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Abstract: A novel approach to obtaining nanocomposite materials using anionic sequential polymer-
ization and post-synthetic esterification reactions with chemically modified graphene sheets (CMGs)
is reported. The anionically synthesized diblock copolymer precursors of the PS-b-PI-OH type were
grafted to the chemically modified –COOH groups of the CMGs, giving rise to the final composite
materials, namely polystyrene-b-poly(isoprene)-g-CMGs, which exhibited enhanced physicochemical
properties. The successful synthesis was determined through multiple molecular characterization
techniques together with thermogravimetric analysis for the verification of increased thermal stability,
and the structure/properties relationship was justified through transmission electron microscopy.
Furthermore, the arrangement of CMGs utilizing lamellar and cylindrical morphologies was studied
in order to determine the effect of the loaded CMGs in the adopted topologies.

Keywords: composite nanomaterials; anionic polymerization; sequential addition of monomers;
SEC; 1H-NMR; Raman spectroscopy; XRD; TEM

1. Introduction

Graphene oxide (GO) nanosheets constitute a highly investigated topic of research, ren-
dering their use imperative in a multitude of applications, holding exceptional properties
such as mechanical strength, thermal, and electric conductivity [1–4]. The hydrophobic two-
dimensional (2-D) sp2 carbon nanostructures are susceptible to covalent or non-covalent
surface chemical modification, inducing functional groups able to react with polymeric
chains [1,5]. Grafting polymers on modified graphene sheets results in nanocomposites
presenting a combination of properties resulting from both materials, namely improved
solubility and interfacial energy alternations [6–16]. The reaction between polymers and
graphene oxide nanosheets involves two methods and specifically the “grafting from” [17],
where the GO–initiator complex is primarily prepared in order to initiate the polymer-
ization from the GO surface, and the “grafting to” [18], where the polymeric precursor
bearing a functional group reacts with the chemically modified GO [19–23]. Employing
the “grafting to” method, better control over the polymer’s molecular characteristics can
be realized and satisfactory dispersity, and solubility are achieved, while the “grafting
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from” method results in higher coupling yields, but limited control over the molecular
characteristics is reported [24].

Several methods for preparing polymer/graphene composites have been exploited
involving the utilization of various polymerization techniques, such as “click” chemistry
reactions [25–27], atom transfer radical (ATRP) [28–30], reversible addition fragmentation
chain transfer (RAFT) [31–33], and ionic polymerizations [34–36], in combination with
functionalized graphene groups (carboxyl, hydroxyl, and so on), which are already reported
in the literature [37,38].

Although the abovementioned polymerization methods have been extensively studied
for the synthesis of various composite materials, resulting in promising applications such
as nanoelectronics, sensors [39], water treatment and gas/transport membranes, energy
storage, and so on [40], ionic polymerization methods for the preparation of nanocomposite
materials are only scarcely adopted [35–37].

The highly demanding purifying and synthetic protocols in combination with the
limited number of monomers bearing functional side groups on both anionic and cationic
polymerization impede the exploitation of these synthetic methods, as the use of GO com-
pletely reduces the reactivity of the initiators, resulting in low yields during reaction [39].

Cationic polymerization of vinyl monomers (e.g., vinyl ethers, indene, acenaphthy-
lene) “grafting from” or “grafting to” GO has been achieved by the non-nucleophilic addition
attributed to the intensified acidic character, thanks to the existence of –COOH groups
on the modified graphene sheet surface [41–43]. Various total number average molecular
weights of polyester, polyamide, and poly(caprolactone) composites have been reported
by Bielawski et al. [44], utilizing cationic polymerization using GO as catalyst. The use of
GO as a cationic initiator has also been expanded for a diblock copolymer system of the
polystyrene-b-polyisoprene (PS-b-PI) type and a PS homopolymer, resulting in composites
presenting satisfactory dispersion in many organic solvents. The increased sheet-to-sheet
distance exhibited in the aforementioned diblock copolymers gave rise to porous struc-
tures, rendering the specific composite materials appealing for membrane applications
and specifically for gas permeability and chemical separation [36]. Homopolymer com-
posites of GO-g-benzoxazine type have been prepared using GO as cationic initiator and
subsequently thermally characterized, leading to enhanced thermal stability [45].

On the other hand, the neutralization of the carboxyl groups (–COOH) through
potassium hydroxide (–KOH) led to the formation of potassium carboxylate (–COOK)
side groups on the GO, enabling the anionic polymerization of epoxides and cyclic acid
anhydrides [46,47].

Herein, we report for the first time, to the best of our knowledge, the preparation
of composite materials constituting anionically synthesized diblock copolymers of the
PS-b-PI-OH type with chemically modified graphene oxide (CMGs) through the “grafting
to” method. The diblock copolymer precursors were end-capped with two monomeric
units of ethylene oxide prior to the polymerization termination, in order to bear func-
tional hydroxyl side groups capable of reacting through esterification reaction with the
carboxyl GO groups, eventually obtaining the composite materials, namely PS-b-PI-g-
CMGs. The successful synthesis of the intermediate PS-b-PI-OH products was verified
through molecular characterizations, such as size exclusion chromatography (SEC), proton
nuclear magnetic resonance spectroscopy (1H-NMR), and infrared spectroscopy (FT-IR).
The thermal characterization through thermogravimetric analysis (TGA) determined the
thermal stability of both intermediate and final materials. Raman spectroscopy was used to
verify the structure of the carbon nanoforms, while X-ray diffraction (XRD) was employed
in order to evaluate possible changes between the spaces of the consecutive layers of the
CMGs. Transmission electron microscopy (TEM) experiments were also conducted in order
to study structure/properties relationship after the incorporation of the CMGs in the corre-
sponding polymer matrices, as well as the successful composite formation. The inability
of graphitic structures to be dispersed in common organic solvents for long periods was



Polymers 2021, 13, 2308 3 of 11

compensated after the CMGs were covalently bonded to the diblock copolymers, leading to
the observation of enhanced dispersion in organic solvents for significantly longer periods.

2. Materials and Methods
2.1. Materials

Monomers (styrene, isoprene, and ethylene oxide), initiators (n-BuLi, sec-BuLi), and
solvents (benzene, tetrahydrofuran (THF), and methanol), as well as nitric acid (HNO3,
70%), sulfuric acid (H2SO4, 97%), potassium chlorate (KClO3, 99%), sodium hydroxide
(NaOH, 97%), hydrochloric acid (HCl, 37%), N,N′-dicyclohexylcarbodiimide (DCC), 4-
dimethylaminopyridine (DMAP), and powdered graphite (powder, <20 µm), employed
for the functionalization of the GO, were purchased from Sigma-Aldrich, St. Louis, MO,
USA. All reagents used for the anionic polymerization were purified as already thoroughly
described in the literature [48,49], while compounds concerning GO were used without
further purification. The Staudenmaier method [5] was employed in order to receive
exfoliated graphene oxide sheets.

2.2. Methods

The molecular characterization was accomplished through size exclusion chromatog-
raphy (SEC) utilizing a PL-GPC 50 Integrated GPC System from Agilent Technologies (St.
Clara, CA, USA) and was calibrated with ten PS standards Mp: 1.2 kg/mol to 1500 kg/mol.
The eluent utilized by the specific technique was tetrahydrofuran (THF) with a flow rate of
1.0 mL min−1.

1H-NMR spectroscopy (Bruker GmbH, Berlin, Germany) was employed in order to
determine the mass and volume fractions of each segment as well as to verify the successful
end-capping reaction of the poly(isoprene) with the –OH groups. The spectra were obtained
at room temperature in CDCl3 on a Bruker AV-400 Avance using a frequency of 400 MHz.
Data were processed using UXNMR (Bruker) software.

Infrared spectroscopy (FT-IR) was carried out using a FTIR spectrometer JASCO FT/IR
(JASCO, Easton, MD, USA). Spectra were retrieved by employing 32 scans ranging from
4000 to 400 cm−1 with a resolution of 2 cm−1 under ambient conditions.

Raman spectroscopy (RS) was realized via micro-Raman RM 1000 Renishaw system
(Renishaw, Wotton-under-Edge, UK). The power of the laser was 30 mW and a 2 µm focus
spot was used.

Thermogravimetric analysis (TGA) was performed using a Perkin Elmer Pyris-Diamond
instrument (PerkinElmer, Inc., Waltham, MA, USA). Approximately 10 mg of the sample
was heated from 40 ◦C to 700 ◦C following a step of 5 ◦C/min.

Transmission electron microscopy (TEM) was conducted with a JEOL 2100 TEM (JEOL
Ltd., Tokyo, Japan) using 200 KeV as the acceleration voltage. Cryo-ultramicrotoming
of the films was realized in a Leica EM UC7 ultramicrotome (Leica EM UC7 from Leica
Microsystems, Wetzlar, Germany) below the glass transition temperature of both blocks
(−100 ◦C) in order to obtain very thin sections (~30 nm) and the sections were picked up
on 400 mesh copper grids.

X-ray diffraction (XRD) measurements were carried out in a Bruker D8 Advance
(Bruker, Billerica, MA, USA) with Bragg–Brentano geometry with LYNXEYE detector in 2θ
range from 2◦ to 30◦. For the X-rays, a Cu-Kα wire was used, resulting in a radiation of
1.5406 Å wavelength.

2.3. Synthesis of PS-b-PI-OH

The diblock copolymers of the PS-b-PI-OH type were synthesized via anionic poly-
merization under high vacuum using sequential monomer addition (Scheme S1a, Supple-
mentary Materials). The synthesis of the intermediate product (e.g., 1-PS-b-PI-OH) was
accomplished after the polymerization of the PS segment using styrene (5 g, 0.05 mol)
and sec-BuLi (0.24 mmol) in the presence of a non-polar solvent (benzene, 300 mL). Af-
terwards, the PI segment was synthesized sequentially by introducing isoprene (4.2 g,
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0.06 mol) in the living PS macroinitiator and, eventually, the living diblock copolymer was
end-capped with two monomeric units of ethylene oxide (0.72 mmol) prior to termination
with degassed methanol.

2.4. Synthesis of Carboxylated Graphene Oxide (CMGs)

The carboxylation of graphene oxide sheets was accomplished through the already
established method by Park et al. [50] GO sheets were dissolved in dionized water
(~4 mg/mL) and ultra-sonicated for 1 h before an equal quantity of NaOH (3M) was
added to the solution and further sonicated for 3 h. Finally, HCl was added and, after the
complete neutralization of the solution, the final solid product (GO–COOH) was filtered
and rinsed (Scheme S1b, Supplementary Materials).

2.5. Synthesis of PS-b-PI-g-CMGs

In a round-bottom flask under inert atmosphere containing 250 mL of anhydrous THF,
1.5 g of each diblock copolymer precursor together with 0.150 g or 0.450 g of CMGs were
added and, after the homogenization of all compounds, the mixture was cooled at 5 ◦C
using an ice bath. Afterwards, appropriate amounts of coupling reagent (DCC) and catalyst
(DMAP) were introduced into the solution and the temperature was set at 25 ◦C, initiating
the reaction (Steglich esterification) [51]. By-products were retrieved through filtering and
the final composite was rinsed with anhydrous methanol prior to drying in the vacuum
oven (Fisherbrand™ Isotemp™ Model 281A Vacuum Oven, Pittsburgh, PA, USA) for 48 h.
The degree of reinforcement in the final composite materials was determined to be equal
to 1 and 3 weight percentage (%wt) of CMGs in the polymeric matrix for both polymer
samples (1-PS-b-PI-OH and 2-PS-b-PI-OH, respectively). The final nanocomposite materials
are presented in Scheme S1c (Supplementary Materials).

For clarification reasons, the four (4) final samples were labeled, taking into considera-
tion the initial content of CMGs on each polymeric matrix as follows: 1-PS-b-PI-g-CMGs
1%, 1-PS-b-PI-g-CMGs 3%, 2-PS-b-PI-g-CMGs 1%, and 2-PS-b-PI-g-CMGs 3%, respectively.

3. Results and Discussion
3.1. Molecular and Thermal Characterization Results

The total number average molecular weights, the dispersity indices, and the absence
of any by-products were determined via SEC, further confirming the successful synthesis
of well-defined copolymers. In total, two diblock copolymer samples were synthesized,
exhibiting the following molecular characteristics as evident in Table 1, where the number
average molecular weights, the dispersity, and the mass and volume fractions are presented.
Chromatographs (Figure S1a,b) and 1H-NMR spectra (Figure S2a,b) are presented in the
Supplementary Materials for each sample respectively.

Table 1. Molecular characterization results for the linear diblock copolymers of the PS-b-PI-OH type.

Sample
Number Samples

(
Mn

)
PS a

(g/mol)

(
Mn

)
PI

a

(kg/mol)

(
Mn

)
Total a

(kg/mol) Ðtotal
a f PS

b ϕPS
c

1 PS-b-PI-OH 21,000 17,500 38,500 1.04 0.51 0.52
2 PS-b-PI-OH 31,000 10,500 41,500 1.06 0.73 0.74

a SEC in THF at 30 ◦C, b 1H-NMR Measurements in CDCl3 at 25 ◦C, and c from the Equation
ϕPS = fPSρPI

fPSρPI+(1− fPS)ρPS
.

Further confirmation on the existence of –OH groups in the diblock copolymers was
accomplished using FT-IR spectroscopy. As evident in Figure S3a in the Supplementary
Materials, both samples exhibited a weak peak in the region of 3500 cm−1, which is
attributed to the hydroxyl groups at the end of the macromolecular chains. It should be
noted that the limited intensity of the peak is assigned to the low –OH group percentage.
Additionally, in the region of 650–700 cm−1, the bending of the –CH bonds is evident, while
at 1500 cm−1, the C–C stretching vibration of the aromatic ring in the monomeric unit of
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polystyrene is obvious and, finally, the stretching vibrations of the C–H, C–C, and =C–H
groups are located at 2700–3000 cm−1 [52,53]. The FT-IR spectrum of the GMCs is also
given in the Supplementary Materials (Figure S3b) in order to verify the existence of the
–COOH groups at 1630 cm−1 through the complete neutralization of the hydroxyl groups.

TGA studies were performed in order to examine the thermal behavior of the modified
graphene oxide, where a trivial weight loss at approximately 100 ◦C is attributed to the
water molecules, while the decomposition of functional groups leads to a second significant
weight loss at 200 ◦C [54]. Finally, the complete decomposition of the graphitic lattice
occurred at approximately 485 ◦C (Figure S4a in the Supplementary Materials). Concerning
the final composite, materials the TGA thermographs resulted in higher decomposition
temperatures in the case of the final composites when compared with the pristine di-
block precursors, indicating increased thermal stability attributed to the covalent bonds
between the diblock copolymer matrices and the CMGs (Figure S4b,c in the Supplementary
Materials).

Raman spectroscopy was employed in order to determine the structural defects of the
CMG sheets calculated from the ratio ID/IG (Figure S5 in the Supplementary Materials), as
well as the covalent attachment between polymeric chains and CMGs and, consequently,
the formation of sp3 hybridism. Specifically, at ~1350 cm−1 the D band, attributed to the
overall structural defects of the CMGs, while at ~1592 cm−1 the G band, indicates the
permitted phononic transmittance derived from sp2 carbon hybridisms. The D Raman band
is located in the region between 1250 and 1450 cm−1 and is attributed to the sp3 carbons,
indicating the structural defects (hetero-atoms, grain boundaries, vacancies, and so on),
while G band is assigned to the planar vibrations of sp2 carbon bonds at approximately
1600 cm−1. High-quality samples exhibit a low ID/IG ratio, indicating the lack of defects,
and thus the enhanced lattice crystallinity degree [55,56]. Raman spectroscopy was applied
to all samples, including intermediate diblock copolymers of the PS-b-PI-OH type and
the final nanocomposites with different concentrations, and the results are presented in
Figure 1a,b. Regarding Figure 1a, the black colored line corresponds to the chemically
modified graphene oxide, where the D band is evident at 1340 cm−1, while the G band is
observed at 1580 cm−1. The diblock copolymer precursor is presented with red color and
the wagging vibrations at 1050–1150 cm−1 are assigned to the –CH2 and –CH bonds of
polystyrene and poly(isoprene), respectively. The intense peak that appeared at 1668 cm−1

is ascribed to C=O (stretching). The double carbon bonds [53] (=CH2) of the monomeric
unit of poly(isoprene) are obvious at 1300 cm−1, the band at 1452 cm–1 is attributed to
(–CH2 bending) of the poly(isoprene) segments, while the C=C aromatic bonds in the
monomeric unit of the PS are evident at 1580–1600 cm−1. Moreover, the intense signal
at 1002 cm−1 is assigned to C–C aromatic (stretching), while the band at 618 cm−1 is
imputed to C–H aromatic (stretching out of plane in the opposite direction). Finally, a
strong peak at 3058 cm–1 is assigned to the aromatic protons (C–H stretching in plane
bending), while the bands at 2850–2930 cm–1 are attributed to the alkane vibrations (C–H
anti-symmetric stretching –CH3). Regarding the final composite materials, in addition to
the characteristic intensities attributed to the intermediate product, the two characteristic
vibrations attributed to the graphitic structures are evident. No substantial differentiations
were observed on the intensities when the CMGs content was increased from 1 to 3 wt%.
Accordingly in Figure 1b, the coherent intensities can be clearly observed, further verifying
the covalent bonding between CMGs and PS-b-PI-OH diblock precursors, attributed to the
esterification reactions.
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Figure 1. Raman spectra corresponding to (a) CMGs (black color), diblock precursor of the 1-PS-b-PI-OH type (red color),
the final nanocomposites 1-PS-b-PI-g-CMGs-1% (green color), and 1-PS-b-PI-g-CMGs-3% (blue color); and (b) CMGs (black
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X-ray diffraction studies were conducted in order to justify the successful exfoliation
of CMG sheets owing to the grafting of the polymeric chains. In Figure 2a, the XRD patterns
of CMGs, 1-PS-b-PI-OH, 1-PS-b-PI-g-CMGs 1%, and 1-PS-b-PI-g-CMGs 3% are illustrated,
where the black line corresponds to the CMGs with the characteristic diffraction peak at
2θ◦ = 12.6◦ and d-spacing equal to 6.6 Å (distance between two consecutive graphene
sheets or interlayer spacing), while the diffraction peaks of 1-PS-b-PI-g-CMGs 1% and
1-PS-b-PI-g-CMGs 3% appear at 2θ◦ = 11.4◦, leading to d = 7.3 Å in both cases. Similarly, in
Figure 2b, the characteristic diffraction peaks for 2-PS-b-PI-g-CMGs 1% and 2-PS-b-PI-g-
CMGs 3% are exhibited at 2θ◦ = 11.0◦ and 2θ◦ = 10.4◦, leading to d = 7.6 Å and d = 7.3 Å,
respectively. Partial polymeric chain interference between consecutive CMG sheets is
evident owing to the slight increase of the d-spacing approximately equal to 0.7–1 Å (6.6 Å
for the neat CMGs and 7.3 Å or 7.6 Å for the composite materials).
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3.2. Morphological Characterization

Transition electron microscopy measurements were carried out in order to verify
the incorporation of the CMGs into the polymeric matrices, as well as the effect of the
incorporated CMGs on the adopted morphology. Both samples were casted in 5% w/v
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solution using a non-selective solvent, namely toluene, in order to obtain equilibrium
morphologies regarding the diblock copolymer, for 5–7 days in a saturated environment. It
should be mentioned that the dissolution of the diblock copolymers resulted in satisfactory
dispersion of the CMGs for longer periods in organic solvents (Figure S6 in the Supple-
mentary Materials). Both samples were submitted to an annealing process above the glass
transition temperature of both segments (120 ◦C) for 48 h. The almost identical electron
densities between the PS and PI segments require the utilization of staining processes with
aqueous solution of OsO4 (Science Services, Munich, Germany) for approximately 2 h,
prior to morphological studies [49]. Based on the literature, the adopted morphologies for
the specific systems were in accordance with the experimentally obtained results, namely
lamellar morphology in the case of 1-PS-b-PI-g-CMGs 1–3% and hexagonally close packed
cylindrical morphology in the case of 2-PS-b-PI-g-CMGs 1–3%. However, the main purpose
of this work was to study the structure/properties relationship of the composite materials
and, specifically, the arrangement of the modified graphene sheets when incorporated into
the polymeric matrices.

In Figure 3a,b, TEM micrographs regarding 1-PS-b-PI-g-CMGs 1% and 1-PS-b-PI-
g-CMGs 3%, respectively, are presented. Alternating lamellae corresponding to white
PS and black PI domains along with CMGs incorporated in the PI lamellar domains
attributed to the adopted synthetic route, which included the esterification reaction between
hydroxyl (PS-b-PI-OH) and carboxyl groups (CMG–COOH). The low content of CMGs
in the polymeric matrix during synthesis reaction led to limited incorporation, which is
evident in the TEM images, where a minimal amount of CMGs was embedded into the
PI segments. For the second case (Figure 3c,d), hexagonally close packed cylinders were
obtained for both 2-PS-b-PI-g-CMGs 1% and 2-PS-b-PI-g-CMGs 3%, where the PS (white)
majority constituted the matrix and the PI (black) minority formed the cylindrical domains.
As expected, the arrangement of the CMGs in the cylindrical domains was not favored
owing to the inability of the CMGs to curve in the confined cylindrical structure, resulting
in graphitic vertical structures evident only in grain boundaries.
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Figure 3. Bright field TEM images corresponding to the (a) 1-PS-b-PI-g-CMGs 1%, (b) 1-PS-b-PI-g-
CMGs 3%, (c) 2-PS-b-PI-g-CMGs 1%, and (d) 2-PS-b-PI-g-CMGs 3% final composite materials after
thermal annealing at 120 ◦C for 48 h, sequential microtoming, and staining with vapors of OsO4 for
approximately 2 h.

4. Conclusions

Employing anionic polymerization led to the synthesis of well-defined diblock copoly-
mers of the PS-b-PI-OH type, presenting narrow dispersity as well as molecular and
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structural homogeneity, capable of reacting through esterification with chemically modi-
fied graphene sheets, resulting in the final composite materials. The sensitivity of living
ends during anionic polymerization renders “grafting to” methods for the preparation of
composite materials quite challenging, which is further supported by the lack of corre-
sponding published works in the literature. Therefore, in this work, esterification reactions
were preferred as a facile method for the incorporation of modified graphitic structures to
the diblock copolymer precursors.

The successful loading of the CMGs in the polymeric matrices was supported using
various techniques. All samples were molecularly, thermally, and morphologically charac-
terized using SEC, 1H-NMR, FT-IR, TGA, Raman spectroscopy, XRD, and TEM. It should
be noted that the structure/properties relationships of such systems, prepared through
the sequential anionic addition polymerization technique and subsequent esterification
reaction, have not yet been reported in the literature. The obtained morphologies of the
final nanocomposites showcased microphase separation in the presence of CMGs that were
arranged according to the adopted morphologies. Specifically, graphene sheets were incor-
porated between the alternating lamellar domains, while the inability of graphene sheets
to curve within the cylindrical topology led to CMGs’ alignment to the grain boundaries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13142308/s1, Scheme S1: Schematic illustration of the (a) synthesis of the PS-b-PI-
OH type, (b) synthesis of the carboxylation of the graphene oxide sheets, and (c) synthesis of
the final composite materials of the PS-b-PI-g-CMGs type. Figure S1: SEC chromatographs of
the synthesized diblock copolymers corresponding to (a) the PS homopolymer (blue color) and
the hydroxyl terminated diblock copolymer of the 1-PS-b-PI-OH type (red color) and (b) the PS
homopolymer (blue color) and the hydroxyl terminated diblock copolymer of the 2-PS-b-PI-OH type
(red color). Figure S2: 1H-NMR spectra corresponding to (a) 1-PS-b-PI-OH and (b) 2-PS-b-PI-OH
diblock copolymer precursors, where in both cases, the characteristic chemical shift at 3.5 ppm
confirms the presence of –OH groups after the successful end-capping reaction using two monomeric
units of ethylene oxide. Figure S3: FT-IR spectra of (a) the hydroxyl terminated diblock copolymers
of the PS-b-PI-OH type and (b) chemically modified graphene. Figure S4: TGA thermographs
corresponding to (a) the neat CMGs; (b) 1-PS-b-PI-OH (black color), 1-PS-b-PI-g-CMGs 1% (red color),
and 1-PS-b-PI-g-CMGs 3% (blue color); and (c) 2-PS-b-PI-OH (black color), 2-PS-b-PI-g-CMGs 1%
(red color), and 2-PS-b-PI-g-CMGs 3% (blue color). Figure S5: Raman spectrum corresponding to
the chemically modified graphene. Figure S6: Optical observation of the final composite materials
dispersed in toluene. From left to right, 1-PS-b-PI-g-CMGs 1%, 1-PS-b-PI-g-CMGs 3%, 2-PS-b-PI-g-
CMGs 1%, and 2-PS-b-PI-g-CMGs 3%.
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