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The original aim of complex problem solving (CPS) research was to bring the cognitive
demands of complex real-life problems into the lab in order to investigate problem
solving behavior and performance under controlled conditions. Up until now, the
validity of psychometric intelligence constructs has been scrutinized with regard to
its importance for CPS performance. At the same time, different CPS measurement
approaches competing for the title of the best way to assess CPS have been developed.
In the first part of the paper, we investigate the predictability of CPS performance on
the basis of the Berlin Intelligence Structure Model and Cattell’s investment theory as
well as an elaborated knowledge taxonomy. In the first study, 137 students managed
a simulated shirt factory (Tailorshop; i.e., a complex real life-oriented system) twice,
while in the second study, 152 students completed a forestry scenario (FSYS; i.e.,
a complex artificial world system). The results indicate that reasoning – specifically
numerical reasoning (Studies 1 and 2) and figural reasoning (Study 2) – are the only
relevant predictors among the intelligence constructs. We discuss the results with
reference to the Brunswik symmetry principle. Path models suggest that reasoning
and prior knowledge influence problem solving performance in the Tailorshop scenario
mainly indirectly. In addition, different types of system-specific knowledge independently
contribute to predicting CPS performance. The results of Study 2 indicate that working
memory capacity, assessed as an additional predictor, has no incremental validity
beyond reasoning. We conclude that (1) cognitive abilities and prior knowledge are
substantial predictors of CPS performance, and (2) in contrast to former and recent
interpretations, there is insufficient evidence to consider CPS a unique ability construct.
In the second part of the paper, we discuss our results in light of recent CPS research,
which predominantly utilizes the minimally complex systems (MCS) measurement
approach. We suggest ecologically valid microworlds as an indispensable tool for future
CPS research and applications.
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knowledge assessment, working memory, Brunswik symmetry

Frontiers in Psychology | www.frontiersin.org 1 May 2018 | Volume 9 | Article 626

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.00626
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2018.00626
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.00626&domain=pdf&date_stamp=2018-05-08
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00626/full
http://loop.frontiersin.org/people/555539/overview
http://loop.frontiersin.org/people/231537/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00626 May 4, 2018 Time: 16:14 # 2

Süß and Kretzschmar Complex Problem Solving

INTRODUCTION

People are frequently confronted with problems in their daily
lives that can be characterized as complex in many aspects.
A subset of these problems can be described as interactions
between a person and a dynamic system of interconnected
variables. By manipulating some of these variables, the person can
try to move the system from its present state to a goal state or keep
certain critical variables within tolerable ranges. Problems of this
kind can be simulated using computer models (aka microworlds),
offering an opportunity to observe human behavior in realistic
problem environments under controlled conditions.

The study of human interaction with complex computer-
simulated problem scenarios has become an increasingly popular
field of research in numerous areas of psychology over the past
four decades. For example, computer models have been built to
simulate the job of a small-town mayor (Dörner et al., 1983), a
production plant operator (Bainbridge, 1974; Morris and Rouse,
1985), a business manager (Putz-Osterloh, 1981; Wolfe and
Roberts, 1986), a coal-fired power plant operator (Wallach, 1997),
and a water distribution system operator (Gonzalez et al., 2003).
Real-time simulations have put users in the role of the head of
a firefighting crew (Brehmer, 1986; Rigas et al., 2002) or an air
traffic controller (Ackerman and Kanfer, 1993). In experimental
psychology, research on complex problem solving (CPS) has
sought to formally describe simulations (e.g., Buchner and
Funke, 1993; Funke, 1993), the effects of system features on
task difficulty (e.g., Funke, 1985; Gonzalez and Dutt, 2011), the
role of emotions (e.g., Spering et al., 2005; Barth and Funke,
2010), and the effects of practice and training programs (e.g.,
Kluge, 2008b; Kretzschmar and Süß, 2015; Goode and Beckmann,
2016; Engelhart et al., 2017; see also Funke, 1995, 1998).
Differential and cognitive psychology research has investigated
the psychometrical features of CPS assessments (e.g., Rigas et al.,
2002), the utility of computational models for explaining CPS
performance (e.g., Dutt and Gonzalez, 2015), the relationship
between CPS performance and cognitive abilities (e.g., Wittmann
and Süß, 1999), and its ability to predict real-life success criteria
(e.g., Kersting, 2001). For detailed summaries of different areas
of CPS research, see Frensch and Funke (1995) and Funke
(2006).

Meanwhile, many researchers have moved away from complex
real life-oriented systems (CRS) to complex artificial world
systems (CAS) in order to increase the psychometric quality of
measures and to control for the effects of preexisting knowledge
(e.g., Funke, 1992; Wagener, 2001; Kröner et al., 2005). This
development ultimately culminated in the minimally complex
systems (MCS) approach (Greiff et al., 2012), also known as the
multiple complex systems approach (e.g., Greiff et al., 2015a).
This approach has recently become prominent in educational
psychology (e.g., Greiff et al., 2013b; Sonnleitner et al., 2013;
Kretzschmar et al., 2014; OECD, 2014; Csapó and Molnár, 2017).
In addition, this shift has led to the question of what are and are
not complex problems, with some researchers questioning the
relevance of MCS as a tool for CPS research and the validity of
the conclusions drawn from them (e.g., Funke, 2014; Dörner and
Funke, 2017; Funke et al., 2017; Kretzschmar, 2017).

Originally, simulated dynamic task environments were used
to reproduce the cognitive demands associated with real-life
problems in the laboratory (Dörner et al., 1983; Dörner, 1986).
These environments have several features: (1) Complexity: Many
aspects of a situation must be taken into account at the same
time. (2) Interconnectivity: The different aspects of a situation
are not independent of one another and therefore cannot be
controlled separately. (3) Intransparency: Only some of the
relevant information is made available to the problem solver.
(4) Dynamics: Changes in the system occur without intervention
from the agent. (5) Polytely: The problem solver must sometimes
pursue multiple and even contradictory goals simultaneously.
(6) Vagueness: Goals are only vaguely formulated and must be
defined more precisely by the problem solver. Whereas older
microworlds featured all of these characteristics to a considerable
extent, more recent approaches such as MCS have substituted
complexity and ecological validity (i.e., the simulation’s validity as
a realistic problem-solving environment allowing psychological
statements to be made about the real world; see Fahrenberg, 2017)
for highly reliable assessment instruments by simulating tiny
artificial world relationships (e.g., Greiff et al., 2012; Sonnleitner
et al., 2012).

The present paper is divided into two parts. In the first part, we
deal with one of the oldest but still an ongoing issue in the area
of CPS research: the cognitive prerequisites of CPS performance.
In two different studies, we used microworlds (CRS and CAS)
to empirically investigate the impact of cognitive abilities (i.e.,
intelligence and working memory capacity) and prior knowledge
on CPS performance. In doing so, we considered the impact of
the Brunswik symmetry principle, which effects the empirical
correlations between hierarchical constructs (e.g., Wittmann,
1988). Integrating our results with previous CPS research, we
review the basis and empirical evidence for ‘complex problem
solving ability’ as a distinct cognitive construct. In the second part
of the paper, we discuss our approach and results in light of recent
problem solving research, which predominantly utilizes the MCS
approach. Finally, we conclude with some recommendations
for future research on CPS and suggest ecologically valid
microworlds as tools for research and applications.

PART I: EMPIRICAL INVESTIGATION OF
THE COGNITIVE PREREQUISITES OF
COMPLEX PROBLEM SOLVING
PERFORMANCE

Intelligence and Complex Problem
Solving
At the beginning of complex problem solving (CPS) research,
CPS pioneers raised sharp criticisms of the validity of
psychometric intelligence tests (Putz-Osterloh, 1981; Dörner
et al., 1983; Dörner and Kreuzig, 1983). These measures,
derisively referred to as “test intelligence,” are argued to be
bad predictors of performance on partially intransparent, ill-
defined complex problems. In contrast to simulated scenarios,
intelligence test tasks are less complex, static, transparent,
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and well-defined problems that do not resemble most real-
life demands in any relevant way. Zero correlations between
intelligence measures and CPS performance were interpreted as
evidence of the discriminant validity of CPS assessments, leading
to the development of a new ability construct labeled complex
problem solving ability or operative intelligence (Dörner, 1986).
However, no evidence of the convergent validity of CPS
assessments or empirical evidence for their predictive validity
with regard to relevant external criteria or even incremental
validity beyond psychometric intelligence tests have been
presented.

By now, numerous studies have investigated the relationship
between control performance on computer-simulated complex
systems and intelligence. Whereas Kluwe et al. (1991) found
no evidence of a relationship in an older review, more recent
studies have found correlations that are substantial but still
modest enough to argue in favor of a distinct CPS construct
(e.g., Wüstenberg et al., 2012; Greiff et al., 2013b; Sonnleitner
et al., 2013). In a more recent meta-analysis, Stadler et al.
(2015) calculated the overall average effect size between general
intelligence (g) and CPS performance to be r = 0.43 (excluding
outliers, r = 0.40), with a 95% confidence interval ranging from
0.37 to 0.49. The mean correlation between CPS performance
and reasoning was r = 0.47 (95% CI: 0.40 to 0.54). The
relationship with g was stronger for MCS (r = 0.58) than CRSs
(r = 0.34)1. From our point of view, this difference results from
the higher reliability of MCS but also a difference in cognitive
demands. MCS are tiny artificial world simulations in which
domain-specific prior knowledge is irrelevant. Complex real life-
oriented tasks, however, activate preexisting knowledge about the
simulated domain. This knowledge facilitates problem solving;
in some cases, the problems are so complex that they cannot be
solved at all without prior knowledge (e.g., Hesse, 1982).

The main issues with many complex real life-oriented
studies that investigated the relation between intelligence
and CPS performance concern the ecological validity of the
simulations and the psychometric quality of the problem-solving
performance criteria. This often leads to much larger confidence
intervals in their correlations with intelligence compared to
minimal complex tasks (Stadler et al., 2015). When the goals of
a simulation are multiple and vaguely defined, the validity of any
objective criterion is questionable since it might not correspond
to the problem solver’s subjective goal. However, people are
unlikely to face a single, well-defined goal in real-life problems,
limiting the ecological validity of such systems – despite
the fact that a well-defined goal is a necessary precondition
for assessing problem solving success in a standardized way,
which is necessary in order to compare subjects’ performance.
Moreover, single problem solving trials produce only “single
act criteria” (Fishbein and Ajzen, 1974), criticized as “one-item-
testing” (e.g., Wüstenberg et al., 2012), the reliability of which
is severely limited. Performance scores must be aggregated via
repeated measurements to increase the proportion of reliable

1The correlation between complex real life-oriented systems and reasoning was not
reported, nor was the effect of outliers on relationships other than that between
CPS and g.

variance that can be predicted (e.g., Wittmann and Süß,
1999; Rigas et al., 2002). The MCS has implemented these steps,
resulting in strong reliability estimates (e.g., Greiff et al., 2012;
Sonnleitner et al., 2012).

Another crucial issue with regard to the relation between
intelligence and CPS performance is the operationalization of
intelligence. Numerous prior studies have used a measure of
general intelligence (g) to predict problem solving success. Since g
is a compound of several more specific abilities, g scores comprise
variance in abilities relevant to complex problem solving as
well as variance in irrelevant abilities. According to Wittmann’s
(1988) multivariate reliability theory and the Brunswik symmetry
principle (see also Wittmann and Süß, 1999), this results in
an asymmetric relationship between predictor and criterion,
attenuating their correlation. More specific subconstructs of
intelligence might be more symmetrical predictors because they
exclude irrelevant variance. In our view, controlling complex
systems requires a great deal of reasoning ability (e.g., Süß, 1996;
Wittmann and Süß, 1999; Kröner et al., 2005; Sonnleitner et al.,
2013; Kretzschmar et al., 2016, 2017). Inductive reasoning is
required to detect systematic patterns within the ever-changing
system states and develop viable hypotheses about the system’s
causal structure. Deductive reasoning is necessary to infer
expectations about future developments from knowledge of
causal connections and deduce more specific goals from higher-
order goals. Abilities such as perceptual speed (except in real-time
simulations), memory, and verbal fluency, meanwhile, should
be less relevant for success in complex problem solving. In this
sense, it is an open question in CPS research whether WMC, as a
more basic ability construct (e.g., Süß et al., 2002; Oberauer et al.,
2008), is a more symmetrical predictor of CPS performance than
reasoning (for an overview of previous findings, see Zech et al.,
2017).

In summary, a substantial correlation between intelligence
and CPS performance measured with real life-oriented
microworlds can be expected if (1) sufficient reliability of
the CPS measures is ensured (e.g., aggregation via repeated
measures), and (2) the best symmetrical intelligence construct is
used (e.g., reasoning instead of general intelligence or perceptual
speed).

Knowledge and Complex Problem
Solving
In addition to the debate about intelligence’s contribution to
complex problem solving, many researchers have pointed out
the significance of knowledge for the successful control of
complex systems (e.g., Bainbridge, 1974; Dörner et al., 1983;
Chi et al., 1988; Goode and Beckmann, 2010; Beckmann and
Goode, 2014). Expert knowledge is sometimes claimed to be
the only important predictor of real-life problem solving success
(Ceci and Liker, 1986), while others point out that both
intelligence and knowledge contribute substantially to predicting
job performance (Schmidt, 1992), which certainly includes
complex problem solving.

Scenarios that accurately simulate real-world relationships
provide an opportunity to draw on preexisting knowledge
about the part of reality being simulated. That being said, a
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simulation never is exactly equivalent to what the problem
solver has experienced before. Experts in a domain can make
use of their knowledge to operate a simulation within that
domain, but they are not automatically experts in the simulated
scenario. The application of domain knowledge to the simulation
requires a considerable amount of transfer. Following Cattell’s
investment theory (Cattell, 1987), we assume that intelligence,
and particularly reasoning, plays an important role in mediating
this transfer. Therefore both, intellectual abilities, particularly
reasoning and prior knowledge of the simulated domain, should
be powerful predictors of complex problem solving success,
although the effect of intelligence has been found to be mainly
indirect, mediated through knowledge (Schmidt et al., 1986;
Schmidt, 1992).

The knowledge relevant for successfully controlling a complex
system can be differentiated conceptually on two dimensions.
First, knowledge about the system can be distinguished from
knowledge about appropriate actions. System knowledge is
knowledge about the features and structure of a system, such as
what variables it consists of, how these variables are related, and
what kind of behaviors the system tends to exhibit. Action-related
knowledge is knowledge about what to do in order to pursue a
given goal. In contrast to system knowledge, action knowledge
is always bound to a specific goal. Studies by Vollmeyer et al.
(1996) provided evidence for the distinction between system
knowledge and action knowledge: Participants who acquired
knowledge about a system during an exploration phase with or
without a given goal performed equally well on a subsequent
test trial with the same goal. However, the group which had
not been given a specific goal during the exploration phase
outperformed the group with the specific goal on a test with
a new goal. Presumably, the specific goal group had learned
mainly action knowledge, whereas the other group had acquired
more system knowledge, which was then transferable to new
goals.

A second distinction, independent of the first, exists between
declarative and procedural knowledge. Declarative knowledge
is knowledge that a person can represent symbolically in some
way – verbally, graphically or otherwise. Declarative knowledge
can be expressed as accurate answers to questions. Procedural
knowledge, on the other hand, can be expressed only through
accurate performance. The distinction between declarative and
procedural knowledge is based on the conceptual difference
between “knowing that” and “knowing how” (Ryle, 1949).

While system knowledge and action knowledge differ in
content, declarative and procedural knowledge are different
forms of knowledge. Therefore, the two dimensions can be
conceived of as orthogonal. System knowledge and action
knowledge can both be declarative: A person can talk about
which variables are causally related to which other variables,
but also about what to do in order to keep the system stable.
Similarly, both system knowledge and action knowledge can also
be procedural: Knowing how to stabilize a system without being
able to express it is procedural action knowledge. Being able to
mentally simulate a system or diagnose what variable is causing
a disturbance without being able to give a full verbal account of
the reasons is indicative of procedural system knowledge. Several

studies have found that people do not improve their problem-
solving performance in controlling or repairing complex systems
after receiving instructions in the form of declarative system
knowledge (e.g., Morris and Rouse, 1985; Kluge, 2008b; but
see Goode and Beckmann, 2010), and declarative knowledge
sometimes is not correlated with problem solving performance
(e.g., Berry and Dienes, 1993). Therefore, we must consider the
possibility that procedural knowledge is part of the relevant
knowledge base that guides a person’s actions within complex
dynamic environments.

In summary, prior domain knowledge must be considered
as an additional substantial predictor of CPS performance.
However, differentiating between different types of knowledge
is necessary in order to explain CPS performance. In addition,
different semantic embeddings (i.e., CRS vs. CAS) have different
demands with regard to preexisting knowledge.

The Present Study
The first goal of the two studies presented in this paper
was to test the hypothesized criterion validity of reasoning in
predicting problem solving performance in complex dynamic
tasks. In addition, considering the Brunswik symmetry principle
(Wittmann, 1988), we explored the predictive validity of
additional more specific or more general intelligence constructs.
Our investigation was based on the Berlin Intelligence Structure
Model (BIS), a hierarchical and faceted model of intelligence
(Jäger, 1982, 1984; for a detailed description in English, see
Süß and Beauducel, 2015). The BIS differentiates intellectual
abilities along two facets. The operation facet comprises four
abilities: Reasoning (R) includes inductive, deductive and spatial
reasoning and is equivalent to fluid intelligence (Gf). Creativity
(C) refers to the ability to fluently produce many different
ideas. Memory (M) refers to the ability to recall lists and
configurations of items a few minutes after having learned
them (episodic memory), whereas speed (S) refers to the ability
to perform simple tasks quickly and accurately (perceptual
speed). The second facet is postulated to include three content-
related abilities: verbal (V), numerical (N) and figural-spatial
(F) intelligence. Cross-classifying the four operational and three
content abilities results in 12 lower-order cells. In addition,
general intelligence is conceptualized as an overarching factor
(Figure 1). For summaries of the validity and scope of the BIS,
see the handbook for the BIS Test (Jäger et al., 1997) as well as
Süß and Beauducel (2005, 2015).

In the second study, we included WMC as an additional
predictor. Working memory is considered the most important
cognitive resource for complex information processing, which
includes reasoning (e.g., Kyllonen and Christal, 1990; Süß et al.,
2002; Conway et al., 2003), language comprehension (e.g., King
and Just, 1991), and math performance (e.g., Swanson and Kim,
2007). Consequently, previous research has found a significant
relation between WMC and CPS (e.g., Wittmann and Süß, 1999;
Bühner et al., 2008; Schweizer et al., 2013; Greiff et al., 2016).
However, whether the more basic construct (i.e., WMC) is a
stronger symmetrical predictor of CPS than reasoning from
the perspective of the Brunswik symmetry principle (Wittmann,
1988) is not clear (for an overview, see Zech et al., 2017).
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FIGURE 1 | The Berlin Intelligence Structure Model (BIS), and the number of tasks for each cell applied in Study 1 (in brackets, Study 2). In the BIS, four operation
ability constructs are crossed with three content constructs, yielding twelve cells. On a higher level of aggregation, general intelligence integrates the primary factors
for each facet.

For example, Wittmann and Süß, 1999 demonstrated that WMC
has incremental validity in predicting CPS performance beyond
intelligence. Bühner et al. (2008) could not confirm this result,
but their study relied upon narrow operationalizations.

The second goal of the two studies presented in this
paper was to investigate the relation between knowledge and
complex problem solving performance. We attempted to measure
knowledge about complex systems in several categories. We
focused on declarative knowledge in the form of both system
knowledge and action knowledge because assessing declarative
knowledge is straightforward. We also attempted to measure
procedural knowledge, despite the fact that no evidence has ever
been put forward that responses to complex problem-solving
tests exclusively reflect procedural knowledge and not declarative
knowledge. Based on Cattell’s investment theory (Cattell, 1987),
we assumed that knowledge represents invested intelligence and
examined whether the predictive effect of intelligence on CPS
performance is completely mediated by prior knowledge.

We applied a CRS (i.e., a microworld with a realistic semantic
embedding) in the first study, whereas we used a CAS (i.e., a
microworld with an artificial semantic embedding) in the second
study. Hence, the importance of preexisting knowledge with
regard to CPS performance should differ between the two studies.

STUDY 1

In the first study, we used a complex real life-oriented simulation
to examine the criterion validity of intelligence, particularly
reasoning, and prior knowledge for control performance in
a simulated shirt factory (Tailorshop). As we used a very
comprehensive assessment of intelligence and knowledge, we

were also interested in exploring the predictive validity of
additional, more specific constructs in order to investigate
the influence of the Brunswik symmetry principle (Wittmann,
1988) on the relation between intelligence, knowledge and CPS
performance.

Method
Participants
One hundred and thirty-seven students from 13 high schools in
Berlin took part in the experimental study in 1990 (Süß et al.,
1991). They had all participated in a similar study 1 year before
in which they had taken prior versions of the BIS Test and the
knowledge tests and had explored the Tailorshop system (Süß
et al., 1993a,b). Their mean age was 17.6 years (SD = 0.67),
and 40.9% were female. The participants were fully informed
about the study and the voluntary nature of their participation,
and anonymity was guaranteed. Written informed consent was
obtained from school principals and the state school board.
Subjects who withdrew from the study were required to attend
other school lessons. Both Berlin studies were published in
German only; a full report including the longitudinal results can
be found in Süß (1996). In this paper, we report the results of
the second Berlin study (here labeled Study 1) to make the results
available for international readers and to discuss the two studies
in the light of recent developments in CPS research.

Materials
Problem solving
An extended version of the Tailorshop system (Funke, 1983;
Danner et al., 2011), originally designed by D. Dörner and
first used in a published study by Putz-Osterloh (1981), was

Frontiers in Psychology | www.frontiersin.org 5 May 2018 | Volume 9 | Article 626

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00626 May 4, 2018 Time: 16:14 # 6

Süß and Kretzschmar Complex Problem Solving

applied as a CRS (Süß and Faulhaber, 1990). Additional minor
modifications were made in the system to resolve issues with the
validity of the problem-solving score that had become apparent in
the study conducted 1 year before (Süß et al., 1993a,b). Tailorshop
is a computer simulation of a shirt factory. The system has 27
variables: 10 are exogenous variables that can be manipulated
directly, and 17 are endogenous variables computed by the
simulation. Figure 2 provides a screenshot of the system, and
Figure 3 an overview of the variables and their interconnections.

The system was run on a personal computer. All variables
were presented in a single menu, and the values of exogenous
variables could be selected via a pull-down menu. After
planning all decisions, the operator ran the simulation for
one virtual month. A complete trial consisted of twelve
simulation cycles corresponding to 1 year of management. To
obtain two independent indicators of problem solving success,
participants worked on two versions of Tailorshop with different
starting values corresponding to different shirt factories and
different economic conditions. Problem solving performance was
measured by participants’ total assets after 12 simulated months.
Since the distribution of raw scores deviated considerably from a
normal distribution, we transformed them into rank scores and
aggregated participants’ ranks from the two simulation runs into
one total score.

Intelligence test
To assess intellectual abilities, we used a prior version of the
BIS Test (Jäger et al., 1997; for a full English description see
Süß and Beauducel, 2015; for prior test versions see Süß, 1996).
This test consists of three to five different tasks for each of the
12 cells in the matrix structure of the BIS. Each task assigned
to a cell in the model is used to measure one operation ability
as well as one content ability. The four operation abilities
are thus measured with scales consisting of 9–15 tasks each
and balanced over the three content categories. Analogously,
content abilities are measured with scales consisting of 15
tasks across the four different operation abilities. Thus, the
same variables are used in different ways for different scales.
The scales for one facet are built by aggregating variables
that are distributed in a balanced way over the other facet.
This suppresses unwanted variance, i.e., the variance associated
with factors from the other facet (Wittmann, 1988). However,
the scores for operation abilities and content abilities are not
statistically independent. An indicator of general intelligence
is built by aggregating either the operation scores or content
scores.

Knowledge tests
Preexisting general economics knowledge was assessed with
an age-normed economics test (Deutsche Gesellschaft für
Personalwesen [DGP], 1986, with a few questions added from
the economics test from Krumm and Seidel, 1970)2. The
questionnaire consisted of 25 multiple-choice items on the
meaning of technical terms from the domain of economics.

2Participants only took the economics test in the first Berlin study, i.e., these data
were assessed 1 year before all others reported here.

A new test was developed to assess system-specific knowledge
about Tailorshop (Kersting and Süß, 1995). This test had two
parts, one for system knowledge and one for action knowledge.

System knowledge refers to knowledge about features of
individual variables (e.g., development over time, degree of
connectedness with other variables) and about relationships
between variables in a system. The system knowledge part of
the test was developed in accordance with test construction
principles for optimizing content validity (Klauer, 1984; Haynes
et al., 1995). It consisted of three scales:

(1) Multiple choice questions about the connections between
two variables. One out of six statements in the following
form had to be selected as correct:

(a) An increase in variable X increases variable Y.
(b) An increase in variable X decreases variable Y.
(c) An increase in variable Y increases variable X.
(d) An increase in variable Y decreases variable X.
(e) Variable X and variable Y interact, that is, they both

depend on one another.
(f) (a) through (e) are false.

There were 20 questions of this type.

(2) Questions about hypotheses concerning single variables:
Participants had to evaluate statements about the regular
behavior of individual system variables, e.g., “The price
of shirts rises and falls by chance” (which is false) or
“Production depends – among other factors – on my
workers’ motivation, which in turn depends on the level
of wages” (which is true). The scale consisted of 25
independent items.

(3) Arrow test for connections among multiple variables: Sets
of four variables were represented by labeled boxes in a
diamond-shaped arrangement. Participants had to draw
arrows connecting the variables that had a direct causal
connection in the system, and designate the direction of
correlation with a plus or minus sign (as in Figure 3).
Each of the six possible pairings in a set was counted as
an independent item that was marked as either correct or
incorrect, yielding a total of 42 items.

Action knowledge refers to knowledge about appropriate
actions in a certain situation, given a certain goal. It was assessed
in this study via two subtests. The test of declarative action
knowledge presented “rules of thumb” for successfully managing
the Tailorshop simulation, which had to be evaluated as correct or
incorrect. Half of the 12 rules were correct, i.e., they were helpful
in obtaining high total assets within 12 months, while the other
half were incorrect.

In the second subtest, participants were given a system
state in the form of a screen display. They were given the
goal of maximizing or minimizing a certain system variable,
for example, minimizing the number of shirts in the store.
They had to select which one out of six alternative decision
patterns would be best-suited to reaching this goal in the next
simulation cycle. This subtest consisted of six items with different
system states, goals, and decision options. In contrast to the
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FIGURE 2 | Screenshot of the exploration phase of the Tailorshop system as applied in Study 1.

declarative questions, this task did not require participants to
explicit declare rules for action. Instead, the rules governing
their decision-making remained implicit, providing a good
opportunity to capture task relevant procedural knowledge.
Thus, we will refer to this subscale as procedural action
knowledge.

Sum scores were built for each subtest and a total score was
calculated by aggregating the subtest scores, weighted equally.

Each type of question was introduced by the experimenter
with one or two examples. There was no time limit, but
participants were instructed not to spend too much time on any
single question.

Procedure
The students took tests on 2 days for 5–6 h each. On the first
day, they worked on the BIS Test and the general economics
test as well as some further questionnaires. Testing was done
in groups of 20–30 in school classrooms. On the second day,
participants were first introduced to the Tailorshop system
via detailed instructions, including two standardized practice
cycles guided by the experimenter. Afterward, the students
in the sample were randomly divided into three groups, and
two groups were given additional opportunities to acquire
system-specific knowledge.3 Next, system-specific knowledge
was assessed (time T1) by instructing participants to build
hypotheses about Tailorshop on basis of their (superficial)

3The first group could explore the system for 30 min on their own (exploration
group), while the second group could study the system’s causal model for
30 min following standardized instructions (instructions group). The third group
had no opportunity to acquire additional system-specific knowledge (control
group). In this paper, we use the results for the full sample without considering
the experimental variations. Experimental results and group-specific results are
reported in Süß (1996).

experience with the system. Participants then tried to manage
the Tailorshop twice for 12 simulated months. Finally, system-
specific knowledge was tested again (time T2). The knowledge
test took about 80 min the first time and about 60 min the
second time. Each problem solving trial lasted about 50 min. The
participants took these tests in smaller groups at the university’s
computer lab.

Results
We will first present the results of separate analyses of the
relationship between problem solving performance and different
groups of predictors. Then, we integrate all the variables into a
path model. Ten participants had missing data for the economics
knowledge test. Thus, we applied the full information maximum
likelihood (FIML) procedure to account for the missing data.
See Table 1 for descriptive statistics and the full correlation
matrix.

Complex Problem Solving and Intelligence
The parallel-test reliability of problem solving performance was
r = 0.67 (p < 0.01). This indicates that the criterion measures had
satisfactory reliability and justifies their aggregation into a single
score. Two multivariate regressions were computed with the
aggregated performance criterion, first with the four operation
scales and then with the three content scales of the BIS as
predictors. The results are summarized in Table 2 (upper half,
correlations in brackets).

Among the operation scales, reasoning (r = 0.34, p < 0.01)
was as expected significantly correlated with problem-solving
success, furthermore, creativity (r = 0.22, p = 0.01) as well. In
the regression model, however, only reasoning had a significant
beta weight (β = 0.43, p < 0.01). Among the content scales, only
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FIGURE 3 | The causal structure of the Tailorshop system.
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TABLE 1 | Study 1: Means, standard deviations, and correlations.

Variable M SD 1 2 3 4 5 6 7 8 9 10

(1) BIS: g −0.03 6.76

(2) BIS: Speed −0.02 2.30 0.77∗∗

(3) BIS: Memory −0.02 2.36 0.66∗∗ 0.31∗∗

(4) BIS: Creativity 0.00 2.22 0.66∗∗ 0.38∗∗ 0.21∗

(5) BIS: Reasoning 0.00 2.51 0.79∗∗ 0.53∗∗ 0.35∗∗ 0.35∗∗

(6) BIS: Verbal 0.00 2.60 0.78∗∗ 0.57∗∗ 0.52∗∗ 0.57∗∗ 0.59∗∗

(7) BIS: Figural −0.03 2.55 0.83∗∗ 0.62∗∗ 0.52∗∗ 0.61∗∗ 0.64∗∗ 0.52∗∗

(8) BIS: Numerical −0.00 3.12 0.84∗∗ 0.69∗∗ 0.56∗∗ 0.46∗∗ 0.69∗∗ 0.44∗∗ 0.55∗∗

(9) Know: General 0.02 1.77 0.10 −0.12 −0.01 0.20∗ 0.21∗ 0.11 0.14 0.01

(10) Know: Dec. Sys. t1 1.81 0.44 0.24∗∗ 0.08 0.06 0.07 0.46∗∗ 0.18∗ 0.18∗ 0.23∗∗ 0.25∗∗

(11) Know: Dec. Act. t1 5.69 1.73 −0.00 0.04 −0.18∗ 0.07 0.06 −0.08 0.01 0.05 0.21∗ 0.11

(12) Know: Pro. Act. t1 11.15 3.47 0.10 0.07 0.08 0.00 0.13 0.04 0.04 0.16 0.12 0.15

(13) Know: Spec. Tot. t1 72.75 13.07 0.25∗∗ 0.10 0.04 0.10 0.46∗∗ 0.18∗ 0.18∗ 0.24∗∗ 0.30∗∗ 0.93∗∗

(14) Know: Dec. Sys. t2 1.87 0.40 0.30∗∗ 0.13 0.13 0.06 0.53∗∗ 0.21∗ 0.21∗ 0.31∗∗ 0.25∗∗ 0.83∗∗

(15) Know: Dec. Act. t2 6.94 1.82 0.16 0.15 −0.01 0.03 0.29∗∗ 0.06 0.15 0.18∗ 0.15 0.27∗∗

(16) Know: Pro. Act. t2 11.83 3.41 0.07 0.06 0.08 −0.07 0.13 −0.05 0.08 0.13 0.14 0.17∗

(17) Know: Spec. Tot. t2 76.84 12.37 0.32∗∗ 0.18∗ 0.12 0.05 0.55∗∗ 0.19∗ 0.24∗∗ 0.35∗∗ 0.28∗∗ 0.80∗∗

(18) CPS 138.00 72.58 0.22∗ 0.08 −0.03 0.22∗ 0.34∗∗ 0.11 0.16 0.25∗∗ 0.36∗∗ 0.43∗∗

(19) Gender 1.41 0.49 −0.04 0.04 0.08 −0.05 −0.17 0.15 −0.04 −0.17 −0.42∗∗
−0.32∗∗

(20) Age 17.55 0.67 −0.21∗
−0.20∗

−0.12 −0.08 −0.19∗
−0.18∗

−0.16 −0.17 0.09 −0.25∗∗

TABLE 1 | Continued

Variable M SD 11 12 13 14 15 16 17 18 19

(11) Know: Dec. Act. t1 5.69 1.73

(12) Know: Pro. Act. t1 11.15 3.47 0.16

(13) Know: Spec. Tot. t1 72.75 13.07 0.28∗∗ 0.41∗∗

(14) Know: Dec. Sys. t2 1.87 0.40 0.07 0.07 0.75∗∗

(15) Know: Dec. Act. t2 6.94 1.82 0.49∗∗ 0.18∗ 0.34∗∗ 0.24∗∗

(16) Know: Pro. Act. t2 11.83 3.41 0.17∗ 0.54∗∗ 0.30∗∗ 0.17∗ 0.14

(17) Know: Spec. Tot. t2 76.84 12.37 0.18∗ 0.22∗ 0.79∗∗ 0.94∗∗ 0.38∗∗ 0.41∗∗

(18) CPS 138.00 72.58 0.36∗∗ 0.24∗∗ 0.51∗∗ 0.37∗∗ 0.28∗∗ 0.29∗∗ 0.46∗∗

(19) Gender 1.41 0.49 −0.15 −0.06 −0.33∗∗
−0.38∗∗

−0.14 −0.11 −0.38∗∗
−0.35∗∗

(20) Age 17.55 0.67 −0.06 0.05 −0.21∗
−0.19∗

−0.22∗∗
−0.02 −0.19∗

−0.24∗∗
−0.02

∗ Indicates p < 0.05; ∗∗ indicates p < 0.01. M and SD are used to represent mean and standard deviation, respectively. BIS, Berlin Intelligence Structure Test; Know:
General, general knowledge (economics); Know: Dec. Sys, declarative system knowledge; Know: Dec. Act., declarative action knowledge; Know: Pro. Act., procedural
action knowledge; Know: Spec. Tot., total problem-specific knowledge; CPS, complex problem solving (Tailorshop); t1, measurement at the Time 1; t2, measurement at
the Time 2.

TABLE 2 | Multiple regression of problem solving performance on the operation, content, and total scales of the BIS.

Speed Mem. Creat. Reas. R2
adj Verb. Fig. Num. R2

adj g R2

Study 1: Tailorshop −0.16
(0.08)

−0.16
(−0.03)

0.16
(0.22∗)

0.43∗

(0.34∗)
0.15∗ 0.04

(0.16)
−0.01

(0.11)
0.22∗

(0.25∗)
0.04∗ 0.22

(0.22)
0.05

Study 2: FSYS 0.02
(0.19∗)

– – 0.33∗

(0.34∗)
0.10∗

−0.18
(0.07)

0.38∗

(0.37∗)
0.17
(0.27∗)

0.16∗ 0.33∗

(0.33∗)
0.10∗

Beta weights in the first line; bivariate Pearson correlations in brackets in the second line. Speed, perceptual speed; Mem., memory; Creat., creativity; Reas., reasoning;
Verb, verbal intelligence; Fig., figural intelligence; Num, numerical intelligence. Values with ∗ are significant at the 5% level.

numerical intelligence had a significant beta weight (β = 0.22,
p = 0.03). The proportion of variance accounted for by the
operation scales was much higher than that accounted for by the
content scales, despite the fact that the two groups of predictors
consisted of the same items that had merely been aggregated in
different ways. Building an overall aggregate for all BIS scales

(BIS-g) only accounted for five percent of the criterion variance
(r = 0.22, p = 0.01)4, compared to 15 percent with the four

4The correlation with CPS was slightly higher (r = 0.27) for a conventional g-score
based on the factor scores of the first unrotated factor (Jensen and Wang, 1994),
i.e., 7.3% of CPS variance was explained.
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operation scales. In line with the Brunswik symmetry principle
(Wittmann, 1988; Wittmann and Süß, 1999), this comparison
shows the benefit of differentiating intellectual abilities into
multiple components using a multi-faceted model. Taking the
cell level of the BIS5 into account, numerical reasoning was the
best and thus likely the most symmetrical predictor of Tailorshop
performance (r = 0.36, p < 0.01).6 While the correlation
between the numerical reasoning cell and the criterion was
nearly the same as the correlation for reasoning, numerical
reasoning was the better predictor given the substantially lower
reliability of the cell score for numerical reasoning (Cronbach’s
α = 0.77) compared to reasoning (1-year stability, r = 0.90,
p < 0.01). Corrected for unreliability, the true correlation
was r = 0.43. In summary, aggregating repeated measures
increases the reliability and thus also the validity of the CPS
performance score. However, the correlations are lower than
for minimally complex tasks even on the most symmetrical
level (r = 0.58), as reported in Stadler et al.’s (2015) meta-
analysis.

Complex Problem Solving and Knowledge
Four scales representing prior knowledge (time T1) were used as
predictors of problem solving success in the regression analysis.
These were the general economics test and the three categories
of knowledge represented in the system-specific knowledge test:
declarative system knowledge (measured with three subtests),
declarative action knowledge (measured with the rules of thumb),
and procedural action knowledge (measured using the system-
states task). General economics knowledge (β = 0.21, p < 0.01;
rzero−order = 0.36, p < 0.01), declarative system knowledge
(β = 0.33, p < 0.01; rzero−order = 0.43, p < 0.01), and declarative
action knowledge (β = 0.26, p < 0.01; rzero−order = 0.36, p < 0.01)
were significantly associated with problem solving performance,
whereas procedural action knowledge was not (β = 0.13, p = 0.07;
rzero−order = 0.24, p < 0.01). The latter might be in part due to
the low reliability of the test, which consisted of only six items.
Together, general and system-specific knowledge accounted for
34 percent of the variance in CPS performance.

A significant increase in domain-specific knowledge from pre-
to post-test was observed for every subscale. The strongest effect
was for declarative action knowledge (t = 8.16, p < 0.01, d = 0.70),
with smaller effects observed for declarative system knowledge
(t = 2.86, p < 0.01, d = 0.25) and procedural action knowledge
(t = 2.33, p < 0.05, d = 0.20). Pre-post correlations were 0.83
(p < 0.01) for declarative system knowledge, 0.49 (p < 0.01) for
declarative action knowledge, and 0.54 (p < 0.01) for procedural
action knowledge.

An Integrative Path Model
In a second step, we tested our theoretical model via path
analysis. Reasoning and general economics knowledge were
assumed to be correlated exogenous variables influencing the
generation of hypotheses and the acquisition of system-specific

5According to the BIS, numerical reasoning is not a more specific ability but a
performance based on reasoning and numerical intelligence (Jäger, 1982).
6The correlation of CPS performance with figural reasoning was 0.26, and 0.24 with
verbal reasoning.

knowledge during instruction and exploration, and thus also
the amount of system-specific (prior) knowledge measured at
time T1. We also assumed direct paths from reasoning, general
economics knowledge and system-specific prior knowledge (T1)
to control performance, and tested whether reasoning, domain-
specific prior knowledge (T1) and problem-solving performance
influence system-specific knowledge measured after controlling
the system (T2). The resulting model is presented in Figure 4.

The path model reflects and extends the results above. System-
specific prior knowledge (T1) was significantly influenced by the
two correlated exogenous variables, indicating the importance
of general domain knowledge, and especially of reasoning, for
generating and testing hypotheses in the Tailorshop simulation.
System-specific prior knowledge (T1) was influenced by learning
processes during the instructions and, for a part of the sample,
during system exploration. A total of 25.4% of the variance was
explained by the two exogenous variables. General economics
knowledge (β = 0.22, p < 0.01) and system-specific prior
knowledge (T1; β = 0.40, p < 0.01) also had direct effects on
control performance. Reasoning ability, meanwhile, had no direct
effect (β = 0.12, p = 0.12), but a strong indirect effect on problem
solving performance as mediated by prior knowledge. The total
amount of explained variance in problem solving performance
was 32%. Finally, system-specific knowledge after controlling
the system (T2) primarily depended on system-specific prior
knowledge (T1; β = 0.65, p < 0.01) as well as reasoning
(β = 0.25, p < 0.01). Remarkably, while control performance and
acquired system knowledge (T2) were substantially correlated
(r = 0.46, p < 0.01), the direct path from control performance
to acquired system-specific knowledge (T2) was not significant
(β = 0.05, p = 0.35). Overall, 68.6% of the variance was
explained.

Discussion
Both intelligence and prior knowledge were shown to be
important predictors of performance controlling a complex
system. Some qualifications, however, must be made to this
conclusion. First, it is not general intelligence that has predictive
power for problem solving success in Tailorshop; instead and as
expected, it is the primary factor reasoning, and more specifically
numerical reasoning. This underscores the importance of finding
the right level of symmetry between predictor and criterion
in order to estimate their true relationship (Wittmann, 1988).
Second, the correlation between reasoning and problem solving
performance was mediated through prior knowledge; reasoning
had no direct influence on problem solving performance.
This finding is in line with the results of the meta-analysis
by Schmidt et al. (1986; Schmidt, 1992), which showed that
the relationship between intelligence and job performance is
nearly completely mediated by task-related knowledge. This may
indicate that persons with higher reasoning ability have used their
ability to accumulate more domain knowledge in the past. The
strong relationship between reasoning and general economics
knowledge supports this account. An alternative explanation is
that high reasoning ability helps people transfer their general
domain knowledge to the specific situation, i.e., by deriving
good hypotheses about the unknown system from their general
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FIGURE 4 | Study 1: Path model for problem solving performance in Tailorshop with knowledge and reasoning as predictors. χ2(1) = 0.347, p = 0.556, Comparative
Fit Index (CFI) = 1.000. Values with ∗ are significant at the 5% level.

theoretical knowledge about the corresponding domain. System-
specific knowledge measured after controlling the system (T2)
depends primarily on prior knowledge and reasoning. Therefore,
controlling a complex system can be described as a knowledge
acquisition process, providing evidence for Cattel’s investment
theory (Cattell, 1987). Assuming that the system has ecologically
validity, this finding also indicates that system-specific knowledge
measured after controlling a complex system is a powerful
predictor of external criteria.

The study was limited to the computer-simulated system
Tailorshop, a microworld mainly developed by psychologists.
The scenario is realistic in that it captures many psychologically
relevant features of complex real-life problems, but its ecological
validity as a model for a real business environment is limited. For
example, real company executives spend more than 80% of their
time communicating orally (e.g., Mintzberg, 1973; Kotter, 1982),
a demand which was not implemented in the simulation (see Süß,
1996).

A final but important qualification to the study’s results
concerns reasoning in the context of knowledge. System-specific
knowledge was consistently the best single predictor of problem
solving success in Tailorshop, while general domain knowledge
in economics significantly predicted additional variance. System-
specific knowledge was made up of two independent predictors,
declarative system knowledge and declarative action knowledge.
Our study found no evidence of the dissociation between
verbalized knowledge and control performance repeatedly
reported by Broadbent and colleagues (Broadbent et al., 1986;
Berry and Broadbent, 1988; see Berry and Dienes, 1993).
Tailorshop is a more complex and realistic system than those used
by Broadbent and colleagues. Both factors might have strongly
motivated people to make use of their preexisting knowledge, i.e.,
to formulate explicit hypotheses for controlling the system rather
than following a trial-and-error approach that would result in the
acquisition of implicit knowledge.

STUDY 2

The aim of the second study was to replicate and extend the
findings presented so far. Study 2 differed from Study 1 in two
important ways. First, we used the artificial world simulation
FSYS (Wagener, 2001), which simulated a forestry company.
Although FSYS has a rich semantic embedding and all the
characteristics of complex problems, FSYS was developed with
the aim of reducing the impact of previous knowledge of the
simulated domain (i.e., general forestry knowledge) on problem
solving performance. Therefore, FSYS can be classified as a CAS.
Second, we included WMC as a further predictor. WMC is a
more basic construct than reasoning and whether it is a better
(i.e., more symmetrical) predictor of CPS performance than
reasoning is an open question (see Zech et al., 2017). Thus,
we were interested in whether one of the two constructs had
incremental validity in predicting CPS performance beyond the
other construct.

Method
Participants
One hundred fifty-nine students from the University of
Magdeburg participated in the second study, which was originally
conducted to evaluate a complex problem solving training (for
details, see Kretzschmar and Süß, 2015), in 2010/2011.7 In
the present analyses, we used the full sample but excluded
all non-native German speakers (n = 7) due to the high
language requirements of the intelligence test. The mean age
was 23.99 years (SD = 4.43), and 50% were female. Participants
received course credit for their participation or took part in a
book raffle. Participants were informed about the content of the

7A subsample was used in Kretzschmar and Süß (2015) to evaluate a CPS training.
However, none of the relations between CPS and the variables used in the present
study have been previously examined (for details, see the data transparency table at
https://osf.io/n2jvy). Therefore, all analyses and findings presented here are novel.
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study, the voluntary nature of participation and their ability to
withdraw at any point, and that anonymity was guaranteed. All
subjects provided informed consent.

Materials
Problem solving
We used version 2.0 of the microworld FSYS (Wagener, 2001).
FSYS was developed on the basis of Dörner et al.’s (1983)
theoretical framework for complex problem solving (Dörner,
1986). It is a microworld with 85 variables connected via
linear, exponential, or logistic relations. The goal was to
manage five independent forests in order to increase the
company’s value (i.e., planting and felling trees, fertilizing,
pest control, etc.). Participants were first given an introduction
to the program and had an opportunity to explore the
system. They then managed the forest company for 50
simulated months. We used the company’s total capital (i.e.,
an aggregated score of the five independent forests) at the end
of the simulation as the performance indicator (SKAPKOR;
see Wagener, 2001). Although FSYS simulates a forestry
enterprise, the impact of prior knowledge was reduced by
using abstract names for tree species, pests, fertilizer etc., and
providing essential information about the artificial foresting
world via an integrated information system. Previous studies
have shown that FSYS has incremental predictive validity beyond
general intelligence with regard to occupational (Wagener
and Wittmann, 2002) and educational (Stadler et al., 2016)
performance indicators. Figure 5 provides a screenshot of
FSYS.

Intelligence
A short version of the BIS Test was used to assess intellectual
abilities (Jäger et al., 1997). We specifically focused on
reasoning and perceptual speed. Nine tasks were applied for
each operation, balanced over the three content areas (i.e.,
figural, verbal, numerical; see Figure 1). These 18 tasks were
administered according to the test manual. As in Study 1,
the tasks were aggregated in order to build scales for each
operation (i.e., reasoning, perceptual speed) or content (i.e.,
figural intelligence, verbal intelligence, numerical intelligence).
An indicator for general intelligence was built by aggregating
the 18 tasks in a balanced way, as described in the test
handbook. Please note that the reliability of the two operative
scales was lower than in Study 1; the construct validity
of the three content scales and the measure of general
intelligence were also reduced because no memory or creativity
tasks were used. This limits the interpretability of the BIS
content scales and the comparability of the results of the two
studies.

Working memory
Working memory capacity was assessed with three tasks from
the computerized test battery by Oberauer et al. (2003).
The numerical memory updating (adaptive) and reading span
(non-adaptive) tasks measured the simultaneous storage and
processing functions of working memory, whereas the dot
span task (also named spatial coordination; adaptive) primarily
measured the coordination function. Moreover, each content

category (i.e., figural, verbal, numerical) was represented by one
task. A global score for WMC was calculated by aggregating the
three equally weighted total task scores.

Knowledge
A questionnaire to assess general forestry knowledge as a measure
of preexisting domain knowledge was developed for the purpose
of this study8. It covered forestry knowledge in the subdomains of
tree species, soils, nutrients, damage to a forest, and silviculture.
An example question was: “Which tree is not a conifer?” The
22 multiple-choice items were scored dichotomously. Four items
were excluded due to poor psychometric properties (i.e., a low
item-total correlation). The remaining 18 items were aggregated
to form a global sum score.

To assess system-specific knowledge about FSYS, we used
Wagener’s (2001) knowledge test about the microworld. The 11
multiple-choice items addressed system and action knowledge
across all relevant areas of FSYS. For example: “A forest is infested
by vermin XY. Which procedure would you apply?” In order to
limit the number of questions, we did not differentiate between
different types of knowledge. Therefore, we used a sum score as a
global indicator of system-specific knowledge.

Procedure
Participants took part in two sessions each lasting about
2.5 h. All testing was done in groups of up to 20 persons
at the university computer lab. The first session comprised
tests of intelligence and WMC. In the second session,
participants completed tests of general forestry knowledge,
complex problem solving, and system-specific knowledge. In
contrast to Study 1, system-specific knowledge was assessed
only once, after participants had worked with the CPS scenario
(similar to Wagener, 2001). As the study was originally
designed as an experimental training study (see Kretzschmar
and Süß, 2015), the procedure differed slightly between the
two experimental groups. About half of the participants
completed the second session the day after the first session.
The other half participated in a CPS training in between and
completed the second session about 1 week after the first
session.

Results
We will first present results for individual groups of predictors of
CPS performance before integrating the results into a combined
path model. Due to the original study design (i.e., exclusion
criteria for the training, dropout from the first session to the
second), up to 24% of the data for the knowledge tests and
the CPS scenario were missing. We used the full information
maximum likelihood (FIML) procedure to account for missing
data. The smallest sample size in the analyses of individual groups
of predictors was 116. The data are publicly available via the Open
Science Framework9. See Table 3 for descriptive statistics and the
full correlation matrix.

8We would like to thank Clemens Leutner for professional advice in developing
the questionnaire.
9https://osf.io/n2jvy
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FIGURE 5 | Screenshot of the exploration phase of FSYS system as applied in Study 2.

TABLE 3 | Study 2: Means, standard deviations, and correlations.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

(1) BIS: g 0.04 0.50

(2) BIS: Speed 0.04 0.60 0.82∗∗

(3) BIS: Reasoning 0.04 0.57 0.88∗∗ 0.47∗∗

(4) BIS: Verbal 0.08 0.60 0.71∗∗ 0.69∗∗ 0.60∗∗

(5) BIS: Figural 0.02 0.62 0.84∗∗ 0.69∗∗ 0.71∗∗ 0.47∗∗

(6) BIS: Numerical 0.01 0.69 0.78∗∗ 0.67∗∗ 0.68∗∗ 0.35∗∗ 0.46∗∗

(7) WMC 0.12 2.10 0.55∗∗ 0.41∗∗ 0.52∗∗ 0.33∗∗ 0.45∗∗ 0.48∗∗

(8) Know: General 8.35 2.74 0.08 0.00 0.13 0.04 0.03 0.09 0.02

(9) Know: Specific 5.32 1.94 0.36∗∗ 0.17 0.41∗∗ 0.20∗ 0.35∗∗ 0.23∗ 0.22∗ 0.19∗

(10) CPS 57.59 22.51 0.33∗∗ 0.19∗ 0.34∗∗ 0.07 0.37∗∗ 0.27∗∗ 0.32∗∗ 0.16 0.51∗∗

(11) Age 23.99 4.43 −0.34∗∗
−0.21∗∗

−0.34∗∗
−0.23∗∗

−0.36∗∗
−0.17∗

−0.31∗∗ 0.24∗
−0.17 −0.21∗

(12) Gender 0.50 0.50 −0.17∗
−0.05 −0.20∗ 0.13 −0.09 −0.35∗∗

−0.06 −0.18 −0.20∗
−0.10 −0.08

∗ Indicates p < 0.05; ∗∗ indicates p < 0.01. M and SD are used to represent mean and standard deviation, respectively. BIS, Berlin Intelligence Structure Test; WMC,
working memory capacity; Know: General, general forestry knowledge; Know: Specific, system-specific knowledge; CPS, complex problem solving performance (FSYS).

Complex Problem Solving, Intelligence, and Working
Memory
The results of two multivariate regressions of FSYS performance
scores on the BIS operative and content scales, respectively, are
summarized in Table 2 (lower half, correlations in brackets).

The results for operation abilities are similar to those from
the first study, with reasoning the only significant predictor
(β = 0.33, p < 0.01). However, figural intelligence was
the only statistically significant predictor among the content
scales (β = 0.38, p < 0.01). This seems plausible given that
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FSYS displays important information graphically rather than
numerically (e.g., diagrams showing the forestry company’s
development). However, a large amount of information is
also presented numerically, meaning that numerical reasoning
should exert an influence as well. Taking the cell level of
the BIS into consideration: Numerical reasoning (Cronbach’s
α = 0.66) became similarly strongly associated with FSYS
control performance (r = 0.37, p < 0.01; corrected for
unreliability r = 0.46) as figural reasoning (Cronbach’s α = 0.72;
r = 0.36, p < 0.01; corrected for unreliability r = 0.42). Verbal
reasoning (Cronbach’s α = 0.51) remained unassociated with
FSYS performance (r = 0.02, p = 0.82). In contrast to Study 1,
the content scales accounted for a slightly larger share of the
variance in FSYS (16%) than the operation scales (10%). General
intelligence (BIS-g) had a.33 (p < 0.01) correlation with problem
solving performance.

Next, we compared the impact of reasoning and WMC as
predictors of success in FSYS. Both predictors exhibited an
almost equal and statistically significant zero-order correlation
(rBIS−R.FSYS = 0.34, p < 0.01; rWMC.FSYS = 0.32, p < 0.01).
In hierarchical regressions, each explained a similar but non-
significant amount of incremental variance over and above the
other predictor (1R2

BIS.K = 0.02; 1R2
WMC = 0.02). The total

explained variance was 12.2% (adjusted). In summary, working
memory did not increase the statistical significance of the
multiple correlation when entered as a second predictor.

Complex Problem Solving and Knowledge
General forestry knowledge was not significantly correlated with
FSYS performance (r = 0.16, p = 0.09). Thus, the (non-)impact
of prior domain knowledge in FSYS was similar as in previous
studies (r = 0.13; Wagener, 2001), emphasizing how the impact
of prior knowledge depends on the specific type of microworld
(i.e., CRS in Study 1 vs. CAS in Study 2). The correlation between
system-specific knowledge (measured after working on FSYS)
and FSYS performance was r = 0.51 (p < 0.01).

An Integrative Path Model
In line with our assumptions about the relations among the
predictor and criterion variables and building upon the results
of the first study, we constructed a path model to integrate
our findings. Perceptual speed from the BIS Test was excluded
from the analyses because it was not significantly associated with
any endogenous variable when controlling for reasoning. Prior
general forestry knowledge was also omitted from the path model
for the same reason.

In the first model (Figure 6, Model A), working memory
had a direct influence on reasoning but not on FSYS control
performance and system-specific knowledge. In this model
[χ2(2) = 4.538, p = 0.10, CFI = 0.977, SRMR = 0.038], control
performance (β = 0.34, p < 0.01) and acquired system-specific
knowledge about the microworld FSYS (β = 0.26, p < 0.01)
were significantly influenced by reasoning. The total amount of
explained variance for control performance and system-specific
knowledge were 11% and 32%, respectively.

In a second (fully saturated) model (Figure 6, Model B: dashed
lines and coefficients in brackets), direct paths from working

memory to FSYS control performance and system-specific
knowledge were added. In this model, working memory had a
small but non-significant direct effect on control performance
(β = 0.20, p = 0.09), i.e., the effect of working memory is primarily
based on its shared variance with reasoning. Furthermore, WMC
functioned as a suppressor when it came to predicting system-
specific knowledge. In other words, despite the positive zero
order correlation between the two variables (see above), the direct
path from WMC to system-specific knowledge was negative
(β = −0.13, p = 0.19), while the impact of reasoning on system-
specific knowledge slightly increased (β = 0.33, p < 0.01). On the
other hand, the path from working memory to system-specific
knowledge was statistically non-significant, and the explained
variance in system-specific knowledge did not significantly
increase [1R2 = 0.012, F(1,148) = 2.663, p = 0.46].

Discussion
The general findings of Study 1 with regard to the impact of
intelligence on CPS performance could be replicated in Study 2.
However, as Study 2 was conducted with a different microworld
with different cognitive demands (e.g., less relevance of prior
knowledge), the results differed somewhat compared to those of
Study 1.

With regard to intelligence, reasoning was again the strongest
and sole predictor of CPS performance. Because general
intelligence (g) was operationalized substantially more narrowly
than in Study 1, the results for reasoning and g were
comparable. These findings highlight the effect of the specific
operationalization of intelligence selected. If intelligence is
broadly operationalized, as proposed in the BIS (see Study 1),
the general intelligence factor is not equivalent to reasoning
(aka fluid intelligence; see also Carroll, 1993; McGrew, 2005;
Horn, 2008) and different results for g and for reasoning in
predicting CPS performance can be expected (see e.g., Süß,
1996). With regard to the content facet, FSYS shared the most
variance with figural intelligence. However, the cell level of the
BIS provided a more fine-grained picture: figural reasoning was
just as highly correlated with FSYS performance as numerical
reasoning. Although Study 1 and Study 2 must be compared
with caution (i.e., due to different operationalizations of the
BIS scales, see Figure 1, and limited BIS reliability on the
cell level), it is clear that different CPS tests demand different
cognitive abilities. At the same time, these findings highlight
the importance of the Brunswik symmetry principle (Wittmann,
1988; Wittmann and Süß, 1999). A mismatch between predictor
and criterion (e.g., figural reasoning and Tailorshop performance
in Study 1; or numerical intelligence and FSYS performance
in Study 2) substantially reduces the observed correlation (for
another empirical demonstration in the context of CPS, see
Kretzschmar et al., 2017). Ensuring that the operationalizations of
the constructs are correctly matched provides an unbiased picture
of the association across studies (Zech et al., 2017).

Working memory capacity was strongly related to reasoning
and largely accounted for the same portion of variance in
problem solving success as reasoning; it did not explain
substantial variance over and above reasoning. These results
complement the mixed pattern of previous findings, in which
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FIGURE 6 | Study 2: Path Model A for problem solving performance and system-specific knowledge in FSYS, predicted by reasoning and working memory capacity
(WMC). Fit for model A (without dashed lines): χ2(2) = 4.538, p = 0.10, Comparative Fit Index (CFI) = 0.977. Path model B (saturated) with dashed lines and values in
brackets. Values with ∗ are significant at the 5% level.

working memory explained CPS variance above and beyond
intelligence (Wittmann and Süß, 1999), was the only predictor of
CPS variance when simultaneously considering figural reasoning
(Bühner et al., 2008), but did not explain CPS variance above
and beyond reasoning (Greiff et al., 2016). In our view, there is
little unique criterion variance to explain because the predictors
are highly correlated. Even small differences in operationalization
or random fluctuations can make one or the other predictor
dominate (for a different view, see Zech et al., 2017).

Preexisting knowledge (i.e., general forestry knowledge) did
not contribute to problem solving success. This finding highlights
the importance of the CPS measurement approach selected.
Whereas Tailorshop was developed as a complex real life-
oriented simulation in which prior domain knowledge plays a
substantial role, FSYS was developed with the aim of reducing
the influence of prior knowledge (Wagener, 2001). Therefore,
in addition to the distinction between microworlds and MCS,
the differential impact of prior knowledge in terms of semantic
embedding has to be considered when examining the validity
of CPS (e.g., the effects might differ for CRS vs. CAS, as in
the present study). It should be noted that in Stadler et al.’s
(2015) meta-analysis, a study featuring FSYS (in which prior
knowledge has no impact) and a study involving a virtual
chemistry laboratory (in which prior knowledge has an effect;
see Scherer and Tiemann, 2014) were both classified as single
complex system studies. As a substantial portion of the variance
in CPS performance in semantically embedded microworlds
can be attributed to prior knowledge, the question arises as to
whether a more fine-grained classification of the CPS measures
in Stadler et al.’s (2015) meta-analysis would have resulted in
different findings. In summary, the heterogeneity of different CPS
measurements makes it difficult to compare studies or conduct
meta-analyses (some would say impossible, see Kluwe et al.,
1991).

GENERAL DISCUSSION

The presented studies had two main goals. First, we wanted
to investigate the predictive validity of differentiated cognitive

constructs for control performance in complex systems. Second,
we were interested in how preexisting general knowledge and
system-specific prior knowledge contribute to successful system
control.

Both studies clearly demonstrate that intelligence plays an
important role in control performance in complex systems.
This is in contrast to former claims in early CPS research
that problem solving success in complex, dynamic, partially
intransparent systems is not at all correlated with intelligence
test scores (e.g., Kluwe et al., 1991). Our results point to several
explanations for prior failures to find positive correlations.
First, previous studies used only a single problem solving trial,
meaning that the performance criterion presumably was not
satisfactorily reliable. Second, several previous studies did not
differentiate between different aspects of intelligence, but used
a measure of general intelligence. In our studies, however,
general intelligence (g) as conceptualized in the BIS and
operationalized with the BIS Test was not a good predictor
of control performance. Instead and as was expected, the
second-order construct of reasoning, and more specifically
numerical reasoning, had the strongest relationship with success
in the complex real-world oriented system (Tailorshop), while
figural and numerical reasoning had the strongest relationship
with success in the complex artificial world problem (FSYS).
However, whether g and reasoning are distinguishable from
each other (Carroll, 1993), and thus also whether the two
differ in predicting CPS performance, depends on the level
of generality, i.e., the broadness of the operationalization of
g.

Our results are in line with the first Berlin study (Süß et al.,
1993a,b) and several other studies using the Tailorshop system
and other CRSs focusing on ecological validity (e.g., Wittmann
and Süß, 1999; Kersting, 2001; Leutner, 2002; Rigas et al., 2002;
Ryan, 2006; Danner et al., 2011), and were confirmed in Stadler
et al.’s (2015) meta-analysis.

Is There Evidence for a New Construct
‘Complex Problem Solving Ability’?
The two presented studies, however, are limited to one
microworld each, and do not answer broader questions
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regarding generalizability. In particular, the convergent validity
of microworlds was not addressed, but this question is essential
for postulating complex problem solving ability as a new ability
construct.

The following criteria must be considered in justifying a
new ability construct (cf., Süß, 1996, 1999): (1) temporal
stability, (2) a high degree of generality (i.e., the construct can
be operationalized across different tasks, showing convergent
validity), (3) partial autonomy in the nomological network of
established constructs (i.e., the shared performance variance
in different tasks cannot be explained by well-established
constructs), and (4) evidence for incremental criterion validity
compared to established constructs. In this section, we briefly
review the empirical results regarding the existence of a unique
CPS construct. We focus on CPS research utilizing CRS (i.e.,
microworlds with semantic embeddings)10.

The 1-year stability of CRS performance in the Berlin study
(see Süß, 1996) was r = 0.49, which is substantial, but much
lower than that for the intelligence constructs. The temporal
stability of the BIS scales ranged from 0.65 for creativity to
0.90 for reasoning. In addition, the time-stable performance
variance was explained completely by intelligence and prior
knowledge (Süß, 1996). To the best of our knowledge, no
results on temporal stability for other CRS and temporal stability
for aggregated scores based on different CRS are currently
available.

Wittmann et al., (1996; Wittmann and Süß, 1999; Wittmann
and Hattrup, 2004) investigated the convergent validity of CRS.
Wittmann et al. (1996) applied three different CRS (PowerPlant,
Tailorshop, and Learn!), the BIS Test and domain-specific
knowledge tests for each system to a sample of university
students. The correlations of the CRS were significant but rather
small (0.22–0.38), indicating low convergent validity11. However,
because the reliability of each CRS was substantially higher than
their intercorrelations, substantial system-specific variance has
to be assumed. Performance on each of the three systems was
predicted by reasoning and domain-specific prior knowledge to a
substantial degree. In a structural equation model with a nested-
factor BIS model (Schmid and Leiman, 1957; Gustafsson and
Balke, 1993) as predictor, the CPS g-factor with two performance
indicators for each of the three systems (i.e., the CPS ability
construct) was predicted by general intelligence (β = 0.54),
creativity (0.25) and reasoning (0.76), whereas perceptual speed
and memory did not contribute to prediction (Süß, 2001)12. In
this model, reasoning, though orthogonal to general intelligence,

10For a review focusing on CPS research applying the minimally complex systems
(MCS) approach, see Kretzschmar and Süß (2015).
11In the study of Ryan (2006) with 298 University students the intercorrelations
of three scenarios, Furniture Factory (FF), Taylorshop (T) and FSYS (F), were also
rather small but significant (rFF,T = 0.30, rFF,F = 0.27, rT,F = 0.10; Stankov, 2017).
12The structural equation model by Süß (2001) is copied in Wittmann and Hattrup
(2004) as Figure 6. This model was built in two steps: First, BIS and CPS-g were
modeled separately. Specific CPS factors for the three systems were not modeled
because only two indicators were available for each system. Instead, the errors of
the two indicators in each system were allowed to correlated as system-specific
variance. Second, the five BIS factors (g and the four operative abilities) were used
to predict CPS-g. Fit statistics for the final model are not valid because the loadings
of both measurement models were optimized in the first step.

was the strongest predictor of the complex problem solving
ability factor. Almost all of the variance could be explained
by the BIS, putting the autonomy of the CPS construct into
question.

In sum, there is no evidence for a new ability construct based
on CRSs. This, however, does not mean that this kind of research
cannot provide important new insights into CPS processes (see
Süß, 1999), and that CPS performance cannot predict real-life
performance beyond psychometric intelligence measures to a
certain extent (e.g., Kersting, 2001; Danner et al., 2011).

Kersting (2001) predicted police officers’ job performance
over 20 months on the basis of intelligence (short scales
for reasoning and general intelligence from the BIS Test),
CPS performance (two simulations, including Tailorshop), and
acquired system-specific knowledge (measured after controlling
the system). In a commonality analysis (Kerlinger and Pedhazur,
1973), 24.9% of job performance variance was explained. The
strongest specific predictor was intelligence (7.3%; reasoning and
general intelligence at about the same level); CPS performance
and system-specific knowledge explained 3.9 and 3.0% of
the overall criterion, respectively. The largest share of the
variance was confounded variance between intelligence and
system-specific knowledge (24.9%). In comparison to our
first study, both intelligence scales had reduced predictive
validity due to lower reliabilities. However, this study shows
that exploring and controlling CRS must be considered
a learning process. Acquired system knowledge represents
invested intelligence (i.e., crystallized intelligence) and was
a small but additional predictor of real-life performance
beyond intelligence. This provides that ecological-valid complex
systems can additionally predict external criteria, and are
useful learning and training tools for acquiring domain-specific
knowledge.

PART II: REVIEW AND CRITIQUE OF THE
MINIMALLY COMPLEX SYSTEM (MCS)
APPROACH

The research presented and discussed in the first part of the
paper focuses on CRSs. From the beginning, CRS research was
criticized for numerous reasons, including the lack of a formal
description of the system, the lack of an optimal solution as
an evaluation criterion for subjects’ behavior and performance,
the uncontrolled influence of prior knowledge, low or unknown
reliability of the scores, and low or even non-existent convergent
validity and predictive validity with respect to relevant external
criteria (for summaries, see e.g., Funke, 1995; Süß, 1996; Kluge,
2008a). Therefore, the MCS approach (Greiff et al., 2012) was
developed to overcome the limitations of former microworlds.
The MCS approach is remarkably prominent in recent CPS
research, which may be a consequence of the higher reliability and
validity such systems are assumed to have in comparison to CRS
(e.g., Greiff et al., 2015b). Consequently, some might argue that
research on CPS performance based on CRS, as presented in the
first part of the paper, is less reliable and informative. However,
whether the MCS approach is really a superior alternative to
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studying problem solving in complex situations remains up for
debate.

The MCS approach updates and further develops ideas that
have been present since the beginning of CPS research. Funke
(1993) suggested artificial dynamic systems as a research tool
based on systems of linear equations. Buchner and Funke (1993)
proposed the theory of finite state automata as a tool for
developing CPS tasks. Applying this, Kröner (2001; Kröner et al.,
2005), for example, implemented MultiFlux, which simulates a
fictitious machine, within the finite-state framework. This idea
was further developed into MCS, e.g., Genetics lab (Sonnleitner
et al., 2012) and MicroDYN (Greiff et al., 2012). Generally,
about 9–12 artificial world tasks, tiny systems with up to three
exogeneous and three endogenous variables each, are applied
in three phases: (1) free system exploration, (2) knowledge
acquisition (i.e., assessment of acquired system knowledge), and
(3) knowledge application (i.e., assessment of action knowledge).
The required testing time is less than 5 min for each minimal
system. Each system provides three scores, one for each of the
above-mentioned phases, which are then used to form three
corresponding knowledge scales. According to our knowledge
taxonomy, Phase 2 measures declarative system knowledge (i.e.,
relations between variables), while Phase 3 measures procedural
action knowledge (i.e., system interventions in order to achieve
a given goal). The items in these two subtests are similar
to the items in the arrows task and the system-states task
of the Tailorshop knowledge test. Whereas each item in the
MCS scales refers to a different minimal system, all items
in the Tailorshop knowledge test refer to the same system.
Nevertheless, the MCS tasks are very similar to each other and
implement only a small number of CPS characteristics, giving
the subtests high internal consistencies. Specifically, all minimal
systems can be fully explored with the simple strategy “vary
one thing at a time” (VOTAT; e.g., Vollmeyer et al., 1996)
or the closely related strategy “vary one or none at a time”
(Beckmann and Goode, 2014; for additional distinctions see
Lotz et al., 2017). No special training is necessary to learn
these strategies. Instead, they can be learned by instruction or
examples of correct and incorrect applications. On the other
hand, these strategies are clearly not sufficient for exploring
CRS, i.e., systems with many exogeneous variables, indirect and
side effects, delayed effects, and eigendynamics, especially if the
time for the task is limited or in real-time simulations (e.g.,
Bremer’s fire-fighter; Rigas et al., 2002). For the latter, the quality
of one’s hypotheses, which is based on domain knowledge, is
a necessary prerequisite for successfully exploring the system.
In summary, the features of MCS measurements outlined here,
along with further criticisms of this approach (e.g., Funke,
2014; Scherer, 2015; Schoppek and Fischer, 2015; Dörner and
Funke, 2017; Funke et al., 2017; Kretzschmar, 2017), substantially
narrow the validity of the MCS approach as an indicator of
CPS.

On the other hand, the relevance of the MCS approach
is shown by many studies that have modeled the internal
structure of MCS tasks (e.g., Greiff et al., 2012; Sonnleitner
et al., 2012), provided evidence that performance variance cannot
be sufficiently explained by reasoning (e.g., Wüstenberg et al.,

2012; Sonnleitner et al., 2013; Kretzschmar et al., 2016), found
strong convergent validity as well as a lower correlation with
a CRS (i.e., Tailorshop; Greiff et al., 2015b; for a different
view, see Kretzschmar, 2017), and demonstrated incremental
validity in predicting school grades beyond reasoning (e.g.,
Greiff et al., 2013b; Sonnleitner et al., 2013; for different
results, see Kretzschmar et al., 2016; Lotz et al., 2016) and
beyond a CRS task (Greiff et al., 2015b). MCS have been
proposed as a tool for assessing 21st Century skills (Greiff
et al., 2014) and were applied in the international large-scale
study PISA to assess general problem-solving skills (OECD,
2014). They have further been proposed as training tools and
evaluation instruments for these skills (e.g., Greiff et al., 2013a;
Herde et al., 2016). This begs the question: how strong is
the empirical evidence? Are these far-reaching conclusions and
recommendations justified?

Studies provide support for the psychometric quality,
especially the reliability, of the MCS approach, although scale
building and some statistics have been criticized (Funke et al.,
2017; Kretzschmar, 2017). Only one study so far has attempted
to compare MCS and CRS. In it, Greiff et al. (2015b) argued
that MCS had a higher validity than Tailorshop in predicting
school grades. The knowledge scales assessed after exploring the
system were used as predictors for the MCS. However, system-
specific knowledge for Tailorshop after controlling the system was
not assessed (Kretzschmar, 2017). Instead, control performance
was used as a predictor of school grades. Control performance,
however, is not a valid measure of acquired knowledge, as
demonstrated in our first study. For this, additional tests are
needed after controlling the system, conducted in both studies in
this paper.

Minimally complex systems research also only sparingly
addresses questions of construct validity related to the measures
and the conclusions (i.e., generalizability; see Kretzschmar, 2015).
This concerns the operationalization of CPS characteristics (i.e.,
the construct validity of the MCS), which was addressed in
more detail above. However, limitations also exist concerning the
choice of the additional instruments applied in validation studies.
The construct validity of many instruments is considerably
limited, causing results to be overgeneralized (cf., Shadish
et al., 2002). For example, operationalizing reasoning (i.e.,
fluid intelligence) with a single task (e.g., the Raven matrices;
Wüstenberg et al., 2012; Greiff and Fischer, 2013) is not
sufficient. Construct validity is also restricted if only one
task is used to measure WMC (e.g., Bühner et al., 2008;
Schweizer et al., 2013). Since Spearman’s (1904), work we
know that task-specific variance can be reduced only through
heterogeneous operationalizations of the intended constructs.
The two studies reported in this paper show how strongly
the relationship between intelligence and CPS performance
varies depending on the generality level of the intelligence
construct (see also Kretzschmar et al., 2017). The symmetry
problem was demonstrated here for the BIS, but is also evident
with regard to other hierarchical intelligence models, e.g., the
Three Stratum theory (Carroll, 1993, 2005), the extended Gf-
Gc theory (Horn and Blankson, 2005; Horn, 2008), and the
Cattell-Horn-Carroll theory (CHC theory; McGrew, 2005, 2009).
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Süß and Beauducel (2011), therefore, classified every task of
the most frequently used tests into the BIS, the three stratum
theory, and the CHC theory to give a framework for this
problem.

According to the BIS (Jäger, 1982), every intelligence task
depends on at least two abilities (an operative and a content
ability), i.e., every task relates to two different constructs. By
extension, the interpretation in terms of only one ability is
of limited validity due to unintended but reliable task-specific
variance. It is either necessary to have several tasks for every
construct and theory-based aggregation (Jäger, 1982, 1984) to
reduce unintended variance, or the interpretation must be limited
to a more specific conclusion (e.g., to numerical reasoning in
our first study). The two studies presented here and many
others show that these kinds of problems substantially influence
the validity of conclusions in intelligence and problem solving
research as well as in many other fields (Shadish et al., 2002).

In summary, the MCS approach provides solutions to
psychometrics problems in CPS research, especially the reliability
problem, but its validity as an indicator of CPS performance
is substantially restricted. In our view, MCS are an interesting
new class of problem-solving tasks, but provide few insights into
complex real-world problem solving. Modifications of the MCS
approach toward increased complexity (e.g., MicroFIN; Neubert
et al., 2015; Kretzschmar et al., 2017) are a promising step in the
right direction.

Conclusion and Outlook
The primary aim of CPS research with CRSs (e.g., Lohhausen;
Dörner et al., 1983) is ecological validity, i.e., “the validity of
the empirical results as psychological statements for the real
world” (Fahrenberg, 2017). In the past, many systems were
“ad hoc” constructions by psychologists that had not been
sufficiently validated, but this need not be the case. What is
needed is interdisciplinary research in the form of collaboration
with experts in the simulated domains. For example, Dörner
collaborated with a business expert to develop Tailorshop.
Powerplant was developed by Wallach (1997) together with
engineers from a coal-fired power plant near Saarbrücken
(Germany). LEARN!, a complex management simulator with
more than 2000 connected variables, was originally developed
by an economics research group at the University of Mannheim
(Germany) as a tool for testing economic theories (Milling,
1996; Größler et al., 2000; Maier and Größler, 2000). In the
version applied by Wittmann et al. (1996), participants have
to manage a high-technology company competing with three
others simulated by the computer. ATC (Air Traffic Controller
Test; Ackerman and Kanfer, 1993) and TRACON (Terminal
Radar Air Control; Ackerman, 1992) are simplified versions
of vocational training simulators for professional air traffic
controllers. The Situational Awareness Real Time Assessment
Tool (SARA-T) was developed to measure the situational
awareness of air traffic controllers working in the NLR ATM
Research Simulator (NARSIM; ten Have, 1993), a system also
used in expert studies (Kraemer and Süß, 2015; Kraemer,
2018). Finally, technological developments (e.g., video clips,
virtual worlds; Funke, 1998) have enabled the development of

complex systems that are much more similar to real-world
demands than ever before, an opportunity that should be
capitalized upon in psychological research (see Dörner and
Funke, 2017).

In this line of research, the ecological validity of the simulated
real-world relationships is essential and must be ensured.
In addition, domain-specific prior knowledge is necessary to
generate hypotheses for system exploration and system control.
Valid measures of the amount, type, and structure of domain-
specific prior knowledge, the knowledge acquisition processes,
and the acquired knowledge are necessary for understanding
and measuring CPS behavior and performance. In light of all
this, this line of research can help us to understand how people
face the challenge of dealing with complexity and uncertainty,
identify causes of failure, and detect successful strategies for
reducing complexity during problem solving (e.g., Dörner, 1996;
Dörner and Funke, 2017), a laborious and time-consuming
but important field of research in complex decision making
(cf., Gigerenzer and Gaissmaier, 2011). The research strategy of
restricting complex problem solving tasks to MCS, however, leads
into a cul-de-sac.
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