilizing next-generation sequencing technology have helped shed
light on prevalence and effects of CNVs, the complexity of crop genomes poses a major challenge and requires
development of additional tools.

Results: Here, we generated genomic and transcriptomic data of 93 rice (Oryza sativa L.) accessions and developed
a comprehensive pipeline to call CNVs in this large-scale dataset. We analyzed the correlation between CNVs and
gene expression levels and found that approximately 13% of the identified genes showed a significant correlation
between their expression levels and copy numbers. Further analysis showed that about 36% of duplicate pairs were
involved in pseudogenetic events while only 5% of them showed functional differentiation. Moreover, the offspring
copy mainly contributed to the expression levels and seemed more likely to become a pseudogene, whereas the
parent copy tended to maintain the function of ancestral gene.

Conclusion: We provide a high-accuracy CNV dataset that will contribute to functional genomics studies and
molecular breeding in rice. We also showed that gene dosage effect of CNVs in rice is not exponential or linear.
Our work demonstrates that the evolution of duplicated genes is asymmetric in both expression levels and gene
fates, shedding a new insight into the evolution of duplicated genes.
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Background
Natural variations are the basis of genetic diversity and
genome evolution. The detection of natural variations
and evaluation of their genetic effects are the keys to
understand and interpret the formation of biological
phenotypes. Natural variations generally include single
nucleotide polymorphisms (SNPs), small InDels (no
more than 50 bp), and structural variations (SVs). Copy
number variations (CNVs), including deletion and dupli-
cation, typically ranged from 1 kb to several Mb [1], are
important source of structural variations [2–4]. Many
methods have been developed to detect CNV, such as
fluorescence in situ hybridization (FISH), quantitative
polymerase chain reaction (qPCR), and microarray.
However, these methods are not suitable to detect CNVs
in natural population, due to the low throughput or the
low resolution and sensitivity. With the advantages of
next-generation sequencing (NGS) technologies, new ap-
proaches and algorithms have been developed to detect
novel CNVs in recent years [5, 6]. These methods are
mainly based on the individual or combination of the
following strategies: read-pair (RP), split read (SR), read
depth (RD), de novo assembly (AS) [7–9]. The complex-
ity of crop genomes and the structure and distribution
of CNVs, make it a challenge to comprehensively and
accurately detect CNVs among different germplasms of
crop.
The CNVs occurred in the regulatory sequence region

will change the gene expression of their flanking regions;
nevertheless, the CNVs occurred in the gene region usu-
ally show the dosage effect on gene expression, thus af-
fecting the biological phenotype. The dosage effect of
CNVs was more obviously observed in human [10–13],
and mice [14], as genome-wide analysis suggested that
85–95% of detected CNVs were associated with changes
in gene expression [10, 14]. However, very few genome-
wide analyses of CNVs [15–20] and only a few examples
of CNVs contributing to phenotypic variation [21–27]
have been reported in crops, but these works were
mainly focused on the biological function of a single
CNV. Therefore, a large-scale CNV data set with high
accuracy will be beneficial to understand the dynamic of
genome evolution, provide an insight into the genetic
basis of important agricultural traits, and contribute to
the crop breeding in the future.
Here, we reported a large-scale analysis of the correl-

ation between CNVs and gene expression levels and re-
vealed CNV’s contribution to genetic diversity of
germplasms in rice. We generated genomic and tran-
scriptomic data of 93 accessions of rice and developed a
new pipeline, which could comprehensively detect
genome-wide CNVs with high accuracy. The correlation
analysis between gene copy number and expression level
found that approximately 13.1% of genes showed

significant correlations. Moreover, the analysis of the ex-
pression levels and evolutionary fates of different copies
revealed an asymmetric evolution of duplicated genes.

Results
Detection of copy number variations in 93 rice accessions
A total of 93 rice accessions including representative
landraces and modern cultivars (Additional file 1:
Table S1, Fig. 1a, b) were selected for whole-genome
resequencing with average depths about 50× and gen-
erated a total of 2.06 Tb of raw reads. Using the Nip-
ponbare RefSeq [28] (version 7.0) as reference, the
coverage of these accessions’ resequencing data
ranged from 82.81% to 96.06%. The rice root samples
grown in hydroponic culture for 35 days were col-
lected for RNA-Seq. The data volume of each sample
was above 5 Gb (ranged from 5.03 to 9.86 Gb) and
576 Gb raw RNA-seq data were generated from the
93 accessions in total. The rate of uniquely mapped
reads ranged from 79.64% to 90.95% (Additional file 1:
Table S1).
To call CNVs in genomes, we integrated CNVnator

[29] as well as Delly [30] and developed a new algorithm
(named as CtgRef-CNV), which combined read depth
and de novo assembly methods (Additional file 2: Figure
S1). We firstly assembled the genome of each accession
by CtgRef-CNV and then mapped the NGS reads from
each accession to its own assembled genome to obtain
the depth data. Based on these depth data and alignment
results (copy number of each alignment block) between
the query genome and the reference genome, we calcu-
lated the depth of each fragment of the reference gen-
ome, which were used to call CNVs. We then
determined the boundary of a CNV using a similar strat-
egy of CNVnator [29] (see “Methods”). By mapping
reads to its own genome, the CtgRef-CNV reduces the
potential mapping bias due to the difference between a
query genome and the reference genome. In addition,
the CtgRef-CNV uses the transformed depth data to call
CNVs, which could avoid the disadvantages of the
assembly-based method in detecting multi-copy regions
with few sequence differences. Then we filtered the
CNVs detected by these three methods with strict stan-
dards to obtain final CNV data set of each sample. In
our filter standards, the read depth, split reads, and dis-
cordant read pairs were taken into account. For duplica-
tions, the percentage of high-depth areas should be no
less than 50%. For deletions, the coverage should be no
more than 50%, and the number of the split reads/dis-
cordant read pairs within the upstream and downstream
500 bp of the two breakpoints should be no less than 5
(For more details see “Methods”).
The de novo assembled genome sizes of 93 accessions

ranged from 317.1 to 406.8Mb, with contig N50 sizes of
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85 accessions larger than 10 kb. The BUSCO results
showed the genome completeness of 89 accessions was
higher than 90% (Additional file 1: Table S1). To un-
cover the CNVs landscape among different rice acces-
sions, we called CNVs from these samples using
CNVnator, Delly, and our CtgRef-CNV. Compared with
the Nipponbare reference genome, the CNV number in
the genome of each accession varied from 2000 to 8000
(Fig. 1b), which showed there were significant genomic
differences between the rice subspecies. The number of
CNVs in Oryza sativa indica (Xian) group [31] was sig-
nificantly higher than that in O. sativa japonica (Geng)
group [31] (Fig. 1a, b, and Additional file 2: Figure S3a,
P value < 2.2 × 10− 16), suggesting that the number of

variations within subspecies was less than that within
subspecies in terms of CNV, which is consistent with
the SV results in the Zhang et al. [32] and Zhou et al.
[33]. For each 500-kb non-overlap window in the Nip-
ponbare reference genome, more than 7 CNVs on aver-
age were detected (Additional file 2: Figure S2), and the
distribution of CNVs on either different chromosomes
or different chromosome regions was not even (Add-
itional file 2: Figure S2, and Additional file 2: Figure
S3c). We detected a total of 32,051 CNVs (Add-
itional file 3: Table S2) from these 93 accessions, of
which 120 CNVs were larger than 100 kb. The length
showed a typical L-shaped distribution (Additional file 2:
Figure S3b).

Fig. 1. The result and verification of CNV calling for the 93 rice accessions. a The phylogenetic tree of the 93 O. sativa accessions based on SNP
markers, with two O. glumaepatula accessions (W1183 and W1187, purple branches) used as outgroup. And O. sativa Xian group and Geng group
were marked yellowgreen and blue, respectively. The red branches represent two tropical O. sativa accessions from Southeast Asia. b Number of
deletions (red) and duplications (blue) of each accession compared with the Nipponbare RefSeq. c, d The depth distribution around GL7 (c) and
the promotor of IPA1 (d). The red and blue bars showed the duplicated and normal regions, respectively. Each bin represents a length of 5 bp.
And XF13 and XF75 were selected as negative controls. e, f The PCR verification of the duplications around GL7 (c) and the promotor of IPA1 (d)
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The validation of CNVs
Several CNVs had been found to be associated with vari-
ations of important agronomic traits in rice. For ex-
ample, we detected duplications harbored GL7 (LOC_
Os07g41200) [23] in seven accessions, and duplication
events occurred at the promoter of IPA1 (LOC_
Os08g39890) [25] in two accessions, respectively (Add-
itional file 4: Table S3). All these duplication events were
confirmed by PCR experiments (Fig. 1c–f). To further
evaluate the validity of our CNV results, 10 random
CNV loci were verified in 15 accessions by qPCR (see
“Methods”). According to the experimental results, the
accuracy of our CNVs was nearly 95% (Additional file 2:
Figure S4 and Additional file 4: Table S4). These results
indicated that our method was of high accuracy. More-
over, in the phylogenetic tree analysis and principal
component analysis (PCA) based on CNVs, the two sub-
species are both essentially separated, which are in ac-
cordance with the phylogenetic result of SNPs
(Additional file 2: Figure S5). In addition, we found that
the genes with an extreme high copy number (no less
than 10) in more than 5 accessions were common multi-
copy genes and most (92.12%) of them showed no less
than 10 types of copy number and also most (84.24%)
genes did not show obvious population differentiation
(VST ≤ 0.2, Additional file 4: Table S5). Except for the
genes of unknown function, these multi-copy genes
mainly (64.81%, Additional file 4: Table S5) consisted of
coding genes of subunits of ribosomal proteins, ATP
synthases, cytochromes, and some components of the
transcription initiation complex and photosystems.
These results confirmed that our approach could com-
prehensively detect CNVs with high sensitivity.

The power evaluation of CtgRef-CNV pipeline
To validate the accuracy difference among CtgRef-CNV,
CNVnator, and Delly, three copy number matrices of
the 10 random CNV loci in the 15 accessions
(Additional file 4: Table S6) were compared with the
qPCR results (Additional file 4: Table S4) separately. Ac-
cording to the copy numbers verified by qPCR, we geno-
typed these 150 loci into DEL (deletion), DUP
(duplication), and CN1 (normal type) to calculate the ac-
curacy of each type of loci in the results of three soft-
ware (Additional file 4: Table S6, see “Methods”). We
found that the DUP accuracy of CNVnator was the high-
est (93.75%), while Delly had the highest accuracy in
DEL detection (96.88%), and the accuracies of DUP
(62.50%) and DEL (76.56%) of CtgRef-CNV were both
between those of the other two software (Additional file 4:
Table S6, and Table S7). In the detection of CN1 loci,
there was little difference in the accuracies of the three
software (Additional file 4: Table S6, and Table S7).
Then, combining with the percentages of the three types

of loci in these 15 accessions, we calculated the weighted
accuracies of the three software (see “Methods”). And
we found that our CtgRef-CNV had a higher weighted
accuracy (88.93%) than Delly (86.26%) or CNVnator
(84.84%, Additional file 4: Table S7), which indicates
that the CtgRef-CNV is recommendable when using
NGS data to call CNV.
We also assessed the difference of CNV results identi-

fied by CtgRef-CNV, CNVnator, and Delly. To analyze
the overlap of high accuracy CNVs between three soft-
ware, the filtered results of 15 accessions (Add-
itional file 4: Table S8) by our rigid standards were
selected as test data. The identification of the same CNV
was referred to the method in the Wang et al. study
[31]. We found that 10.16~18.97% (totaling 4939) of the
CNVs generated by CNVnator, and 22.88~56.33% (total-
ing 7789) of CNVs generated by Delly, were overlapped
with those identified by CtgRef-CNV (Additional file 4:
Table S8). And the number of overlapped CNVs be-
tween CNVnator and Delly was much higher (22,462;
Additional file 4: Table S8), which may be due to that
these two algorithms were built on the results of
reference-based read mapping. In addition, we also se-
lected two CNV sets without preference from 15 acces-
sions, and screened their accuracies by the IGV software
[34]. The first set was the CNVs detected by CtgRef-
CNV but not detected by CNVnator, among which
90.67% were also not detected by Delly, and the accuracy
was 83.33% (Additional file 4: Table S9). The other set
were the CNVs detected by CNVnator but not detected
by CtgRef-CNV, among which 68% were also detected
by Delly, and its accuracy was 86% (Additional file 4:
Table S10). Moreover, the qPCR verification rate of inte-
grative results was nearly 95% (mentioned above;
Additional file 2: Figure S4 and Additional file 4:
Table S4), which was much higher than that of each
software (84.84%, 86.26%, or 88.93%; Additional file 4:
Table S7). These results suggested that the integration
of multiple algorithms is important for improving the
CNV calling results based on NGS data. So, we used
the integrative result of the three software as our final
CNV set of each rice accession.

The comparisons with published CNVs in rice
The accurate calling of CNVs is very important in gen-
omics area, and many CNV data sets have been pub-
lished in rice [31, 35–38]. In total, 641 CNVs were
detected between Guangluai-4 and Nipponbare by CGH
array [35]. We found that 302 out of their 641 CNVs
were also detected by this study (Additional file 4: Table
S11). Moreover, our results detected more than 7000
CNVs between Guangluai-4 and Nipponbare, which
were not found in previous work [35]. These results in-
dicated our method using NGS data could detect CNVs
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more comprehensively than the previously used array-
based comparative genomic hybridization (CGH) tech-
nology. In 2017, a near complete reference genome of
indica rice variety Shuhui-498 was assembled and 9909
presence variations (PVs, ≥ 500 bp) in the Nipponbare
were identified, compared to the other 17 assembled rice
genomes [36]. And 65.34% (6475) of these PVs was over-
lapped with 49.35% (6833/13,847) of our core DELs
(Additional file 4: Table S12). There were 25,380 and
5813 genes identified as “Core” and “Dispensable” genes,
respectively, in a pan-genome analysis (Additional file 2:
Figure S6) [37]. Using the same criteria, most of the
“Core” (23,941) genes were overlapped with the core
genes identified in our work (Additional file 2: Figure
S6). In addition, we extracted 9632 CNVs no shorter
than 1 kb from the genomic variations of 3010 rice ac-
cessions [31] and found that 84.94% (8181) of them were
overlapped with our core CNVs (Additional file 4: Table
S13). Recently, the SVs of 3000 rice genomes were also
analyzed by another group [38] and 183,943 CNVs (≥ 1
kb) were chosen from their SV results. By the method
described in the Wang et al. [31], totally 52,883 core
CNVs were generated. We found that 60.26% (31,865) of
those core CNVs were overlapped with our core CNV
set (Additional file 4: Table S14). All these results sug-
gested that our CNV set is a valuable supplement to rice
genome variation data set.

The impact of CNVs on gene expression
One of the main effects of CNVs is to cause the alterna-
tion of gene expression levels [21, 23, 24, 39], by disrupt-
ing the gene, and affecting regulatory regions [10, 22, 25,
40, 41]. In this paper, considering the impact of short-
read sequencing biases on the boundary identification of
CNVs, only the genes, the coverage of which regions
were more than 50% by CNVs, were used for correlation
analysis. If a gene showed the same copy number in dif-
ferent accessions, the expression levels (TPMs) of the
gene in the corresponding accessions would be grouped
together. A copy number matrix of 14,435 genes in the
93 accessions was generated and only 2642 genes were
selected for the correlation analysis between expression
level and copy number by our strict standards (see
“Methods”). A significantly positive correlation means
that the expression level increases with the increase of
copy number, while significantly negative correlation is
that the expression level decreases with the increase of
copy number (an adjusted P value < 0.05, see
“Methods”).
Surprisingly, 82.32% of analyzed genes (Additional file 5:

Table S15, and Additional file 6: Table S18) showed no
significant correlations between the expression level and
copy number and 13.17% of genes were significantly
positive correlation (Additional file 5: Table S16 and

Additional file 6: Table S18). Moreover, we found that
4.50% of genes showed negative correlation
(Additional file 5: Table S17 and Additional file 6:
Table S18). All the correlation results were further
confirmed by the results of dosage effect analysis
(Fig. 2a–c). For the GL7 locus, a significant correl-
ation was detected (Fig. 2d), which is consistent with
previous work [23]. Analysis of variance revealed sig-
nificant differences in expression levels among differ-
ent copy numbers of approximately 75% of the
correlated genes (P value < 0.05, Additional file 6:
Table S18).
For positively correlated genes, the rate of increase in

the expression level of duplicated genes mainly (account
for > 81%) varied from −45% to 185% (Fig. 2e), by mak-
ing a comparison between the expression level of genes
and normal copy number (CN = 1). For each additional
gene copy, the rate of the increase (comparing with
CN1) in expression level also mainly (account for > 87%)
varied from −45% to 185% (Fig. 2e) and this rate de-
creased as the copy number increased (Additional file 6:
Table S19). While on the whole genome, the effect of
duplication (not polyploidization) on gene expression
was bidirectional, and the growth rate showed an ap-
proximately symmetric distribution on both sides of the
vertical axis (Additional file 2: Figure S7), which
reflected the robustness of gene expression regulation
in vivo. In addition, we also found that the effect of tan-
dem duplications on expression was generally stronger
than that of dispersed ones, except when the copy num-
ber was 5 (Fig. 2f). These results indicated that the gene
dosage effect is not exponential or linear, which is con-
sistent with a previous report [42].

The fates of duplicated genes
The main evolution consequences of duplicated genes
are pseudogenization, neofunctionalization (Neo-), sub-
functionalization (Sub-), and undifferentiating (Non-)
[43–48]. The duplicate pairs, both can be assembled
from NGS reads, were selected for further analysis. And
in total, we identified 8163 gene pairs from assembled
contigs of 93 accessions. By using the method of protein
domain identification, we found that approximately
5.39% (440/8163) of duplicate pairs experienced the evo-
lutionary divergence of gene function (Neo-/Sub-) and
that approximately 36.46% (2976/8163) and 58.15%
(4747/8163) of duplicate pairs experienced pseudogen-
ization and undifferentiation, respectively (Add-
itional file 6: Table S20). In our analysis, six stages
(including the “Recent,” Fig. 3a) were used to determin-
ate the age of gene duplication events, separated by “Ks
(synonymous nucleotide substitution rate) > 0” and four
another Ks values corresponding to the four speciation
events during the divergence of the Oryza genera,
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according to previous study [49]. The Ks distribution of
the non-pseudogenetic pairs (5338) implied that duplica-
tion events occurred throughout the six stages, especially
in the recent past (more than 35%, Fig. 3a, Table 1). In
each stage, the number of undifferentiating duplicate
pairs was absolutely superior (more than 80%, except for
3/5 in the stage II, Table 1). Among the duplicate pairs
of the stage I, eight duplicates subfunctionalized, indicat-
ing that functional differentiation can also be achieved
in a short time. Interestingly, in the most recent two pe-
riods (stage I and II), all the functional differentiation
pairs were subfunctionalization, but no neofunctionaliza-
tion was observed. However, in other stages, the propor-
tion of neofunctionalization pairs showed a growing
trend with the aging of duplication (Table 1), confirming

that subfunctionalization is an intermediate state of neo-
functionalization [50].
To analysis the relationship between selective con-

straint and functional differentiation of duplicated genes,
the Ka (nonsynonymous nucleotide substitution rate),
Ks, and Ka/Ks ratio of different groups (Neo-, Sub-,
Non-, Gene-Ψ, and Ψ-Ψ) were calculated using the Nei-
Gojobori [51] method. The values of the duplicate pairs
involved in pseudogene (Gene-Ψ, and Ψ-Ψ) were ex-
tremely higher than those of other duplicate pairs (all
the P values were < 2.2 × 10− 16, Fig. 3c–e). 84.18% (2895/
3439) of Ka/Ks values of functional duplicate pairs
(Neo-, Sub-, and Non-) were less than 1, among which
the undifferentiated pairs (Non-) were significantly
higher than the differentiated pairs (Neo- and Sub-, P

Fig. 2. The impact of copy number variation on gene expression. a–c The distributions of expression folds (duplications to normal copy number)
of the positively correlated genes (a), negatively correlated genes (b), and non-significantly correlated genes (c). CN1 means that its copy number
is equal to 1 and so on. * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively, determined by the Tukey HSD test in R. The
outliers (out of μ ± 3σ) are not displayed. d The correlation between copy number and expression level of the GL7 (LOC_Os07g41200), and a TPM
outlier from the CN1 group was discarded. The fitting and significance test of linear equation were performed by “trendline” function from the
“basicTrendline” package in R. e The distributions of the increase rate of the two statistics of the positively correlated genes: AddCN1 (add one
copy at a time) and DupCN1 (duplication compared to normal copy number). Values greater than 400% are not included in the figure. The data
in the pink-shaded area accounted for more than 80% of each group. f The different effects of tandem duplications (TD) and non-tandem
duplications (nonTD) on gene expression level. * and ** indicate significant difference at P< 0.05 and P < 0.01, respectively, determined by the
Wilcoxon test in R. The outliers (out of μ ± 3σ) are not displayed
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Fig. 3. The expression and evolution of duplicated genes. a The Ks distribution of non-pseudogenetic duplicate pairs. The four Ks values (red
dotted lines marked) represent key evolutionary events in the evolution of the Oryza genera, respectively, referring in the Stein et al. (2018).
“Recent” means their Ks values are 0. b The component of the pseudogene copies. About half of the pseudogene copies were indistinguishable.
And the rest was dominated by offspring copies. c–e The difference on Ka (c), Ks (d), Ka/Ks (e) and among neo-functionalized (Neo-),
subfunctionalized (Sub-), undifferentiated (Non-) duplicated genes, functional gene-pseudogene pairs (Gene-Ψ), and pseudogene-pseudogene
pairs (Ψ-Ψ). * and ** indicate significant difference at P < 0.05 and P < 0.01, respectively, determined by the Wilcoxon test in R. The outliers (out of
μ ± 3σ) are not displayed. f, g The dosage sharing of major/minor (f) and parent/offspring (g) copies. The expression fold was normalized to the
average TPM values of its corresponding normal gene (CN = 1). ** indicates a significant difference at P < 0.01 determined by the Tukey HSD test
in R. The outliers (out of μ ± 3σ) are not displayed. h, i The proportions of major/minor copy (h) or differentiated copies (i) between parent and
offspring copies
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values: 7.292 × 10− 9 and < 2.2 × 10− 16, Fig. 3e), indicating
that they were subject to different degrees of selection
constraints, strengthened after functional differentiation.
Compared with the neofunctionalizated pairs, the sub-
functionalizated pairs accumulated significantly fewer
nonsynonymous mutations (P value = 6.06 × 10− 4, Fig. 3c)
in a slightly longer time (no significance, P value =
0.05929), so selection constraints on the subfunctiona-
lizated pairs were significantly stronger (P value =
8.658 × 10− 4, Fig. 3e), and their sequences were more
conservative.

The asymmetric evolution of duplicated genes
Identifying the parent/offspring copies from gene pairs
offers the opportunity to characterize the divergence of
duplicated genes. A method based on conserved collin-
earity blocks in population (see “Methods”) was per-
formed, and produced a total of 3129 distinguished
duplicate pairs. The duplicated genes with more than
two copies (18 groups) were discarded. Our results
showed that the proportion of pseudogene copies in the
offspring copy (43.30%) was much higher than that in
the parent copy (15.56%, Fig. 3i). And correspondingly,
in pseudogenes, the proportion of offspring copies
(38.22%) was much higher than that of parent copies
(13.73%, Fig. 3b). In addition, 77.92% (2424/3111) of the
parent copies failed to change their function (Non- in
the Fig. 3i). Thus, the parent copies mainly maintained
the function of the original genes, especially when the
offspring copies became pseudogenes, the percentage of
the parent copies kept the original function intact was
further increased (89.92%, Additional file 2: Figure S8).
So, our results confirmed that the offspring copy is more
likely to become pseudogene in rice and duplicated
genes are asymmetrical in their evolutionary fates.
The copy-specific variations (CSVs), same to the singly

unique nucleotides (SUNs) [52], were used to assign
gene expression level. So the duplicate pairs without se-
quence divergence were excluded from our copy expres-
sion analysis. We totally obtained 548 duplicate pairs,

whose copy-specific expression level could be split in the
root RNA-Seq data from root tissue (Additional file 6:
Table S21). Our results showed that the expression level
of the major expressing copy was significantly higher
than that of the minor one (Fig. 3f, P value < 1.0 × 10− 7),
and most (97.57%) of these major-minor-expressed du-
plicate pairs could be traced back to the stages before
the divergence of Asian rice (> 0.55 mya, Ks > 0.0072,
Additional file 2: Figure S9). More interestingly, we
found that the expression levels of offspring copies were
also significantly higher expressed than that of the par-
ent copies (Fig. 3g, P value = 4.44 × 10− 5). In the other
way, the percentage of major copy in the offspring cop-
ies (64.84%) was higher than that in parent copies
(35.16%, Fig. 3h). Hence, our results supported that the
offspring copy is more likely to primarily express after
the duplication event and duplicated genes are also
asymmetrical in their expression levels. In conclusion,
the asymmetric evolution of duplicated genes in rice is
reflected in both the evolutionary fates and the expres-
sion levels.

Discussion
Copy number variations reflect the evolution of genes
and genomes, leading to local or population-specific ad-
aptations to different environments and enriching popu-
lation diversity. In recent years, several CNVs have been
reported that they have contribution to the formation of
the phenotypic diversity of important agronomic traits
in rice, such as the duplication of GL7 [23], deletions in
qSW5/GSE5 [53], duplication of the promoter of IPA1
[25], and deletion of sh1 [54]. However, all these studies
focused on CNVs of individual locus. In order to un-
cover the relationship between CNVs and domestication
on a genome-wide scale, we developed methods that
could detect CNVs with high accuracy. Based on NGS
data, the available methods for detecting CNVs have dif-
ferent disadvantages [7–9]. The read-pair (RP) methods
are less effective in the low-complexity regions with re-
peat and are less accurate in detecting the actual copy

Table 1 The statistics of non-pseudogenetic duplicate pairs at six stages

Stages Range of Ks Time
(MYA)

Duplicate
pairsa

Non-differentiated
pairs

Differentiated
pairs

Rate of
differentiated
pairs (%)

Neo-pairs Subpairs Rate of neo- in
differentiated
pairs (%)

I = 0 Recent 1899 1891 8 0.42 0 8 0

II 0–0.0072 0–0.55 5 3 2 40 0 2 0

III 0.0072–0.0313 0.55–2.41 417 395 22 5.28 9 13 40.91

IV 0.0313–0.0879 2.41–6.76 1351 1181 170 12.58 103 67 60.59

V 0.0879–0.195 6.76–15 1369 1132 237 17.31 89 148 37.55

VI > 0.195 > 15 297 271 26 8.75 25 1 96.15

Total – – 5338 4873 465 8.71 226 239 48.60
aA gene with a copy number of 3 will derive three duplicate pairs. And the genes with CDS length < 150 bp were excluded
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number. The read depth (RD) methods fail to identify
the precise breakpoints of CNVs. The split read (SR)
methods rely on the read length and have low sensitivity
in the low-complexity regions of the reference genome.
The assembly-based (AS) methods consume a lot of
computing resources and are difficult to accurately iden-
tify multiple copies with similar sequences. For CNV de-
tection, a common strategy is to combine different
methods. Here, we developed a pipeline integrating
CNVnator (RD) [29], Delly (RP and SR) [30], and
CtgRef-CNV (AS and RD), which add the advantages
and avoid disadvantages of different methods. The short-
coming of our approach is that the filtering standards
are strict and some real CNVs lacking reliable evidence
(e.g., split reads, paired-end reads) to support may be
discarded. Therefore, considering the high accuracy of
results in rice, we believe that our method is powerful
for the CNV analysis of other diploid species based on
NGS data.
A genome-wide detection of CNVs had been per-

formed previously in rice by CGH technology. They
detected 641 CNVs between Guangliai-4 and Nippon-
bare [35]. Using deep NGS data, the first pan-genome
of cultivated and wild rice was constructed, and a
total of 10,872 presence-absence variations (PAVs) of
genes in 67 accessions were also provided [37]. Then,
in the 3000 Rice Genomes Project, 93,683 structural
variations (SVs, containing 22,427 CNVs) and 48,098
gene PAVs were called among 453 high-coverage rice
accessions [31]. In this study, we provided a high reli-
ability CNVs set of 93 representative rice accessions,
among which many genes had a gradient in copy
number of the population. Therefore, our results may
be beneficial to identify candidate genes regulating
important agronomic traits. Our work enriches the
understanding of the genetic basis of the formation
and domestication of rice important phenotypes and
provides insights into breeding of elite rice varieties.
Our large-scale analyses on the dosage effect of

CNVs and gene expression in rice revealed that dos-
age effect was not exponential or linear and that the
effect of tandem duplications on expression was gen-
erally stronger than that of sporadic ones. However,
to our surprise 82.32% of analyzed genes (2175 genes)
show no significant correlation between copy number
and expression level and 4.5% of them (119 genes)
showed negative correlation. There may be several
possibilities for these results. First, copy number may
not a dominant factor in affecting gene expression
[10]. Second, instead of increasing their copy num-
bers, the alternative splicing of genes could be a more
effective approach to adaption to abiotic stress in rice
[55]. Third, the promoter or enhancer pairs of some
duplicated genes may be differentiated, leading to

differentiation of expression patterns [56–58], which
can also weaken the effect of copy number on expres-
sion level. Moreover, the expressions of some genes
are regulated by a negative feedback mechanism [59];
thus, the transcription levels could not always in-
crease significantly with the increase of copy number.
In addition, many trans-eQTLs (distance > 1Mb, or
on different chromosomes) were reported to be the
predominant source of expression variation and con-
tribute ~ 2-fold more to gene expression variance
than local eQTLs [60–62]. So the trans-eQTL is also
an important factor that influences expression level of
genes, and our resequencing and transcriptomic data
will provide great help for the identification of trans-
eQTLs and local eQTLs in rice.
Gene duplication is an important source of the ori-

gin of novel genes. It is widely believed that a novel
gene is to become a pseudogene due to the accumu-
lation of inactivating variations, but there are few
large-scale analyses to reveal the fate of the two cop-
ies produced by gene duplication. Results from the
Drosophila showed that neofunctionalization mainly
occurred in the offspring copy, while the parent copy
tended to retain the original function [47]. Our re-
sults support that parent copies tended to retain their
original function, but the proportion of neofunctiona-
lization in the parent copy or in the offspring copy
showed no significant difference. More importantly,
our results suggest that the offspring copies were
more likely to be pseudogenized, thus exhibiting a
different evolutionary fate from the parent copies. In
addition, our work illustrates whether the evolution of
duplicated genes is symmetrical or asymmetrical.
Early works indicated that duplicated genes were
found to evolve symmetrically, based on the compari-
son on the evolution rate in 39 organisms [63]. Lat-
ter, a wide range of cross-species or genome-wide
evidence supported that the evolution of duplicated
genes were asymmetrical. Their conclusions were
based on the difference between two copies of dupli-
cated genes on selection pressure [64], rate of evolu-
tion [65–71], and expression patterns [58, 65, 67, 68,
72–75]. Here, we detected the difference on the ex-
pression level and evolutionary fate between parent
and offspring copies and proposed an asymmetric
evolutionary model for the fate and expression of du-
plicated genes (Fig. 4). It is the offspring copy that
tends to be more highly expressed and more likely to
become pseudogene, which also reflects the difference
in selection constraints between parent and offspring
copies. The functional differentiation of duplicated
genes provides an opportunity for the formation of
new traits. Thus, to connect the evolved new func-
tions of duplicated genes with certain traits in given
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landraces and cultivars would shed new light on the
molecular design in crop breeding.

Conclusion
Many important traits were reported to be affected by
CNV. Herein, we developed a comprehensive pipeline
and strict standards to call CNVs and provided a high
accuracy CNV set for rice functional genomics re-
search and molecular breeding application. Combined
with transcriptome results, approximately 13% of the
genes showed a significant correlation between their
expression levels and copy numbers and gene dosage
effect in rice was not exponential or linear. Based on
the analyses on the evolutionary fates and expression
levels of duplicated genes, we confirmed that main-
tenance of ancestral gene function and pseudogeniza-
tion were the two main evolutionary fates and
provided a new perspective for asymmetric evolution:
the offspring copy mainly contributed to the expres-
sion levels and seemed more likely to become a

pseudogene, whereas the parent copy tended to main-
tain the function of ancestral gene.

Methods
Plant growth, DNA, and RNA sequencing
The seeds of 93 rice accessions were grown according to
Sun et al. [76], with some modifications: After germinat-
ing for 2 days at 28 °C, the seeds with consistent shoot
were selected to place into bottom-cut PCR plate and
grown for 7 days with nutrient solution varying from
one quarter to half strength. The 7-day-old seedlings of
uniform size and vigor were transplanted into holes in a
cystosepiment placing over the top of the pots. The
plants were grown for 3 weeks with half strength nutri-
ent solution which was replaced with fresh solution
every 3 days. The full chemical composition of the Inter-
national Rice Research Institute (IRRI) nutrient solution
contained 1.25 mM NH4NO3, 0.3 mM KH2PO4, 0.35
mM K2SO4, 1.0 mM CaCl2, 1.0 mM MgSO4·7H2O, 0.5
mM Na2SiO3, 20.0 μM Fe-EDTA, 9.0 μM MnCl2,
0.39 μM (NH4)6Mo7O24, 20.0 μM H3BO3, 0.77 μM

Fig. 4. The model of asymmetric evolution of duplicated genes. This model is only applicable to cases where the two copies are separated after
duplication. The copy that moved to a new genomic position is considered an offspring copy, and the other one is a parent copy. After moving
to a new genomic region, the expression of offspring copy is no longer affected by the original regulation network and may be more active. At
the same time, because of the functional redundancy, the functional constraint of the offspring copy is weaker than that of the original gene, so
it is easier to accumulate more harmful mutations and degenerate into pseudogenes. On the contrary, due to the high expression of the new
copy and feedback regulation, the expression level of the parent copy is relatively low. The parent copies are more limited because they were in
their original positions, especially when the offspring copies accumulate more deleterious mutations that affect their functions, and the parent
copies become more functionally constrained to maintain their original function. Thus, the evolution of two copies of a gene that were separated
is asymmetrical in terms of expression and fate
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ZnSO4, and 0.32 μM CuSO4 (pH 5.4–5.6). Plants were
grown in a green house, with 70% relative humidity
under fluorescence while light (150–200 μMm-2S-1) at
16-h light/8-h dark temperatures of 30/28 °C
photoperiod.
For 93 rice accession genome resequencing, high-

purity genomic DNA was extracted using QIAamp DNA
Mini Kit (Qiagen). For genome resequencing, the DNA
qualification, library construction, and resequencing was
executed at Novogene (Beijing). High-throughput DNA
Sequencing Pair-end sequencing was performed on Illu-
mina® NovaSeq platform, with the read length of 150 bp
at each end and average of 20 Gb sequencing data for
each library.
The total RNA was extracted using TRIzol® Reagent

(Invitrogen, Lot: 180702). All roots of the five seedlings
of each accession were sampled for total RNA extrac-
tion. For rice transcriptome sequencing, the RNA quali-
fication, library preparation, and RNA-Seq was executed
at Berry Genomics Corporation (Beijing). After cluster-
ing of the index-coded samples performing on a cBot
Cluster Generation System through Illumina Cluster Kit
according to the manufacturer’s instruction, the library
preparations were sequenced on an Illumina® Hiseq2500
platform and 125-bp paired-end reads were generated.
The transcriptomic sequencing data of each accession
was an average of 5 Gb.

RNA-Seq data analysis
The Trimmomatic [77] package (version 0.32) was used
to obtain clean reads. The adapters, Ns, and low-quality
bases were removed, and the trimmed reads with a
length less than 36 bp were also dropped. The Nippon-
bare RefSeq [28] (version 7.0) was used as the reference.
All the clean reads were mapped to the reference using
Tophat2 [78] (version 2.1.1) with default parameters.
Next, reads with more than one reported alignments
were excluded and TPM (transcripts per million) values
were calculated with TPMCalculator [79] (version 0.0.3).
Genes with TPM ≥ 0.5 were regarded as expressed
genes.

Resequencing reads filtering, mapping, and SNP calling
and filtering
The Nipponbare RefSeq and its annotation were down-
loaded from MSU Rice Genome Annotation Project
[28]. Reads containing adaptor sequences and low-
quality reads were removed using cutadapt [80] (version
1.5) and SolexaQA [81] (version 3.1.3) according to the
following criteria: (i) the Ns percent of one end > 5%, (ii)
average quality score Q < 20, (iii) length < 75 bp after
trimming. The filtered reads were mapped to the Nip-
ponbare RefSeq (version 7.0) using BWA-MEM [82]
(version 0.7.15-r1140). The mapped reads were sorted,

and PCR duplicates were removed by SAMtools [83]
(version 1.5). The mapped reads were also removed with
a mapping quality < 30. Variants were called by SAM-
tools and BCFtools [83] (version 1.6). The raw SNPs
were filtered using the following criteria: (i) the QUAL
≥ 100; (ii) raw read depth varies from 1000 to 50,000;
(iii) MAF ≥ 5%; and (iv) biallelic sites.

Copy number variations calling
Copy number variations were identified using our com-
prehensive pipeline (as previously mentioned), which
consists of CNVnator [29] (version 0.3.4), Delly [30]
(version 0.7.3; just for deletion calling), and CtgRef-
CNV. Only CNVs with length no less than 1000 bp were
selected to perform subsequent analyses.
For CNVnator, each accession was tested by several

bin sizes from 100 to 1000 bp to make sure the ratio of
average of RD (read depth) signal to standard deviation
is between 4 and 5. For Delly package, only its DEL re-
sults were used in this project.
For the CtgRef-CNV pipeline, data was processed as

follows:

(i) De novo assembly of each genome. The contigs
were assembled using SOAPdenovo2 [84] package
(version 2.04). The gaps in the draft assembly
results were filled by the GapCloser [84] (version
1.12). The N50 length of the assemblies was
evaluated after the small contigs of < 200 bp were
excluded. The completeness of assembled genomes
was evaluated by the BUSCO [85], using the
“liliopsida_odb10” dataset as the reference.

(ii) Read mapping to its contigs. The clean reads were
mapped to the contigs ≥ 1000 bp using the same
package as mentioned above. The depth data was
calculated through a non-overlapping sliding win-
dow method (the window size was 250 bp in our
study) and corrected using the same method in the
previous study [86].

(iii)Contig-reference alignment blocks. The contigs in
(ii) were aligned with the Nipponbare RefSeq
(version 7.0) by means of the nucmer program in
the package MUMmer (version 3.23) [87] with the
parameter “--maxmatch -c 90 -l 40.” The short
alignment contig fragment contained in another
one was filtered when its length rate (short/long)
was less than 0.8. For two overlapping alignment
contig fragments, (1) both were retained if the
overlapping rate (overlap/longer) was no less than
0.7; otherwise, (2) the shorter alignment was
removed if the length rate (short/long) was < 0.2.

(iv)Depth data of the reference. Based on the contig-
reference alignment blocks, we transformed the
contig depth into the reference depth result. If one
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contig was aligned to multiple regions in the refer-
ence, the mapped read depth of it would be subdi-
vided equally to each aligned regions in the
reference. On the other hand, for one region in the
reference, its depth was accumulated by the subdi-
vided depth from mapped contigs. Then the average
depth of non-overlapping bins and chromosomes
were calculated.

(v) CNV calling. The bins with CN_index
(Average_depthbin /Average_depthChr) < 0.5 or ≥ 1.5
were selected for the candidates of deletion and
duplication, respectively. The adjacent bins were
linked to intervals if the CNV types were the same.
Then the intervals were extended through the same
approach as described in CNVnator algorithm.
These extended intervals were candidated CNVs to
be filtered.

Filtering and integrating CNVs
The raw CNV results were filtered depending on call-
ing method. For CNVnator CNV calls, regions with a
copy number estimate between 0.8 and 1.4 were re-
moved firstly [88]. A credible deletion should meet
the following three conditions: (i) at least 5 discord-
ant read pairs (with an insert size close to the size of
the interval) or split reads supported within 500 bp
upstream and downstream of the breakpoint; (ii) the
coverage and (iii) the dp10_cvrg (coverage of sites
with a depth ≥ 10) to be no more than 50%. For du-
plications, they should ensure as follows: (i) the
coverage and (ii) the dp10_cvrg to be no less than
80%, and (iii) the dup_cvrg (coverage of sites with a
CN_index ≥ 1.4) to be no less than 50%. For Delly
(DEL) results, the copy number estimate should be
less than 0.5, and other restrictions were the same as
above. When filtering the results of CtgRef-CNV, the
restrictions were a little stricter. The CNV calls with
a copy number estimate between 0.4 and 1.7 were re-
moved. In addition to the above conditions, the algn_
cvrg (coverage of the alignment blocks) of a deletion
should be < 50%, and ≥ 90% for a duplication. The fil-
tered CNV calls were firstly merged by accession and
integrated by the reference to the standard of same
SVs reported by Wang et al. [31].

The gene annotation of CNVs
The transposon genes are firstly filtered from the gff3
file in the MSU Rice Genome Annotation Project (re-
lease 7) [28]. And a candidate CNV gene was defined
if no less than 50% of its gene body was covered by a
CNV. In order to improve the accuracy of gene anno-
tation, the gene with copy number of 0 was recalled
to normal type (CN = 1) if the read coverage was ≥
50% and the CN_index was ≥ 0.5. All the copy

number matrices of accessions were merged into the
population matrix.

The qPCR verification of CNV results
The qPCR analysis was used to identify the relative
copy number. Ten loci were randomly selected at 10
chromosomes among 15 accessions (Additional file 4:
Table S5). The primers (Additional file 6: Table S22)
were designed using Primer3 [89] (version 0.4.0) web-
site. The OsACTIN2 (LOC_Os05g36280) was used as
inner reference gene. For each sample, the same
amount of genomic DNA was used as template, ac-
cording to the protocol of the ChamQ™ SYBR® Color
qPCR Master Mix (Q441-02, Vazyme Biotech Co.,
Ltd., Nanjing, China), using the ABI StepOnePlus
Real-Time PCR System, with three technical repli-
cates. Amplification reactions were initiated with a
denaturing step (95 °C for 10 min), followed by 40 cy-
cles of denaturing (95 °C for 15 s), annealing, and ex-
tension (60 °C for 35 s). Data were analyzed by
2−(ΔΔCt) method [90] to obtain relative copy number.

The verification of the reported tandem duplication of
GL7 and the promoter of IPA1
The PCR analysis was performed using specific primers
of duplication detection of GL7 [23] and the promoter
of IPA1 [25] (Additional file 6: Table S22) on a T100™
Thermal Cycler (Bio-Rad) according to the manufac-
turer’s instructions. Briefly, in a 30 μL reaction system
including 2 μL diluted DNA, 1.5 μL primers (10 μM/L),
4 μL dNTP (2.5 mM/L), 3 μL 10 × PCR buffer (Mg2+

plus), and 0.3 μL rTaq (5 U/μL, TaKaRa, R001B), amplifi-
cation reactions were initiated with a denaturing step
(98 °C for 2 min), followed by 30 cycles of denaturing
(98 °C for 10 s), annealing (55 °C for 30 s), and extension
(72 °C for 1 min). After PCR amplification, the products
were detected by 1% agarose gel.

The phylogenetic analysis and PCA
The filtered SNPs were used to calculate nucleotide di-
versity (π) and F-statistics (FST), then the SNPs in the
sliding windows with a FST ≤ 0.4 and a π no less than
0.1 × π_aver (the genome-wide average π) were used for
phylogenetic analysis. The matrix of CNVs was used for
genotyping by splitting duplications and deletions. If a
duplication occurred in an accession, we assigned it to 1;
otherwise, it was assigned to 0. It was the same for dele-
tions. All the genotype values of CNVs were merged to
construct the Neighbor-Joining tree by the APE package
[91] (version 5.2) in R. The topological robustness was
assessed by bootstrap analysis with 1000 replicates. For
the PCA, CNVs with a copy number type > 3 or MAF <
0.03 were firstly removed. The copy number matrix was
transformed into the plink format using our custom Perl
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script. Then the PCA was performed using the PLINK
[92] (version 1.9).

The calculation of weighted accuracy
In this study, we used the weighted accuracies to esti-
mate the comprehensive accuracies of CNVnator, Delly,
and CtgRef-CNV. And it was determined as follows:
Rw = ∑Pt ∗ Rt, where Pt and Rt are the percentages and
accuracies of the DUP (CN ≥ 2), DEL (CN = 0), and CN1
types, respectively. The percentage of each type of loci
was computed based on the copy number matrix of the
15 accessions. And the accuracy depended on the called
and qPCR results. For the DEL, and CN1 loci, only if the
CNcall (copy number called by software) of a locus in an
accession was equal to the CNqPCR (copy number veri-
fied by qPCR), we treated it correct. And for the DUP
locus, if the CNcall was 0, or 1, we said it was completely
wrong; however, if the CNcall was no less than 2, we
would treat it partially (not equal to the CNqPCR) or
completely (equal to the CNqPCR) correct and the num-
ber of correct DUPs would be accumulated by CNMin/
CNMaj, where the CNMin and CNMaj were minor and
major values of the array: [CNcall, CNqPCR], respectively.
In particular, if the CNcall of a DUP locus was the same
as its CNqPCR, the number of correct DUPs would also
be accumulated by 1.

The correlation analysis
The CNVs were annotated genes sample by sample, and
then all the gene copy number matrix were integrated to
the total matrix of population. Only the genes impacted
by CNV (minimum 50% gene model overlap) and with a
change fold (max/min) no less than 1.1 were selected to
carry out the correlation analysis between copy number
and gene expression level. The TPM outliers (out of the
range of μ ± 3σ) and its copy number were filtered. Then
the copy number less than three replicates was removed.
If the remaining copy number was of only two types,
and the smaller copy number was equal to 0, these genes
were also discarded before the correlation analysis. To
minimize the impact of population structure, the copy
numbers of genes filtered by the above standards were
used to calculate the VST values [4] and only the genes
with VST values no more than 0.4 were performed for
the next analyses. A significance level of 0.05 was set for
the corrected t-test P values (Benjamini–Hochberg
method [93]).

The copy-specific expression
The duplicate pairs, of which the copy number is in
agreement with the number of duplicates in the assem-
bly contigs, were selected. The pseudogenes and the
coding sequences (CDSs) were predicted using Gene-
Wise [94] (version 2.4.1). Then the paired CDSs were

aligned by ClustalW2 [95] (version 2.0.12) to identify
copy-specific variations (CSVs), similar to the method
described [52]. The CSVs were used to count copy-
specific reads in the RNA-Seq data to calculate the ex-
pression level of each copy. Within each pair, we classi-
fied the copy with higher expression level as “major”
copy and its partner as the “minor” copy. The expression
difference between “major” copy and “minor” copy was
defined as the expression difference of the correspond-
ing duplicate pair. If the expression level of the major
copy was more than two times as that of minor one, we
said that there was a phenomenon of copy dominance
expression in this pair.

The Ka, Ks, and the divergence time calculations
The CDSs of the non-pseudogenic duplicate pairs used
in copy-specific expression analysis were translated into
proteins. The number of nonsynonymous substitutions
per nonsynonymous site (Ka) and the number of syn-
onymous substitutions per synonymous site (Ks) were
calculated by the yn00 program in the PAML4 packages
[96] using the Nei-Gojobori [51] method. The alignment
involved in pseudogene was performed by MASCE [97]
(version 2.03) software. The time since divergence (T) of
duplicates was calculated as T = Ks/2μ, where μ corre-
sponds to the absolute substitution per synonymous site
per year, and here, we use substitution rate of the grass
Adh sequences (6.5 × 10− 9) [98].

The prediction of the parent and offspring copies
Based on the alignment position of each duplicate pair
in the Nipponbare genome, four adjacent genes (two up-
stream and two downstream) were aligned with the as-
sembled genomes of accessions with the normal copy
number. Given the short length of assembled contigs
using the NGS reads, no less than two adjacent genes
were assembled into the same contig with the target
gene which was the effective evidence that it was the
same colinearity near the target gene between the acces-
sion and the Nipponbare. If there were more than 10 ac-
cessions (or most of the accessions) supporting the gene
position in the Nipponbare, the colinearity was consid-
ered to be conserved. Then the same criterion was
enforced in all the alignment results. The copy in the co-
linearity block was identified as the parent copy and the
others were the offspring copies. However, for tandem
duplicate pairs, it might be impossible to distinguish
which one was the parental copy and which was the
offspring.

The identification of neofunctionalization and
subfunctionalization
All the protein sequences of the non-pseudogenic du-
plicate pairs and the corresponding references were
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used for the domain analysis through the InterProS-
can [99] (version 5.21-60.0), with an E-value no more
than 1.0 × 10− 5. A copy contained fewer domains than
its reference counterpart which meant there was a
subfunctionalization event, whereas a copy containing
more or new domains indicated a neofunctionaliza-
tion event. If the duplicate pair had the same do-
mains, it was not possible to determine whether there
was neofunctionalization or subfunctionalization event
without the evidence of expression patterns.
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