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Compressed sensing (CS) based methods make it possible to reconstruct magnetic resonance (MR) images from undersampled
measurements, which is known as CS-MRI. The reference-driven CS-MRI reconstruction schemes can further decrease the
sampling ratio by exploiting the sparsity of the difference image between the target and the reference MR images in pixel domain.
Unfortunately existing methods do not work well given that contrast changes are incorrectly estimated or motion compensation is
inaccurate. In this paper, we propose to reconstruct MR images by utilizing the sparsity of the difference image between the target
and themotion-compensated reference images in wavelet transform and gradient domains.The idea is attractive because it requires
neither the estimation of the contrast changes nor multiple times motion compensations. In addition, we apply total generalized
variation (TGV) regularization to eliminate the staircasing artifacts caused by conventional total variation (TV). Fast composite
splitting algorithm (FCSA) is used to solve the proposed reconstruction problem in order to improve computational efficiency.
Experimental results demonstrate that the proposedmethod can not only reduce the computational cost but also decrease sampling
ratio or improve the reconstruction quality alternatively.

1. Introduction

Magnetic resonance imaging (MRI) plays an important role
in the field of medical diagnostics. Speeding up the scanning
time has always been of interest to the MRI research com-
munity. Recently, compressed sensing (CS) theory [1–6] has
been claimed to be able to achieve accurate reconstruction
of a sparse or compressible signal from highly undersampled
measurements. Applying CS to MRI can significantly reduce
the scanning time without degrading the image quality [7–
10]. These methods do not use extra prior information
besides sparsity (or compressibility). In many practical MRI
applications, a high resolution reference image with similar
anatomical structure to the target image can be acquired
easily. If we exploit the reference image to get more prior
information, the sampling ratio can be further decreased.
Ji and Lang [11] have demonstrated the possibility of using
the subtraction of a prescanned high resolution reference
image to improve sparsity for dynamic MRI. Majumdar et
al. [12] propose an online MR image reconstruction method

which assumes the difference image between the target and
the reference images is sparse in pixel domain and utilizes
the 𝑙𝑝-norm (0 < 𝑝 < 1) of the difference image as part of
the cost function. Image contrast changes are not considered
in the above-mentioned methods. Peng et al. [13] use a low-
order generalized series model [14], a partial set of wavelets
based on the prior information provided by the reference
image to depict the global and local contrast changes, which
improve the pixel domain sparsity of the difference image.
These works ignore motion effects, even though motion
effects between different scans widely exist in practice. The
misalignment between image features caused by motion can
significantly degrade the quality of the reconstructed images.
Jung et al. [15–17] decompose the unknown spectral signal
into the predicted signal and the residual signal and apply the
generalized seriesmodel ormotion estimation/compensation
(ME/MC) to sparsify the residual signal. Methods proposed
in [18, 19] model the target image as a linear combination of
a motion-dependent reference image and a difference image
where the affine transformation is used to compensate the
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motion effects and a scaling constant or generalized series
model is introduced to sparsify the difference image in pixel
domain.

In this paper, we model the target image as a sum of
the motion-compensated reference image and the difference
image. Our idea is based on the fact that contrast changes
severely degrade the sparsity of the difference image in
pixel domain but have little influence on the sparsity in
wavelet transform and gradient domains. In addition, we find
that motion effects degrade the sparsity in the above three
domains, most severely in pixel domain. Hence, we propose
to do motion compensation once at first and then apply
wavelet transform and total generalized variation (TGV)
[20–22] to sparsify the difference image. Second-order TGV,
which involves second-order derivatives of an image, is used
here to eliminate the staircasing artifacts caused by total
variation (TV). The proposed method avoids the iterative
estimation of the motion effects and improves the recon-
struction efficiency. An efficient algorithm named as fast
composite splitting algorithm (FCSA) [23, 24] is employed to
solve the proposed reconstruction problem. We evaluate the
proposed method by conducting experiments on three sets
of practical MRI data. The experimental results demonstrate
that the proposed method outperforms conventional CS-
MRI methods and the pixel-sparsity based reference-driven
method.

The rest of this paper is organized as follows. Section 2
describes the proposed method in detail. The analysis on
how contrast changes andmotion effects affect the sparsity of
the difference image is also included. Section 3 shows exper-
imental results from three sets of real MR data. Section 4
discusses relevant properties of the proposedmethod. Finally,
conclusions are drawn in Section 5.

2. Proposed Method

2.1. Image Model. In many practical MRI applications, a high
resolution reference image with similar anatomical structure
to the target image can be acquired easily. We express the
target image It(r) as follows:

It (r) = Ir (r) + Id (r) , (1)

where Ir(r) is the reference image and Id(r) is the difference
image.

Considering motion effects existing between It(r) and
Ir(r), we rewrite (1) as

It (r) = Ir (T (r)) + Id (r) , (2)

where Ir(T(r)) is a deformable reference image depending on
the coordinate transformation T(r).

The data acquisition is formulated as

dt = Fu (Ir (T) + Id) + n, (3)

where dt is the measured data vector of the target image, Fu
is an undersampled Fourier transform operator, and n is the
measurement noise.

In this paper, we apply an affine transformation T to
characterize the global motion effects between the target and
the reference images. We employ the method in [18] to esti-
mate affine motion parameters by solving the optimization
problem

T̂ = argmin
T
󵄩󵄩󵄩󵄩dt − Fu(Ir(T))

󵄩󵄩󵄩󵄩
2

2
. (4)

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm is used to estimate the affine parameters in (4). The
local deformation between the target and the reference
images can be regarded as part of the difference image. Such
approach avoids the complex local motion estimation used in
[25–27].

2.2. Reconstruction Model. In our proposed method, the
reconstruction is modeled as

Îd = argmin
Id

󵄩󵄩󵄩󵄩󵄩
dt − Fu (Ĩr + Id)

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝜆‖ΨId‖1 + TGV𝛼

2
(Id) ,

(5)

where Îd denotes the estimation for the difference image Id
and the motion-compensated reference image is

Ĩr = Ir (T̂) . (6)

Here, T̂ is the estimation of the transformation T from (4).
The linear operator Ψ is the wavelet transform operator. 𝜆
is a positive regularization parameter. TGV𝛼

2
(⋅) denotes the

second-order TGV operator, which combines the first and
second derivatives to yield discrete gradients of an image.

2.2.1. Explanations to the Reconstruction Model. The two
regularization terms in the objective function equation (5)
enforce the sparsity of the difference image in wavelet
transform and gradient domains. It is based on the fact that
contrast changes and motion effects severely degrade the
sparsity of the difference image in the pixel domain but have
little influence on the sparsity in the wavelet transform and
gradient domains.

(A)The Influence of Contrast Changes on the Sparsity.Contrast
changes will degrade the sparsity of the difference image in
pixel domain. Figures 1(a) and 1(b) are the reference image
and the target image, respectively, which are chosen from
an MRI sequence of one patient. The MRI data is provided
by Professor N. Schuff at the UCSF School of Medicine.
Figure 1(c) shows the difference image. We can see that
contrast changes exist between Figures 1(a) and 1(b), which
degrade the sparsity of the difference image in pixel domain.
Figure 1(d) shows the wavelet decomposition coefficients
of the difference image, and Figure 1(e) is the result from
performing second-order TGV operator on the difference
image. We also sort pixel values, wavelet decomposition
coefficients, and discrete gradients of the difference image in
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Figure 1: The difference image (c) between the reference image (a) and the target image (b); the wavelet decomposition coefficients (d) and
discrete gradients (e) of (c).

descending order and plot the decay curves in Figure 2. It
can be observed that curves in Figures 2(b) and 2(c) descend
more steeply than Figure 2(a), which demonstrate that the
wavelet coefficients and discrete gradients are exponential
damping faster. They demonstrate that the difference image
presents much better sparsity (or compressibility) in wavelet
transform and gradient domains than in pixel domain. Based
on this fact, constraining the sparsity of the difference image
in these two domains can effectively weaken the influence
of the contrast changes on the sparsity. Therefore, we do not
need to estimate the contrast changes.

(B) The Influence of Motion Effects on the Sparsity. Now we
analyze the influence of the motion effects on the sparsity
of the difference image in pixel, wavelet transform, and
gradient domains. Figure 3(a) is the reference image, and
the target image is shown in Figure 3(b) which is obtained
by deforming the image in Figure 1(b) through a random
affine transformation. Figure 3(c) is the difference image.
Figure 3(d) displays the wavelet decomposition coefficients
and Figure 3(e) is the result of performing second-order TGV
on Figure 3(c). It can be observed that motion effects reduce
the sparsity of the difference image in all three domains
but most severely in pixel domain. This can be proved by
the amount of energy change confined in top 5% of pixels,

wavelet coefficients, and discrete gradients. The values are
19.37%, 2.76%, and 3.15%, respectively, which indicate that
the sparsity of the wavelet coefficients and discrete gradients
is relatively not sensitive to the motion effects. To maintain
the sparsity of the difference image, performing a rough
motion compensation is necessary. Therefore, we propose
to estimate the global motion effects by solving (4) before
reconstruction. The motion compensation is not involved in
iterative reconstruction procedure.

(C) TGV. TGV is a seminorm defined in a Banach space.
It generalizes TV and is more suitable to describe intensity
variation in smooth regions owing to the property that each
function of bounded variation admits a finite TGV value.
Furthermore, TGV has translation invariance and rotational
invariance which meet the requirement that images are
measured independently from the actual viewpoint.

Besides the first-order derivative, TGV involves higher-
order derivatives to measure image characteristics. Recon-
struction with TGV is capable of preserving shape edges
without causing staircasing artifacts. Throughout this paper,
we use the discrete TGV of second-order formulated in [21]:

TGV𝛼
2
(Id) = min

k
𝛼1
󵄩󵄩󵄩󵄩∇Id − k󵄩󵄩󵄩󵄩1 + 𝛼0‖𝜀(k)‖1, (7)
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Figure 2: The sparsity of the difference image in the pixel domain (a), wavelet (b), and gradient (c) domains.

where

𝜀 (k) =
1

2
(∇k + ∇k𝑇) (8)

denotes the symmetrized derivative and ∇ is the first-order
differential operator. The positive parameters 𝛼0 and 𝛼1
control the balance between the first and second derivatives.
Usually, selecting 𝛼0 as 2𝛼1 is suitable for most applications.
In the proposed method, the discrete gradients yielded
by second-order TGV are calculated through solving the
minimization problem in (7).

2.3. Algorithm and Properties

(A) Algorithm. In the proposed reconstruction model (5),
there are two nonsmooth regularization terms. We employ
FCSA to solve this composite regularization problem. The
recently presented FCSA combines the variable and operator
splitting techniques and decomposes the complex regulariza-
tion problem into two simpler subproblems. Furthermore,
thanks to the low computational complexity and strong con-
vergence properties, FCSA exhibits its superior performance
for MR image reconstruction.
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Figure 3: The difference image (c) between the reference image (a) and the target image (b); the wavelet decomposition coefficients (d) and
discrete gradients (e) of (c).

(1) Input 𝜌, 𝜆, 𝛼0, 𝑡
1
= 1, Î0d = r1

(2) for 𝑘 = 1 to 𝐾do
(3) Ig = r𝑘 − 𝜌∇𝑓(r𝑘)
(4) Îd1 = prox

𝜌
(2TGV𝛼

2
(Id))(Ig)

(5) Îd2 = prox
𝜌
(2𝜆‖ΨId‖1)(Ig)

(6) Î𝑘d = (Îd1 + Îd2)/2
(7) Î𝑘d = project(Î𝑘d, [𝑙, 𝑢])
(8) 𝑡

𝑘+1
= (1 + √1 + 4(𝑡𝑘)

2
)/2

(9) r𝑘 = Î𝑘d + ((𝑡
𝑘
− 1)/𝑡

𝑘+1
)(Î𝑘d − Î𝑘−1d )

(10) end for
(11) Output Î𝑘d

Algorithm 1: The difference image reconstruction by FCSA.

Algorithm 1 describes the algorithm based on FCSA for
the difference image reconstruction problem given in (5).

The target image can be obtained as Ît = Ĩr + Îd.
An introduction for the notations and functions pre-

sented in Algorithm 1 is as follows.

(1)∇𝑓(r𝑘) denotes the gradient of the function𝑓 at the
point r𝑘. In our paper,

𝑓 (r𝑘) = 󵄩󵄩󵄩󵄩󵄩
dt − Fu(Ĩr + r𝑘)󵄩󵄩󵄩󵄩󵄩

2

2
, (9)

so

∇𝑓 (r𝑘) = 2Fu
𝑇
(Fur
𝑘
+ FuĨr − dt) . (10)

(2) Given a continuous convex function 𝑔(𝑥), its
proximal map is

prox
𝜌
(𝑔) (𝑥) = argmin

𝑢
{𝑔 (𝑢) +

1

2𝜌
‖𝑢 − 𝑥‖

2

2
} , (11)

where scale 𝜌 > 0. Therefore, the TGV regularization
subproblem is formed as

Îd1 = prox𝜌 (2TGV𝛼
2
(Id)) (Ig)

= argmin
Id

{2TGV𝛼
2
(Id) +

1

2𝜌

󵄩󵄩󵄩󵄩󵄩
Id − Ig

󵄩󵄩󵄩󵄩󵄩

2

2
} .

(12)
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Table 1: Relative errors and PSNR values of reconstructions by different methods under 15% sampling ratio.

Methods Sparse-MRI RL-WSTGV Sparse-Id Proposed method
Relative error (%) 14.50 14.13 9.91 6.35
PSNR (dB) 26.8336 28.1251 31.1697 35.0748

Here, the first-order primal-dual algorithm [28] is
used to solve this optimization problem, which actu-
ally is a denoising problem.The implementing proce-
dure is described in detail in [21].
(3) The function 𝑥 = project(𝑥, [𝑙, 𝑢]) is defined as

𝑥 = project (𝑥, [𝑙, 𝑢]) =
{{

{{

{

𝑥 𝑙 ≤ 𝑥 ≤ 𝑢

𝑙 𝑥 < 𝑙

𝑢 𝑥 > 𝑢,

(13)

which is used to limit 𝑥 to the range of [𝑙, 𝑢].

(B) Convergence. In the step of applying primal-dual algo-
rithm to solve TGV regularization subproblem based on
formulation equation (12), the convex-concave saddle-point
problem is obtained as follows:

min
Id,k

max
p,q

1

2𝜌

󵄩󵄩󵄩󵄩󵄩
Id − Ig

󵄩󵄩󵄩󵄩󵄩

2

2
+ ⟨∇Id − k, p⟩

+ ⟨𝜀 (k) , q⟩ − 𝛿𝑃 (p) − 𝛿𝑄 (q) ,
(14)

where 𝐺(Id) = (1/2𝜌)‖Id − Ig‖
2

2
is convex, while functions

𝐹
∗
(p) = 𝛿𝑃(p) and 𝐹∗(q) = 𝛿𝑄(q) are nonconvex. According

to Theorem 2 in [28], 𝑂(1/𝑁2) convergence can be guaran-
teed.

Furthermore, the main algorithm used to reconstruct
the difference image is FCSA, whose convergence has been
proved in [24].Therefore, the convergence of Algorithm 1 can
be ensured.
(C) Computational Complexity. At each iteration, step 3
costs 𝑂(𝑚𝑛 log(𝑚𝑛)) (where 𝑚 × 𝑛 is the size of the
image) since 𝑓(r𝑘) = ‖dt − Fu(Ĩr + r𝑘)‖

2

2
. Step 4 Îd1 =

prox𝜌(2TGV𝛼
2
(Id))(Ig) implemented by primal-dual algo-

rithm costs 𝑂(𝑚𝑛). Similar to the analysis in [24], step 5 has
a close form solution with the computational complexity of
𝑂(𝑚𝑛 log(𝑚𝑛)). In addition, steps 6 and 9 involve additions
of vectors, so they result in the computational cost of 𝑂(𝑚𝑛).
Step 8 costs 𝑂(1), in which there is only addition of scalars.
And step 7 has the complexity of 𝑂(𝑚𝑛). Consequently
the total computational complexity of each iteration in
Algorithm 1 is 𝑂(𝑚𝑛 log(𝑚𝑛)).

3. Results

The experiments were conducted on a 2.6GHz PC with a 32-
bit processor having 2GB RAM. We did the simulations in
MATLAB 2011b environment running on Windows XP.

We used the variable density undersampling pattern
which is possible to remove the aliasing interference without
degrading the image quality [7]. Such sampling pattern

Figure 4: The variable density sampling pattern with 15% sampling
rate.

is usually used in 𝑘𝑦-𝑘𝑧 plane for 3D imaging. Figure 4
shows such a pattern with 15% sampling ratio. Similar to
prior work on CS-MRI [9, 18], the MR images used in the
experiments were reconstructed using the fully sampled data,
and simulated 𝑘-space data was generated by undersampling
the 2D discrete Fourier transform of the images according
to the sampling pattern shown in Figure 4 throughout this
paper.

To estimate the performance of the proposed method, we
performed the experiments on three sets of data and com-
pared the experimental results of the proposed method with
other three methods: (1) sparse-MRI presented by Lustig et
al. in [7], (2) referenceless method exploiting wavelet sparsity
and TGV constraints (RL-WSTGV), which is formulated as

Ît = argmin
It

󵄩󵄩󵄩󵄩dt − FuIt
󵄩󵄩󵄩󵄩
2

2
+ 𝜆

󵄩󵄩󵄩󵄩ΨIt
󵄩󵄩󵄩󵄩1 + TGV𝛼

2
(It) , (15)

and (3) the reference-driven method in [18], which was
renamed as sparse-Id hereafter. Sparse-Id improves the spar-
sity of the difference image in pixel domain by estimating
a uniform contrast change and compensating the motion
effects in each iterative step of the reconstruction. For all
experiments, we set 𝜆 = 1𝑒 − 3 and 𝛼0 = 2𝛼1 = 5𝑒 − 3 in
the proposed method, which yielded good reconstruction
results. By default, the parameter 𝜌 of proximal map function
in FCSA was set to 1. The number of iterations for FCSA was
100.

The reference image in Figure 5(a) was with the resolu-
tion of 256 × 256, which was acquired on Neusoft Philips
scanner 0.35T (superstar LVSM-P035), SE sequence. Imaging
parameters were as follows: TR = 1640.1ms, TE = 15ms,
slice thickness = 6.0mm, flip angle = 90

∘, and the field
of view (FOV) was 210 × 210mm2. We created the target
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(a) (b)

Figure 5: The reference image (a) and the target image (b).

(a) (b) (c) (d)

Figure 6: Reconstruction results with 15% of the fully sampled data by sparse-MRI (a), RL-WSTGV (b), sparse-Id (c), and the proposed
method (d).

image in Figure 5(b) based on Figure 5(a) to simulate the
situation when obvious nonuniform contrast changes and
obvious global motion effects exist in the target image.
Figure 6 shows the images reconstructed by sparse-MRI,
RL-WSTGV, sparse-Id, and the proposed method from 15%
undersampled measurements. The relative errors and PSNR
values are shown in Table 1. As seen from the simulation
results in Figure 6 and Table 1, using the reference image
can significantly improve the quality of the reconstructed
image at a low sampling ratio and the proposed method
outperforms sparse-Id.

Figure 7 compares the relative errors of reconstructions
by all the methods. The curves characterize the relationship
between the accuracy of reconstruction and the percentage of
data acquired. The proposed method exhibits better recon-
struction performance than the other three methods under
any sampling ratio.

The second experiment was conducted on theMR images
shown in Figures 3(a)-3(b). The reconstruction results are
given in Figure 8.The third experiment was based on theMR
images from one patient shown in Figures 9(a)-9(b), which
were acquired on Siemens scanner 3T, GR sequence. Imaging
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Figure 7: Relative errors of reconstructed images by different
methods.
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(a) (b) (c)

(d) (e)

Figure 8: Reconstruction results for the target image (a) with 20% of the fully sampled data by sparse-MRI (b), RL-WSTGV (c), sparse-Id
(d) and the proposed method (e).

(a) (b)

Figure 9: The reference image (a) and the target image (b).

parameters were as follows: TR = 250ms, TE = 2.5ms, slice
thickness = 5.0mm, flip angle = 70∘, FOV = 220× 220mm2.
The MR images were of size 512 × 512. Figures 10(a)–10(d)
show the reconstruction results.

As illustrated by the reconstruction results of these two
experiments, we see that the images reconstructed by sparse-
MRI and RL-WSTGV lose some details and structures, while
RL-WSTGV outperforms sparse-MRI slightly due to the
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(a) (b) (c) (d)

Figure 10: Reconstruction results with 15% of the fully sampled data by sparse-MRI (a), RL-WSTGV (b), sparse-Id (c), and the proposed
method (d).
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Figure 11: PSNRs versus regularization parameter 𝜆 for the recon-
struction under different sampling ratios (Fix 𝛼0 = 0.005). Asterisks
indicate the selected 𝜆-values.

superiority of TGV. The images reconstructed by sparse-
Id introduce some artifacts. Our method obtains the best
reconstruction results.

4. Discussion

4.1. Parameter Evaluation. Figures 11-12 show the plots of
PSNR values as a function of the regularization parameters
𝜆 and 𝛼0 for the reconstruction of the target image shown
in Figure 5 under four different sampling ratios. The selected
parameter values are marked with asterisks. Seen from the
curves, optimal regularization parameters in the proposed
method under different sampling ratios are identical, which
means that the parameters are robust to the sampling ratio.

4.2. Robustness Analysis. We first discuss the robustness of
the proposedmethod to contrast changes, which is presented
by using an MRI sequence of one patient. The sequence
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Figure 12: PSNRs versus regularization parameter 𝛼0 for the
reconstruction under different sampling ratios (Fix 𝜆 = 0.001).
Asterisks indicate the selected 𝛼0-values.

Frame 3 

Figure 13: The reference image.
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Frame 4 Frame 5 Frame 6 Frame 8 Frame 9

(a)

Frame 4 Frame 5 Frame 6 Frame 8 Frame 9

(b)

Figure 14: The reconstruction results of an MRI sequence with 20% of the fully sampled data. (a) Target images to be reconstructed. (b)
Corresponding reconstructions by the proposed method.

is provided by Professor N. Schuff at the UCSF School of
Medicine and contains 9 frames. There are only contrast
changes between different scans. From Frame 1 to 9, the
pixel intensity decreases. Choose Frame 3 as the reference
image shown in Figure 13 and reconstruct other frames by
employing the proposed method. Figure 14 gives the recon-
struction results for several frames, which displays acceptable
visual quality. In particular for Frame 9, although the contrast
difference is quite severe, the proposed method still achieves
reconstruction successfully.

Generally, the motion of major parts of the anatomy
under the scanner is slow in practical application. Thus, big
global motions hardly happen between several consecutive
time frames. Furthermore, in (4), estimations of global
motion parameters mainly lie in the measurements and
have nothing to do with the regularization model. Local
deformations contribute to the difference image and also
can be considered as local contrast changes. Therefore, the
robustness of the proposedmethod tomotions is not difficult
to be understood.

5. Conclusion

This paper has proposed a feasible reference-driven recon-
struction method for MR images. We exploit the sparsity
of the difference image in wavelet transform and gradient
domains to decrease the sampling ratio. In addition, TGV
is further introduced to yield sparse discrete gradients and
avoid staircasing effects. No contrast changes are needed to
be estimated and global motion compensation is done only
at the first step of the reconstruction. The proposed method
improves the reconstruction quality compared with the
conventional referenceless CS-MRI and pixel-sparsity based
reference-driven reconstruction methods. We expect the

proposed method to be useful for various applications such
as interventional imaging and dynamic contrast-enhanced
imaging.
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