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Purpose: To design a robust and automated estimation method for measuring the
retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence
tomography (SD-OCT).

Methods: We developed a deep learning–based image segmentation network for
automated segmentation of the RNFL in SD-OCT B-scans of mouse eyes. In total, 5500
SD-OCTB-scans (5200B-scanswereusedas trainingdatawith the remaining300B-scans
used as testing data) were used to develop this segmentation network. Postprocessing
operations were then applied on the segmentation results to fill any discontinuities or
remove any speckles in the RNFL. Subsequently, a three-dimensional retina thickness
mapwas generated by z-stacking 100 segmentation processed thickness B-scan images
together. Finally, the average absolute difference between algorithm predicted RNFL
thickness compared to the ground truth manual human segmentation was calculated.

Results: The proposed method achieves an average dice similarity coefficient of 0.929
in the SD-OCT segmentation task and an average absolute difference of 0.0009 mm
in thickness estimation task on the basis of the testing dataset. We also evaluated our
segmentation algorithm on another biological dataset with SD-OCT volumes for RNFL
thickness after the optic nerve crush injury. Results were shown to be comparable
between the predicted and manually measured retina thickness values.

Conclusions: Experimental results demonstrate that our automated segmentation
algorithm reliably predicts the RNFL thickness in SD-OCT volumes of mouse eyes
compared to laborious and more subjective manual SD-OCT RNFL segmentation.

Translational Relevance: Automated segmentation using a deep learning–based
algorithm for murine eye OCT effectively and rapidly produced nerve fiber layer thick-
nesses comparable to manual segmentation.

Introduction

Optical coherence tomography (OCT) is an imaging
technology that uses light waves to generate cross-
sectional images of living tissues. OCT provides high-
resolution images using low-coherence interferometry,
where low-coherence light is combined with a second
beam (reference beam) to reduce background noise
caused by scattered light. In addition to high image
quality, OCT is also a noninvasive in vivo imaging
technique capable of capturing micron-scale structural
anatomy.

For the human eye, OCT is currently the most
commonly used imaging modality in clinical use for
determining and managing ocular diseases. Using
OCT, ophthalmologists can identify distinct layers
of the retina, cornea, and optic nerve, and measure
their thickness, shape and size with three-dimensional
(3D) reconstructions of two-dimensional B-scan data
stacked into a 3D cube volume. These measure-
ments have become the gold standard for diagno-
sis of retina diseases (including age-related macular
degeneration and diabetic eye disease1–3), glaucoma
(through the measurement of the RNFL and ganglion
cell complex4), corneal disease (including keratoconus,5
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anterior segment neoplasms,6 and postsurgical corneal
complications where the corneal view is disrupted7),
and neuro-ophthalmic diseases.8 The retina is also part
of the central nervous system and changes in retinal
structure such as the RNFL have been associated
with central nervous system disorders such as stroke,
multiple sclerosis, Parkinson’s disease, and Alzheimer’s
disease.9 With optic neuropathies such as glaucoma,
RNFL quantification can also be used to monitor for
disease progression and is an invaluable tool in clinical
practice.

Before this imaging technology, an ophthalmolo-
gist would diagnosis retinal disease by indirect ophthal-
moscopy to view the retina and determine whether
visual structural queues were present that suggested
retinal thickening, retinal edema, or subretinal fluid.
Similarly, an ophthalmologist would look at the optic
nerve head (ONH) to estimate the amount of neural
retina rim tissue to estimate differences in the RNFL
tissue. With the advent of OCT, the ophthalmologist
now has quantitative and qualitative measures of the
retinal and RNFL thickness at the micron resolution
versus the visual estimates, which varied when patients
were observed by the same ophthalmologist at different
examination times or by different ophthalmologists.

Basic ophthalmic research for retina and glaucoma
relies heavily not only on the function of the retina
and the optic nerve, but also on the structural anatomy
of these ocular tissues—which are readily analyzed by
OCT.However, because of the significantly smaller size
of the murine eye (the most frequently used exper-
imental model for human eye disease), much larger
crystalline lens, and its different optics compared to the
human eye, the same OCT imaging analysis software
used for human clinical studies cannot accurately
and reliably analyze the lower signal strength images
acquired from themurine eye. Thus accurate segmenta-
tion of the murine retina and RNFL is most accurately
and reliably performed by humanmanual segmentation
that is laborious and extremely time consuming.

A significant need exists for automated OCT
segmentation and 3D image analysis of the retina
and optic nerve. Using a deep learning approach with
a newly developed automated segmentation analysis
program, we demonstrate the accuracy and reliability
of this algorithm to analyze and quantitate the layers
of the retina for the RNFL with the creation of a 3D
topographic map for the spatial distribution of nerve
fiber and induced ophthalmic pathologies, such as optic
nerve crush (ONC)–induced optic neuropathy. Last,
automating OCT segmentation with improved retinal
thicknessmeasurements will significantly accelerate the
rate of eye research for retinal diseases, glaucoma, and
neuroprotection in ocular models of disease.

Methods

Overview

We have developed a deep learning–based RNFL
thickness estimation algorithm. This method uses a
convolutional neural network–based image segmenta-
tion algorithm to segment the regions of RNFLs in
OCT B-scans of mouse eyes. Morphological opera-
tions were applied to complete any gaps or remove any
speckles in the segmentation results. Finally, the RNFL
thickness was measured on the basis of our deep learn-
ing rules.

Materials and Methods

Animals

Mice were purchased from Jackson Laboratory
(Bar Harbor, ME, USA) and maintained according
to the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research. All mice were kept
on a 12-hour light/dark cycle and were fed standard
rodent chow available as desired. All animal proce-
dures were approved by the University of Miami Insti-
tutional Animal Care and Use Committee.

SD-OCTMouse Imaging

An SD-OCT system designed for small animal
imaging (Bioptigen, Research Triangle Park, NC,
USA) was used for in vivo imaging of themouse retina.
The axial resolution of the system is approximately
5 μm in retinal tissue. Mice were anesthetized with
an intraperitoneal injection of a ketamine/xylazine
mixture and then placed onto a positioning stage. The
head was fixated onto a stabilizing bar, and a heating
blanket was placed under the anesthetized mouse. Eyes
were dilated with topical tropicamide, and the corneas
were kept moist during imaging with regular appli-
cation of artificial tears (Systane, Alcon, TX, USA).
Raster scans centered on the optic disc consisted of
1000× 100 (horizontal× vertical) depth scans covering
an area of 1 × 1 mm2 of the mouse retina. Alignment
of the mouse took less than one minute, and image
acquisition took approximately two seconds per eye.

Optic Nerve Crush

ONC injury was performed as described previ-
ously (Park 2008). Thy1-Chr2-eYFP and BL6/6J
mice at age two months were anesthetized using a
ketamine/xylazine cocktail injected intraperitoneally,
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Figure 1. Segmentation of nerve fiber layer in an OCT B-scan.

and eyes were locally anesthetized using topical 0.5%
proparacaine hydrochloride. A surgical opening was
made immediately behind and above the eyeball
conjunctiva and the eye muscles were gently retracted
to expose the optic nerve. Dumont no. 5 forceps were
used to crush the nerve approximately 0.5 to 1 mm
posterior to the optic disk without damaging the retinal
vessels or blood supply.

SD-OCTManual Segmentation

SD-OCT imaging files were converted and
segmented using MATLAB-based software
(MathWorks, Inc., Natick, MA, USA) to generate
retinal thickness topographic heat maps, as we have
previously published.10 The RNFL is composed of
an RGC layer and an inner plexiform layer. The top
and bottom boundaries of the RNFL were manually
annotated by human experts. From a total of 55 OCT
volumes of non-crushed normal eyes, 52 volumes were
randomly chosen as training data, and the remain-
ing were used as testing data to develop the RNFL
segmentation network. Each volume contains 100
B-scans.

To further evaluate our model, another thirty-five
volumes of OCT images from five crushed eyes at
different time points was also used. The thickness of
the RNFL was measured at baseline and six weeks
after ONC injury. These OCT volumes were manually
segmented with the same methodology as those from
non-crushed eyes.

Retina Nerve Fiber Layer Segmentation

Given an OCT B-scan X, the goal of the RNFL
segmentation task is to assign each pixel x ∈ X to a
class label y, whose value could be 0 or 1, indicating

that x is either outside or inside the RNFL, respec-
tively. In this study, we adopt a well-known image
segmentation network, ResUNet,11 as the segmenta-
tion network. The detailed network architecture of
ResUNet is shown in Figure 1. The network takes X as
input and outputs a binary mask Y representing the
RNFL. Similar to the original U-Net,12 ResUNet uses
an encoder-decoder architecture with skip connections
in between. Resolution of X is shrunk by a factor of
two for five times through max-pooling operations in
the encoder module to capture contextual informa-
tion at different resolution levels, and then recovered to
the original resolution through five up-sampling opera-
tions in the decoder module to enable precise localiza-
tion. Moreover, the encoder module of ResUNet uses
residual blocks, which are stacked convolutional layers
with skip connections, to address the vanishing gradi-
ent problem.13 Skip connections between the encoder
and decoder are used to recover spatial information lost
during down-sampling operations.

During training, horizontal flipping of the input
images is used as a data augmentation technique to
enhance the generalization performance of the segmen-
tation network. The network is trained according to a
pixel-wise cross entropy loss LCE, which is written as

LCE =
N∑
i=1

(−yi log ŷi − (1 − yi) log (1 − ŷi))

where �( · ) is the summation symbol; yi and ŷi are
pixels from the predicted and ground truth binary
masks, Y and Ŷ , respectively; N is the total number
of pixels in Y or Ŷ . A transfer learning technique
is also applied by using the pretrained weight from
ResNet-5012 in the encoder. The network was trained
with a fixed learning rate of 0.001 using the stochastic
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Figure 2. Effects of postprocessing.

Figure 3. Thickness map generated by aggregating 100 segmentation results from an OCT volume.

gradient descent optimizer for 2000 epochs on aNvidia
Tesla P100 GPU.

After training, the segmentation network uses OCT
B-scan from the testing dataset as input and predicts a
binary mask that represents its RNFL boundaries.

Postprocessing

The predicted binary masks from the segmenta-
tion network are further processed before they can
be used for thickness estimation, because they may
contain small gaps or speckles, as is shown in the left
column in Figure 2. Therefore we apply morphological
operations on these binary masks to fill the gaps and
remove the speckles, as shown in the right column in
Figure 2.

Postprocessing first detects the boundaries of all
separate objects in the predicted binary mask using

the “findCountours” function in the OpenCV library.14
The results from this step are the boundaries of both
the RNFL and speckles (false-positives) are going to
be identified in this step if the segmentation network
has generated reasonable output in the previous step.
Next, the removing speckles operation is performed
by only keeping a single boundary with the greatest
number of pixels inside, which is the binarymask repre-
senting the RNFL. Finally, the filling gaps operation
is performed by transforming the values of all pixels
inside this boundary into 1s.

Thickness Estimation

After the postprocessing step, a 3D retinal thickness
map of every SD-OCT volume is generated by aggre-
gating the thickness of RNFLs into its correspond-
ing 100 segmentation results, as shown in Figure 3.
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The number of white pixels in each column (A-scan)
of a binary mask (B-scan) is counted and converted
into real thickness in millimeters (mm), resulting in
a list of 1000 thickness values per B-scan. Next, the
thickness lists from 100 B-scans in an SD-OCT volume
are aggregated together to form a matrix of size
100 × 1000. This matrix is resized to a square size
of 1000 × 1000 through linear interpolation opera-
tions, which is aligned with the size of the ground truth
thickness measurement. A retinal thickness map with
color representing thickness of the RNFL at differ-
ent locations is then plotted. A B-scan at the ONH
displaying a Bergmeister’s papilla and ONH struc-
tures demonstrate the convex shape on the B-scan. The
thickness of these ONH structures is even greater than
the whole RNFL. To observe any RNFL thickness
change, we removed a circle with radius of 150 nm from
the center of the ONH from each thickness heatmap.

Results

Performance Metrics

A variety of metrics, including accuracy (ACC),
sensitivity (SEN), specificity (SPE), and dice similar-
ity coefficient15 (DSC), are used to evaluate the perfor-
mance of the OCT image segmentation model. Specif-
ically, ACC, SEN, and SPE are the percentages of
correctly classified pixels in the entire resulting binary
mask, RNFL, and background, respectively; DSC is
another well-known metric for image segmentation
tasks that measures the similarity between the result-
ing and ground truth binary masks. The equations of
these metrics are written as:

ACC = TP + TN
TP + TN + FP + FN

SEN = TP
TP + FN

SPE = TN
TN + FP

DSC = 2 ∗ SEN ∗ SPE
SEN + SPE

where TP, TN, FP, FN are the numbers of true-positive
pixels, true-negative pixels, false-positive pixels, and
false-negative pixels in a resulting binary mask.
Comparedwith the othermetrics,DSC is amore distin-
guishable measure for this task since it is a combination
of SEN and SPE.

For thickness estimation, the average RNFL thick-
ness in an SD-OCT volume is calculated by averag-
ing the thickness at every position with positive value

in the retinal thickness map. The absolute difference
between the predicted average thickness of a volume
and its ground truth average thickness is then calcu-
lated, whereas the average absolute difference is calcu-
lated by averaging the absolute difference among all
volumes.

Results on Testing Data of SD-OCT Imaging
Dataset

Figure 4 presents multiple input OCT B-scans
(left column) from the testing dataset, the predicted
RNFL segmentation results (middle column), and the
ground truth segmentation results obtained through
manual annotation (right column). The predicted
segmentation results are very close to the ground
truth despite the speckles in the input OCT images,
thereby indicating that our segmentation model is
very robust for minimizing the intrinsic noise in
the OCT images. Moreover, the signal strength in
the fourth OCT image is particularly low—with the
central part of the RNFL fading out. Nevertheless,
our segmentation model generates an almost-perfect
matching result despite such defects that often lead to
artifacts.

Table 1 compares the metrics obtained from our
OCT segmentation network, ResUNet with transfer
learning, against the other approaches, including the
original UNet12, ReLayNet16, a variant of UNet which
was designed specifically for the OCT segmentation
task, Panoptic Feature Pyramid Network (FPN)17, a
lightweight, top-performing network for general image
segmentation task, as well as our network without pre-
trained weights, on the 300 SD-OCT B-scans with the
testing data of the OCT imaging dataset. For RNFL
thickness estimation, our method achieves the lowest
DIFF of only 0.0009 mm. For RNFL segmentation,
although the average SEN of our model is not the
highest, its overall performance is still the best since
it achieves the highest average ACC, SPE, DSC of
0.992, 0.998, 0.929, respectively. To demonstrate that
the performance increase of our method is significant,
we conduct a series of two-sample t tests hypothesiz-
ing that the segmentation metrics (ACC, SEN, SPE
and DSC) of our method are higher than the other
methods. Table 2 presents the p-values of these metrics
for different methods.

Results From an Optic Nerve Crush Dataset

The predicted average thickness values from our
thickness estimation framework compared against the
measured average thickness of RNFLs from murine
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Figure 4. Segmentation results from our OCT segmentation network.

Table 1. Comparison Between Our OCT Segmentation Network and the Other Approaches

Metrics (Average) ACC SEN SPE DSC DIFF

UNet 0.988 0.906 0.994 0.893 0.0017
ReLayNet 0.991 0.912 0.996 0.910 0.0011
Panoptic FPN 0.991 0.899 0.998 0.917 0.0010
Ours without Transfer Learning 0.991 0.923 0.996 0.918 0.0010
Ours with Transfer Learning 0.992 0.920 0.998 0.929 0.0009

Table 2. P Values From Two-Sample t Tests

P Value ACC SEN SPE DSC

UNet <0.001 <0.001 <0.001 <0.001
ReLayNet <0.001 <0.001 <0.001 <0.001
Panoptic FPN <0.001 0.001 0.004 <0.001
Ours without Transfer Learning 0.012 N/A 0.003 0.005

eyes following different amounts of time after ONC
injury is shown in Figure 5. A general decrease in
RNFL thickness correlated with the number of weeks
after ONC secondary to dying retinal ganglion cells in
the retina, as is expected. However, the thickness does
not decreasemonotonically with time. For example, the
thickness values of “One week”are slightly higher than

“Baseline” in both “471” and “401” volumes. Previ-
ous study15 from our group has shown that the RNFL
thinning lags behindRGC soma loss afterONC.There-
fore, a significant RNFL thickness loss at one week
after injury is typically not observed. Even experienced
human experts cannot distinguish the difference of
OCT data from these two time points. We observed
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Figure 5. Comparison between the predicted and measured average thickness of five eyes in a timely manner.

Figure 6. Relation between predicted thickness and measured thickness.

the same trend comparing manually and automatically
segmented data with an overall downward trajectory of
RNFL thickness after ONC.

The predicted thickness values after one week of
ONC are higher than the measured thickness by
approximately 0.004 mm. The non-crushed eye data
used for training the prediction model were manually
segmented by masked human expert A while the
crushed eye data were segmented by another masked
human expert B. These two human experts have fixed
observer bias. However, this small difference has almost
no effect on the general variation of layer thick-
ness and does not affect the measurement of RNFL
thickness change between different time points. To

demonstrate this point, Figure 6 presents a scatterplot
between the predicted thickness values and measured
thickness values from 20 volumes. An R-squared
value of 0.9846 is obtained by fitting a linear regres-
sion model using these data. This indicates that the
predicted values are extremely linearly correlated to
the measured values with almost no variance, thus the
predicted thickness values are reliable despite the small
difference.

Six 3D retinal thickness maps generated from
animal eye “472 OD” in a timely manner are shown
in Figure 7. The corresponding B-scan images were
taken at the time before ONC injury, and at 1, 2,
3, 4, and 5 weeks after ONC. As retinal ganglion
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Figure 7. Three-dimensional retinal thickness maps from six volumes in a timely manner.

cell (RGC) begin dying from apoptosis after ONC,
the dendrites and axons of the RGC also begin to
degenerate, leading to thinning of the RNFL. We
clearly observe this phenomenon on our thickness
map, where the latter timepoint retinal thickness maps
demonstrate more blue coded thinning than earlier
ones. Three dimensional retinal thickness maps provide
more intuitive and rapid interpretations of RNFL
thickness change.

Discussion

OCT is a three-dimensional noninvasive in vivo
imaging technique that is widely used in clinical and
basic science ophthalmic research and human clinical
care. The retina is organized into multiple layers and
abnormalities in the layers of the retina are associated
with ophthalmic, neurogenerative and vascular disor-
ders, such as glaucoma and age-related macular degen-
eration. Thus segmentation of retinal layers, which
can be used to generate quantitative data, is essen-
tial in OCT image analysis applications. Despite the
power of SD-OCT to provide highly accurate and
temporal in vivo imaging of murine retinal struc-
tures, OCT technology for quantitative analysis of
murine models of neurodegenerative diseases has been
underused because of the limitations associated with
OCT image analysis processing. Although numer-
ous methods have been proposed for the automated
segmentation of retinal surfaces in human scans,19–23

no rapid, automated, and simple method has been
available for murine retina analysis because of the
significantly smaller size and different optics of the
murine compared to the human eye.

We propose an automated RNFL thickness calcu-
lation method for SD-OCT volumes of mouse eyes
on the basis of deep learning. The proposed system
demonstrates superior performance on the retinal
thickness estimation task with a challenging biologi-
cal dataset of SD-OCT volumes of normal and patho-
logical mouse eyes. Our deep learning–based segmenta-
tion algorithm for quantifying the RNFL is very robust
relative to the intrinsic noise andweak signal strength in
the mouse eyes dataset. This new automated OCT deep
learning–based segmentation algorithm will accelerate
the pace of ophthalmic research in animal models of
eye disease.

Traditional OCT segmentation methods include
deformable model-based methods,24,25 which formu-
late the segmentation process into a classification on
the basis of hand-crafted features from the target struc-
tures, graph-based methods21,26 that transform the
problem into an optimization problem. Constraints
with these approaches, such as layer smoothness,
and contour-modeling methods27,28 leverage the prior
shape information of the target structures. However,
most of these methods require prior knowledge about
the specific tasks or hand-crafted features from domain
experts. These methods may not generalize to all types
of OCT image segmentation tasks, especially when the
target datasets are not obtained from human eyes.
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In recent years, deep learning techniques29 have
demonstrated superior performance for various
computer vision tasks, such as video analysis30,31
and disease diagnosis.32,33 Various deep neural
networks–based OCT segmentation approaches have
been proposed. For instance, Shah et al.34 created
a convolutional neural network–based approach for
segmentation of surfaces in volumes of OCT images
with implicitly learned surface smoothness and surface
separation models. Roy et al.16 proposed ReLayNet,
an end-to-end fully convolutional framework for
semantic segmentation of retinal OCT B-scan into
seven retinal layers and fluid masses. Pekala et al.35
proposed another OCT segmentation method using
a combination of fully convolutional networks based
on DenseNet and Gaussian process regression. Islam
et al.36 proposed to use a variant of feature pyramid
network to obtain total-retinal thickness maps from
2D color fundus photographs.

Whereas previous deep learning–based SD-OCT
segmentation algorithms mainly focused on improv-
ing the performance on segmentation task, our study
shows that deep learning is also capable of predicting
the thickness of RNFL in SD-OCT volumes of murine
eyes. Moreover, unlike many previous OCT segmen-
tation methods that require preprocessing operations,
such as noise reduction37 and resolution enhance-
ment38 on the input scans, our proposed algorithm
can directly take raw SD-OCT scans as inputs, thereby
reducing inference time and avoiding an information
loss problem. We had sufficient biological scan data
and an experimental data set to train our segmenta-
tion model, thus making our algorithm very robust to
circumventing intrinsic noise and defects in the input
images. In addition, the use of transfer learning and
data augmentation techniques significantly improves
the generalization performance of our algorithm. This
new automated algorithm, which produces results
comparable to ground truth data gained by time-
consuming and subjective manual segmentation, will
accelerate and improve the quality of ophthalmic
studies of the eye as a neuroscience model for central
nervous system disease.
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