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Abstract

Recently, tissue-based methods for proteomic analysis have been used in clinical research and appear reliable for digestive,
brain, lymphomatous, and lung cancers classification. However simple, tissue-based methods that couple signal analysis to
tissue imaging are time consuming. To assess the reliability of a method involving rapid tissue preparation and analysis to
discriminate cancerous from non-cancerous tissues, we tested 141 lung cancer/non-tumor pairs and 8 unique lung cancer
samples among the stored frozen samples of 138 patients operated on during 2012. Samples were crushed in water, and
1.5 ml was spotted onto a steel target for analysis with the Microflex LT analyzer (Bruker Daltonics). Spectra were analyzed
using ClinProTools software. A set of samples was used to generate a random classification model on the basis of a list of
discriminant peaks sorted with the k-nearest neighbor genetic algorithm. The rest of the samples (n = 43 cancerous and
n = 41 non-tumoral) was used to verify the classification capability and calculate the diagnostic performance indices relative
to the histological diagnosis. The analysis found 53 m/z valid peaks, 40 of which were significantly different between
cancerous and non-tumoral samples. The selected genetic algorithm model identified 20 potential peaks from the training
set and had 98.81% recognition capability and 89.17% positive predictive value. In the blinded set, this method accurately
discriminated the two classes with a sensitivity of 86.7% and a specificity of 95.1% for the cancer tissues and a sensitivity of
87.8% and a specificity of 95.3% for the non-tumor tissues. The second model generated to discriminate primary lung
cancer from metastases was of lower quality. The reliability of MALDI-ToF analysis coupled with a very simple lung
preparation procedure appears promising and should be tested in the operating room on fresh samples coupled with the
pathological examination.

Citation: Brégeon F, Brioude G, De Dominicis F, Atieh T, D’Journo XB, et al. (2014) MALDI-ToF Mass Spectrometry for the Rapid Diagnosis of Cancerous Lung
Nodules. PLoS ONE 9(5): e97511. doi:10.1371/journal.pone.0097511

Editor: Arun Sreekumar, Baylor College of Medicine, United States of America

Received November 21, 2013; Accepted April 16, 2014; Published May 15, 2014
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Introduction

Surgery is often the key element of treating tumoral masses, but

the difficulty of determining an exact etiologic diagnosis prior to

the surgery often leads to operations being performed without

prior knowledge of precisely whether limited or extended resection

is required, especially when the lesion is smaller than 5 mm in

diameter. In some cases, such as brain tumors, the question of the

resection margin increases the difficulty of the decision, and

surgeons have to balance maximizing the resection of tumor and

minimizing the potential for functional deficit in preserving critical

tissue [1]. In other cases, such as emergency surgery, a mass of

unknown origin may be revealed unexpectedly, thus raising the

question of whether the tumor is of cancerous origin and requires

extensive resection. Real-time confirmation methods are therefore

required to guide the surgeon in tissue resection and to optimize

treatment [2]. Confirmation usually relies on intraoperative

pathologic examination of frozen sections that can provide

information within an hour. In lung cancer surgery, frozen section

diagnosis directly influences surgical decision making [3]: when

malignancy is identified on a frozen section following a wedge

resection, surgical resection by lobectomy or pneumonectomy is

usually performed, as recommended by the American College of

Chest Physicians [4]. Because frozen section analysis is typically

limited and involves no cell labeling or staining, it can yield false

positives and false negatives. It has been associated to more than

7% discordant or doubtful results in some studies [3,5] and up to a

42% misclassifications rate in safety margin assessment in certain

lung cancer studies [6]. In the absence of complementary methods

for tissue analysis in the operating room, decisive action has to be

taken before the definite diagnosis. Finally, definite diagnosis relies

on standard histopathology based on cytology/nuclei abnormal-
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ities and is usually supplemented with the analysis of changes in

genomics and transcriptomics.

Proteomics is used to study the large spectrum of genome-

encoded proteins present at a given time [7]. Although the first use

of mass spectrometry in cancerous disease was in the 2000s [8],

this approach is complex, requiring time-consuming tissue or

sample conditioning. Targeting the identification of specific

biomarkers of cancers has led to disappointing results. Recently,

matrix-assisted laser desorption ionization time-of-flight mass

spectrometry (MALDI-ToF MS) has been applied to cryosec-

tioned samples of tumoral tissue; the resulting spectra were

combined with histological micro-imaging of the same section to

classify tumors with acceptable accuracy [9]. This method of

MALDI-imaging has the advantage of being conservative but

would require expert analysis and delayed interpretation that is

incompatible with the rapid responses needed by the surgeon and

with the ability to use the method in an operating room. By

contrast, high-throughput and rapid proteome spectra can be

obtained from MALDI-ToF MS analysis of complex samples with

minimal pretreatment, and this method has been shown to enable

species classification of whole complex organisms including ticks

[10]. It also allows bacteria identification in complex media, such

as blood [11] and urine [12] without colony culture.

Hypothesizing that rapid MALDI-ToF MS analysis of a crude

crushed tissue sample could be informative, the aim of the present

pilot study was to evaluate the reliability of MALDI-ToF MS to

rapidly classify a crude lung tissue sample of unknown origin as

cancerous or non-cancerous using a minimal sample volume and a

simple preparation method that could be performed in the

operating room.

Materials and Methods

Study design
All samples were collected from lung surgical specimens from

patients undergoing thoracic surgery for cancer (AP-HM, Hôpital

Nord, Marseille) between January 2012 and December 2012.

Written informed consent was obtained from all patients. The

protocol was approved by the National Ethics Committee "Comité

d’Ethique de la Recherche Clinique en Chirurgie Thoracique et

Cardio-Vasculaire (CERC-CTCV) (reference number: CERC-

SFCTCV-2012-1-31-11-35-32-DeFl).

Sample collection
During the surgical procedure and immediately after lung

resection, biopsies were taken from the resected specimens of non-

tumoral (Non-tumor) and tumoral parts (Cancer) of the lungs.

Sampling was performed without compromising the diagnostic

quality of the piece designated for histological analysis and never

required more tissue resection than that necessary for the

therapeutic management of the patient. When the tumoral mass

was apparently small in size, the entire tumoral piece was

dedicated to the histological examination; thus, only tumor

resections of more than 1 cm were included in the study. In those

cases, a tissue specimen was reserved for the study, snap-frozen

and stored at -80uC for further MALDI-ToF MS analysis. When

there was enough material, it was subdivided in two sets of samples

that were considered individually. Independently, the main tumor

sample was sent for pathological examination, and patients were

assigned a TNM postsurgical stage score according to the

international lung cancer staging system. According to the

standard WHO criteria [13], the cancers were classified histolog-

ically into adenocarcinoma, squamous-cell carcinoma, undifferen-

tiated carcinoma, carcinoid carcinoma, lymphoma and sarcoma.

From the whole sample list, 2/3 were randomly assigned to a

reference training set (Reference), which constituted a data base

with an equal proportion of Non-tumor and Cancer samples. The

remaining third and all the samples from atypical and/or

extremely rare cancers were used to design a blinded group

(Blinded). The Cancer and Non-tumor samples from the same

patient were distributed randomly in either the Reference or

Blinded pool.

Preparation of Samples for Mass Spectrometry
At the time of the analysis, each frozen sample was thawed at

room air for approximately 15 min., and cut with a sterile scalpel.

Using a laboratory microbalance (CPA 224S, Sartorius Stedim

Aubagne, France), 0.1 g (0.160.008 g) was placed in a 10 ml

sterile glass tube added with 0.9 ml sterile water to obtain 10%

dilution. When enough amount of tissue was available, a second

piece was processed in order to perform tests in duplicate. The

tissue was homogenized in water using IKA ULTRA-TURRA X

T25 (IKA-Werke GmbH & CO. KG. Staufen, Germany) at

17000 rpm during 2 min.. The temperature was not maintained

under control during the homogenization process. To obtain a 1/

160 dilution, 100 ml of the mixture was taken and diluted again in

1.5 ml of sterile water and vortexed. No additional component,

especially no inhibitor was added to the mixture during the whole

process. 1.5 ml of this dilution was spotted in quadruplicate onto a

96-sample polished steel target. After drying on the bench, 1.5 ml

of HCCA matrix was added for ionization. Air-dried targets were

measured immediately. Each lung sample generated 4 spectra

from the 4 deposits.

Mass Spectrometry
Measurements were performed with a Microflex LT (Bruker

Daltonics, Bremen, Germany) mass spectrometer laser. Spectra

were recorded in the positive linear mode (delay: 170 ns; ion

source 1 (IS1) voltage: 20 kV; ion source 2 (IS2) voltage: 16.65 kV;

lens voltage: 7.20 kV; mass range: 2 kDa to 20 kDa). Each

spectrum was obtained after 6640 shots (240 shots) in automatic

mode at a variable laser power, and the acquisition time ranged

from 60–120 seconds per spot. All signals with resolution $ 400

were automatically acquired using AutoXecute acquisition control

in FlexControl software version 3.0. The spectra of the 4 spots for

each tissue mix were imported into BioTyper-RTC version 3.0

software (Bruker Daltonik GmbH).

Statistical analysis
ClinProTools v2.2 software uses the data generated from

spectra including spectra pretreatment, peak picking, and peak

calculation operation. The peak definition, the normalization of

the area to the total ion count end point level and the mass

recalibration (maximal peak shift of 1000 ppm) were taken into

account, and the sort mode using the t-test p-value from the

Wilcoxon/Kruskal-Wallis test was used.

Differences in classes analyzed were assessed on the basis of a

discriminant peak identification list. To create the list of

discriminant peaks, we used the k-nearest neighbor genetic

algorithm (GA) implemented in this software. This algorithm is

based on probability estimates for classification.

We first searched for a model able to correctly discriminate the

2 classes, Cancer and Non-tumor, and second for a model able to

correctly discriminate Primary lung cancer and Metastasis. To find

the most discriminant model, GA was trained with the Reference

pool, and internal validation was processed (10-fold cross-

validation). The performance of the model was evaluated by

recognition capability (RC) and positive predictive value (PPV):
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RC = TP/n where TP is the number of true positives (correctly

classified) in a data set, n is the number of samples in the data set,

and PPV = TP/(TP + FP) where FP is the number of false

positives (misclassified).

In a second step, the spectra from the Blinded samples were

used to verify the classification ability of the generated model. The

effective Sensitivity, Specificity and Accuracy of a model were

calculated from the results obtained for the Blinded samples versus

the reference histological diagnosis as the Gold standard using

standard formulas (Sensitivity = TP/TP + FN; Specificity =

TN/TN + FP; Accuracy = TP + TN/n).

For the first and the second step, duplicate material was tested

after the best fit GA model was selected

Results

For the classification of Cancer and Non-tumor entities, 290

samples were analyzed corresponding to 138 patients. From this

cohort, there were 141 Cancer/Non-tumor pairs and 8 unique

Cancer pieces. Of the 290 resection pieces, 225 gave enough

materiel to perform duplicate analysis. Concerning the 149 cancer

pieces, the definite tumor classification was primary lung cancer

for 132 samples (83 adenocarcinoma, 34 squamous cell carcinoma,

5 undifferentiated carcinoma, 5 carcinoid tumors, 1 small cell lung

carcinoma, 2 lymphoma and 2 sarcoma), and 17 were metastases.

Representative spectra from a Primary lung cancer (SCLC)

sample, a Metastasis and a Non-tumor sample are shown in

Figure 1. A total of 53 m/z peaks generated from Cancer and

Figure 1. top: Representative spectra of each subclass: Non-tumor, Primary and Metastasis. bottom: Gel images in grayscale from the same
samples as above.
doi:10.1371/journal.pone.0097511.g001
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Non-tumor samples from the whole cohort were considered valid,

with 40 of them being significantly different between both classes

(p,0.001); these peaks are reported in Figure 2. Concerning the

Primary lung cancer, Metastasis and Non-tumor subclasses, a total

of 53 peaks were identified, and 49 of them being significantly

different (p,0.001). These peaks are reported in Figure 3.

Statistical data analysis and the Cancer versus Non-tumor
GA classification model

To distinguish Cancer from Non-tumor samples, when param-

eter KNN = 3, MNG = 1000, and Max peaks = 250, the GA

model fit was RC = 98.81%, PPV = 89.17% (Table 1) with 20

potential peaks (m/z: 8084.06, 4963.85, 12299.3, 12691.52,

7993.95, 7004.95, 2580.85, 9952.85, 8454.18, 6226.69, 2997.68,

9743.9, 8563.21, 15976.65, 11311.27, 15867.19, 7487.13,

7567.21, 3370.75, 3442.75). Analysis of spectra from the Blinded

set (n = 43 Cancer and n = 41 Non-tumor) accurately discriminat-

ed the two classes with a sensitivity of 86.7% and a specificity of

95.1% for the Cancer class and a sensitivity of 87.8% and a

specificity of 95.3% for the Non-tumor class.

When present, the duplicates of this Blinded set were also tested:

in all the cases they obtained the same class allocation as the first

sample.

The Primary lung cancer versus Metastasis GA model
To discriminate Primary lung cancer from Metastases, with

parameter KNN = 3, MNG = 1000 and Max peaks = 250, the GA

model fit was RC = 100%, PPV = 90.24% with 15 potential peaks

(2136.75, 2829.90, 3485.98, 5291.86, 6175.21, 65551.37, 6748.52,

8181.01, 10092.47, 12685.50, 13767.60, 14000.93, 15220.44,

15861.39, 15976.64). Analysis of the spectra from the Blinded set

(n = 48, 40 Primary and 8 Metastasis) accurately discriminated the

two subclasses with a sensitivity of 67.5% and specificity of 75%

for the Primary subclass, and a sensitivity of 50% and a specificity

of 70% for the Metastasis subclass. The accuracy was, respectively,

68.75% and 66.7%.

Discussion

Due to its possible impact on patient surgical treatment, the

rapid analysis of a tissue sample is of particular importance when a

patient with a suspect mass is operated upon, especially when the

tumor’s origin is unknown or when the nature of the safety

margins is questioned. In this pilot study, using a simple

preparation method and the algorithm for sample classification

implemented in the MALDI-ToF analysis software, we obtained

acceptable diagnostic performance to correctly classify a lung

sample as cancerous or non-cancerous. Although limited, such

information could be of great help for completing frozen section

pathological diagnostics when a rapid answer is required.

Lung cancer is the leading cause of cancer-related mortality and

the most frequently diagnosed cancer worldwide, with approxi-

mately 1.35 million new cases each year, among which 30000 are

in France. More than 80% of lung cancers are non-small cell lung

cancer (NSCLC), for which surgical resection remains the single

most consistent and successful option to achieve a cure.

Sometimes, a pulmonary nodule is revealed to be non-cancerous

a posteriori, and therefore, the rapid identification of the malignant

origin of a tumor-like tissue is of great importance. Our Thoracic

Surgery Department performs approximately 350 lung resections

and explores approximately 30 nodules of unknown origin by

thoracoscopy or conventional surgery each year. In addition, our

research laboratory includes a proteomic platform and is familiar

with the affordable and easy-to-use bench top MALDI-ToF Mass

spectrometer; thus, the conditions necessary to perform the present

pilot study were met.

Figure 2. Average intensity versus mass-to-charge ratio of 40 significantly different peaks averaged from the whole cohort
between Cancer and Non-tumor samples. Arrows show the mass values for the 20 peaks selected by the Cancer versus Non-tumor GA. The
peaks #3370.75, 3442.75, 4963.85, 7004.95, 7487.13, 7567.21, 8454.18, 8563.21, and 9952.85 were up-regulated in the Cancer set, whereas the others
were up-regulated in the Non-tumor set.
doi:10.1371/journal.pone.0097511.g002
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Previous encouraging results were obtained using MALDI-ToF

MS analysis combined with purification methods [14]. Using

intact cell suspensions directly spotted on the matrix and analyzed

by MALDI-ToF MS, valid and reproducible spectra were

obtained from malignant neoplasms of the oral cavity, and a

statistical model was able to correctly classify a cancerous sample

with a sensitivity of 100%, a specificity of 93%, and an overall

accuracy of 96.5% [14]. These results, which are better but close

to ours, were obtained using spectral patterns from a homogenous

population of cell suspensions. Recently, non-homogenous tissue-

Figure 3. Average intensity versus mass-to-charge ratio of 49 peaks significantly different between Non-tumor, Primary and
Metastasis subclasses averaged from the whole cohort. Arrows show the mass values for the 15 discriminating peaks selected by the Primary
cancer versus Metastasis GA model. The peaks 2136.75, 2829.90, 5291.86, 6175.21, 6551.37, 6748.52, 8181.01, 10092.47 and 12685.50 were up-
regulated in the Primary Cancer set, whereas the others were up-regulated in the Metastasis set.
doi:10.1371/journal.pone.0097511.g003

Table 1. Diagnostic performances of the 20 peaks of the two class (Cancer versus Non-tumor) GA model using Reference and
Blind sets of lung samples.

Reference set (n = 206)

Cancer Non-tumor Overall

Recognition Capability 98.29% 99.34% 98.81%

Positive Predictive Value 89.83% 88.5% 89.17%

Blinded set (n = 84)

Cancer Non-tumor Overall

Accuracy 91.6% 92.3% 92%

Sensitivity 86.7% 87.8% 87.25%

Specificity 95.1% 95.3% 95.2%

RC: Recognition Capability, PPV: Predictive Positive Value; Se: Sensibility; Sp: Specificity. Accuracy = TP + TN/TP + FN + FP + TN.
RC and PPV were calculated by testing the training cohort (n = 206). Se and Sp were calculated by testing the Blinded cohort (n = 84 samples).
doi:10.1371/journal.pone.0097511.t001
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based methods have been developed for proteomic and lipidomic

analysis, and they appear to be reliable for tumor classification for

digestive, brain, lymphomatous, and lung cancers [15–18]. Among

these tissue-based methods, MALDI-imaging is now used by

several teams for clinical research. However, the MALDI-imaging

approach remains complex because it requires frozen tissue slice

analysis results to co-register MALDI spectra imaging and

morphology imaging. For human liver metastasis samples, this

method allowed tumor classification into six common cancer types

with a sensitivity varying from 54% to 88%, and a specificity

varying from 90% to 98% depending on the malignant class [9].

To simplify the process, Lee and coauthors proposed performing

MALDI-ToF MS for lipidomics analysis of preselected frozen

section slices containing at least 70% malignant cells [18]. The

resulting spectra were used to generate a model (support vector

machine algorithm) that accurately classified normal lung tissues,

lung tumor tissues, and primary NSCLC. Primary NSCLC was

accurately discriminated from other types of lung tumors, and the

three subclasses, adenocarcinoma, squamous-cell and large-cell

carcinoma, were correctly discriminated and classified with a

sensitivity and a specificity of 84% and 77%, respectively for

adenocarcinoma versus squamous cell carcinoma [18]. The

authors recorded no misclassified sample when comparing

Primary NSCLC and other types of lung tumors, whereas in the

present study, we found both false negatives and false positives

when we compared Primary lung cancer versus Metastasis

subclasses. The difference in our study sample size, with greater

numbers of tumoral and non-tumoral samples (respectively 149

and 141) compared to the above-mentioned study (respectively 47

and 6), could explain differences in diagnostic performance results.

In addition, good diagnostic performance from other studies was

achieved by applying MALDI-imaging on chosen regions that

contained high tumor cellularity [1,18] based on the histology of

sections stained with hematoxylin and eosin. Here, we used no

pre-selection of tissue samples and obtained good results. We

targeted tumoral pieces larger than 1 cm which represent the most

frequent surgical indications. It is plausible that the size of the

tumor have favorably influenced our results since the risk of having

sampled a bad territory is reduced with large tumors as compared

to millimeter tumors.

Mass spectrometry imaging strategies offer the advantage of

conserving tissue but require sufficient surface area of tissue

sections to obtain valuable information. In addition, MS imaging

methods require trained experts, heavy analysis software and high-

throughput signal acquisition instrumentation. Like these above-

mentioned methods, our strategy did not require any purification

or standardization of the tissue cell content. Our crushed sample

MS analysis was rapid, reproducible and very easy to perform.

The non-conservative aspect of our approach was in part

counterbalanced by the very low tissue sample size (i.e. approx-

imately 0.01 g) able to give valid spectra. Finally, using a simplified

and non-image-guided method and larger cohort of patients, we

obtained diagnostic performances similar to those obtained with

MALDI-imaging methods or purified cell line methods. This

surprising result could be due to more the complete information

contained in complete unpurified tissue sample and to our modest

objective, which was not to identify the exact nature of the tumor

but to classify the sample into either the Cancer or non-tumor

class. Very interestingly, among the potential peaks that were

selected in our GA model, three, i. e. 4963.85-8563.21-9952.85

were also highlighted in a study by Raham and coauthors who

used extraction and purification methods and a GA model [19]. In

addition, these authors identified the corresponding candidate

proteins (Thymosin Ubiquitin and Acyl-coA binding protein) and

confirmed their presence in the lung tumors by immunochemistry.

Microflex LT (Bruker Daltonics, Bremen, Germany) mass

spectrometer laser is a bench disposable material with integrated

analysis software that can be easily installed in the operating

facilities. The novelty here is that the complete sample treatment

process, including tissue dispersion, sample material deposition on

the matrix and analysis, does not require technical expertise and

could be learned by any paramedical personnel.

We used two third of our samples for building the prediction

model whereas equal or lower numbers are commonly used for

training sets compared to validation sets. This was justified by the

heterogeneity of our Cancer population with the aim to increment

the training set to obtain a large representation of reference

cancerous spectra. Finally, our Blinded set population size was

higher than previously published with MALDI-ToF MS on lung

tissue (n = 84). In contrast with our good diagnostic performance

in classifying a sample as Cancer versus Non-tumor, we obtained

low performances for the Primary versus Metastasis subclasses. We

think that the large diversity in metastasis subgroups contrasting

with the low number of samples analyzed in this subclass could be

responsible for a low performance random mathematical model.

We hope that incrementing the training cohort with Metastasis

would lead to finding a GA model with better diagnostic

performance. Adopting complementary and/or alternative exa-

traction/solubilization methods would improve the yield of

detecting m/z peaks. However, increasing preparation step should

be balanced with regard to the application of this tool in clinical

settings. At this stage of the work, we think it could be possible to

give a result in less than 30 minutes, thus determining whether a

sample is cancerous or not with a simplified and rapid approach

for whole proteomic tissue analysis that could be easily used as a

diagnostic aid during routine surgical procedures. The ability to

have information reliably confirmed on-theater versus using frozen

biopsies could have major implications for the management of

patients with tumors.
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