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In December 2019, an outbreak of novel coronavirus pneumonia spread over Wuhan,

Hubei Province, China, which then developed into a significant global health public event,

giving rise to substantial economic losses. We downloaded throat swab expression

profiling data of COVID-19 positive and negative patients from the Gene Expression

Omnibus (GEO) database to mine novel diagnostic biomarkers. XGBoost was used to

construct the model and select feature genes. Subsequently, we constructed COVID-19

classifiers such as MARS, KNN, SVM, MIL, and RF using machine learning methods. We

selected the KNN classifier with the optimal MCC value from these classifiers using the

IFS method to identify 24 feature genes. Finally, we used principal component analysis

to classify the samples and found that the 24 feature genes could effectively be used to

classify COVID-19-positive and negative patients. Additionally, we analyzed the possible

biological functions and signaling pathways in which the 24 feature genes were involved

by GO and KEGG enrichment analyses. The results demonstrated that these feature

genes were primarily enriched in biological functions such as viral transcription and viral

gene expression and pathways such as Coronavirus disease-COVID-19. In summary,

the 24 feature genes we identified were highly effective in classifying COVID-19 positive

and negative patients, which could serve as novel markers for COVID-19.
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INTRODUCTION

In December 2019, an epidemic of novel coronary pneumonia broke out in Wuhan, Hubei
Province, China, which was considered by the World Health Organization to be a serious menace
to the health of citizens of the world (1). This terrible communicable epidemic is caused by
infection with the severe acute respiratory syndrome type 2 coronavirus (SARS-CoV-2), a sense
single-stranded RNA virus (2). As a highly contagious virus, COVID-19 swept across the globe
with alarming rapidity, leading to considerable losses to human society.

So far, the effective protection strategy against COVID-19 is to strengthen immunity ability and
keep social distance (3). COVID-19 diagnosis is of great essence for the identification, isolation,
and treatment of infectious objects (4). Existing detection methods include antibody assays that
detect serum antiviral antibodies IgG and IgM, lateral chromatography assays that detect viral
antigens, and real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). The current
gold standard for COVID-19 diagnosis is the application of qRT-PCR to verify the presence of
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SARS-CoV-2 RNA in the respiratory secretions of patients
(5, 6). However, this detection method is not perfect because
it is a complex test requiring a comprehensive and delicate
infrastructure (5). And this method can only achieve accuracies
of 30–60% in clinical application, which probably results in
false-positive cases (7). More landmark diagnostic biomarkers
are needed to detect COVID-19-positive patients with higher
accuracy, reducing the false positive rate. Besides, exploring and
developing new detection kits is of equal significance to facilitate
the precise prevention and control of the epidemic.

Machine learning is applied extensively in biomedical
applications, as well as COVID-19 diagnosis (8). Extreme
Gradient Boosting (XGBoost) is a GBDT-based algorithm.
Characterized by its high efficiency, flexibility, and portability,
XGBoost is widely used in data mining, recommendation
systems, and other fields (9). Zhang and GuoLiang (10)
developed a machine learning algorithm for XPPA based on
the XGBoost algorithm, which could be used to detect the
effect of alterations in gene expression on aberrant p53 pathway
activity. Athanasiou et al. (11) constructed a personalized
risk prediction model for cardiovascular disease based on
the XGBoost algorithm to predict the incidence of patients
with cardiovascular disease. The follow-up results of 560
patients demonstrate that this predictive model has favorable
performance (AUC= 71.13%), which is expected to provide new
insights into clinical cardiovascular treatment.With a decoupling
feature, XGBoost shows increased applicability, and it is a high-
performance algorithm for modeling regarding the selection
of loss functions on demand for classification and regression.
Therefore, XGBoost is reliable to be applied in establishing
a diagnostic, prognostic model based on patient features in
clinical practice.

Here, we used the XGBoost algorithm to mine feature genes
in the expression profiles of COVID-19 negative and positive
samples, used a machine learning algorithm to construct MARS,
KNN, SVM, MIL, and RF COVID-19 classifiers, and selected the
best classifier using Iterated Function System (IFS) algorithm.
Finally, the validity of this set of feature genes was verified by
principal component analysis (PCA) and functional enrichment
analysis, the results of which suggested the potential of the genes
to be promising biomarkers for COVID-19.

MATERIALS AND METHODS

Datasets Downloading and Processing
From the GEO database (https://www.ncbi.nlm.nih.gov/geo/),
the dataset GSE152075 was downloaded, which contained gene
expression data from throat swab samples from 430 COVID-
19-positive patients and 54 negative patients. And the data
acquisition platform was GPL18573 (Illumina NextSeq 500).
Genes whose mean value of gene expression was below 1 and the
maximum value of gene expression was below 5 were retained.
The data were normalized using the “edgR” package (12).

Model Training
To establish the link between behavioral features and
classification, we implemented the XGBoost model using

the machine learning algorithm XGBoost (https://xgboost.ai/).
Key features were determined based on feature importance
ranking and recursive elimination (9). XGBoost is a gradient
advancing decision tree method whose objective function is
defined as in Equation (1).
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In this formula, loss is the training loss, Ω (f) is the complexity
of the tree, and k is the number of trees in the model. The model
can be optimized by minimizing the objective function. For this
reason, the additive model was used to calculate the training loss,
and the Taylor expansion method was used to quickly optimize
the prediction of the nth round of additive training. Greedy
algorithm was used to determine the optimal complexity of the
tree. In addition, we employed SMOTE for Bayesian optimization
resampling of the training set due to unbalanced samples (13).

Selecting the Optimal Classifier by IFS
Method
After feature selection by XGBoost, IFS method was used to
identify the genes of the optimal COVID-19 classifier. IFS
incremental feature selection method (14) is an algorithm
proposed by Liu and Setiono (15) to find the best or closest
optimal feature subset. This algorithm is based on improved
information gain, which can make the equivalent exchange of
information. The algorithm selects a candidate feature set using
an evaluation function unrelated to the classifier, applies the
classifier to the candidate feature set, and selects a feature subset
utilizing the accuracy of the classifier as a criterion.

A series of COVID-19 classifiers (16) was subsequently
established using the python package “sklearn” in combination
with algorithms such as MARS, KNN, SVM, MIL, and RF. The
IFS curve was drawn based on 10-fold cross-validation, resulting
in Matthews correlation coefficient (MCC) for each classifier,
which is a parameter that can effectively reflect the classifier’s
effectiveness (17). The classifier with the most considerable MCC
value is considered as the optimal classifier, and the genes
involved in it are taken as the optimal feature genes.

PCA and Sample Cluster Analysis
After the optimal COVID-19 classifier was determined, the
PCA was performed on the data set using “FactoMineR” to
extract the first and second principal components. PCA analysis
is an unsupervised dimensionality reduction analysis method
which can visually present the sample-to-sample method (18)
by reducing the dimensionality of the dataset and reflecting the
data to the representative dimensions PC_1 and PC_2. The effect
of model classification was finally verified by pedigree cluster
analysis of the samples using the “pheatmap” package (19).

GO and KEGG Enrichment Analyses
GO biological function analysis and KEGG biological pathway
analysis of feature genes were performed using “clusterProfiler”.
GO and KEGG pathways with p-value < 0.05 were considered
notably enriched (20).
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FIGURE 1 | IFS curves of MARS, KNN, SVM, MLP, and RF classifiers. Black:

MARS classifier; red: KNN classifier; blue: SVM classifier; green: MLP

classifier; brownish-yellow: RF classifier; horizontal ordinate indicates the

number of classifier genes and vertical ordinate represents MCC coefficient.

RESULTS

XGBoost and IFS Analysis Results
A total of 15,190 genes were obtained by the normalization
of the gene expression data after the preprocessing of the
dataset GSE152075. Thirty-seven feature genes that were
ranked according to importance were obtained by XGBoost
feature selection, which could distinguish sample types
(Supplementary Table S1). And COVID-19 classifiers such as
MARS, KNN, SVM, MLP, and RF were constructed based on
these 37 feature genes. Then the best classifier was selected by IFS
analysis, and we found that the KNN classifier was composed of
24 feature genes (IGFBP2, KRT8, RPLP0, XAF1, RPL13, OAS2,
CES1, RPL4, EEF1G, NR2F6, RPS8, RPL10A, SNX14, C5orf15,
TNFRSF19, CD24, ALAS1, CEP112, C9orf24, POLR2J3, AAMP,
DUOX2, EMCN, RPL3) had the highest MCC value, MCC 0.886,
sensitivity 0.986, specificity 0.907, and accuracy 0.977 (Figure 1).

The Results of PCA Dimensionality
Reduction Analysis and Sample Cluster
Analysis
PCA dimensionality reduction analysis was performed on the
samples according to the expression of the 24-feature genes in
the optimal KNN classifier, which showed that PCA analysis
could classify COVID-19 in positive patients and negative
persons (Figure 2A). In addition, we also plotted a cluster
heatmap analyzing the expression of 24 feature genes in different
populations. The results showed that the 24 feature genes
in the KNN classifier could distinguish COVID-19 positive

patients from normal healthy people (Figure 2B). These findings
indicated that the 24 feature genes in the KNN classifier
performed well in diagnosing COVID-19-positive patients and
normal healthy people, showing superior diagnostic efficacy.

The Results of GO and KEGG Enrichment
Analyses
To identify the biological functions of feature genes and the
signaling pathways involved, we performed enrichment analyses
on the 24 feature genes. The GO analysis result showed that
these genes were mainly enriched in biological functions such
as viral transcription and viral gene expression (Figure 3A).
KEGG biological pathway analysis showed gene enrichment on
pathways such as Coronavirus disease-COVID-19 (Figure 3B).
The selected feature genes were closely related to COVID-19
infection and its pathways.

DISCUSSION

Novel coronavirus pneumonia is a severe threat to global
public health safety and brings enormous economic losses to
human society. In this study, in order to identify new COVID-
19 diagnostic biomarkers, we used the XGBoost algorithm to
achieve feature selection and the IFS algorithm to determine the
optimal classifier based on the throat swab expression profile data
of COVID-19 positive and negative samples in the GEO database.
After identifying the optimal feature genes, PCA, GO, and KEGG
methods were used to verify whether the feature genes could
be used as COVID-19 diagnostic biomarkers. First, we used the
XGBoost algorithm to screen 37 feature genes from expression
profiling data that could effectively distinguish COVID-19
positive from negative patients. Subsequently, KNN, SVM, MLP,
and RF classifiers were constructed for the genes after feature
selection, and the optimal classifier and its feature genes were
selected based on the IFSmethod. Finally, we identified 24 feature
genes, and based on the expression data of 24 feature genes, we
performed PCA of the samples, and PCA results showed that
PC_1 and PC_2 could effectively distinguish COVID-19 positive
and negative samples. In addition, we performed GO and KEGG
enrichment analyses of 24 feature genes, and the results showed
that these feature genes were mainly gathered in biological
functions such as viral transcription, viral gene expression,
and pathways such as Coronavirusdisease-COVID-19. Therefore,
combining all the results of bioinformatics analysis, the COVID-
19 classifier of 24 feature genes was obtained in this study, while
we reasonably speculated that the 24 feature genes screened
in this study are expected to be novel diagnostic biomarkers
for COVID-19.

Timely diagnosis of COVID-19 is essential for epidemic
prevention and control, so identification of accurate diagnostic
biomarkers is also an essential study for epidemic prevention
and control. Feng et al. (21) constructed a machine learning
diagnostic model using algorithms such as LASSO, AdaBoost,
decision tree, and logistic regression based on patient clinical
information to assist early COVID-19 diagnosis. The study by
Kukar et al. (22) used machine learning methods to construct a

Frontiers in Public Health | www.frontiersin.org 3 June 2022 | Volume 10 | Article 926069

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Song et al. COVID-19 Novel Diagnostic Markers

FIGURE 2 | PCA and cluster heatmap analysis based on feature genes in the KNN classifier. (A) PCA shows the classification performance of the KNN classifier in

COVID-19 negative (red) and positive (green) populations. (B) Cluster heatmap showing the expression of feature genes in the KNN classifier. Red indicates high

expression and green indicates low expression.

FIGURE 3 | Gene enrichment analyses. (A) Bubble plots for GO enrichment analysis of 24 feature genes. (B) Bubble plots for KEGG enrichment analysis of 24 feature

genes. The bubble size in the figure indicates the gene data in teams, and the color indicates the p-value, and the red the color, the smaller the p-value.

COVID-19 diagnostic model based on blood routine parameters,
which is complementary to chest CT and PT-PCR molecular
diagnostics and improves COVID-19 diagnostic efficiency. Our
study used the XGBoost algorithm to select feature genes in
the expression profiles of throat swabs in positive patients,
constructed classifiers such as MARS, KNN, SVM, MIL, and RF,
and subsequently selected classifiers with optimal MCC values by
the IFS method. At present, the conventional detection method
of COVID-19 is nucleic acid detection, and the diagnostic
biomarkers identified in this study are expected to improve the

drawbacks of existing commercial nucleic acid detection kits and
improve detection accuracy.

The optimal 24 feature genes, which were further analyzed
by consulting the retrieved literature, we found that four genes
(XAF1, OAS2, CES1, RPS8) have been reported in COVID-
19. Gao et al. (23) found that XAF1 was abnormally strongly
expressed in COVID-19 patients and positively correlated with
the expression of ARS-CoV-2 invasion-related genes (ACE2,
TMPRSS2, CTSB, and CTSL). In contrast, XAF1 was found to
be associated with SARS infection by Park and Harris (24). A
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recent study found that OAS2 belongs to a subset of interferon-
stimulated genes, and OAS2 can be regarded as a potential
candidate for a drug target in COVID-19 therapy (25). The
study by Li et al. (26) found that CES1 can hydrolyze tenofovir
alafenamide (TAF), and effectively hydrolyzed TAF is significant
for treating respiratory virus infection. In addition, Vastrad et al.
(27) identified 10 SARS-CoV-2/COVID-19 diagnostic markers
such as RPS8 using bioinformatics analysis methods. Also,
several ribosomal proteins (RPL family members) contributing
to protein synthesis were screened out. A report went that
SARS-CoV-2 infection could result in ribosome dysfunction (28),
giving us a hint that RPLs were affected at molecular degree. In
combination with previous reports, it can be seen that some of
the 24 feature genes are closely related to COVID-19. Finally,
we performed GO and KEGG enrichment analyses, and the
results showed that these feature genes were mainly enriched in
biological functions such as viral transcription and viral gene
expression as well as pathways such as Coronavirusdisease-
COVID-19. We used bioinformatics methods to screen some
genes that play an essential role in COVID-19 infection,
which have also been reported as COVID-19-related genes in
the existing literature. Even though it takes little time and
hardly any money to detect COVID-19, some critical problems
remain, like false positive case which concerns the public
a lot. The combined various testing methods are urgently
needed to remove false positive cases. Our study comes just in
handy to provide some insights for developing novel strategy
for COVID-19 diagnosis, which can definitely enrich current
diagnostic tools.

CONCLUSION

However, there are limitation in our study. First, this study is
a retrospective study based on public databases, and no clinical
samples are used to verify the performance of this classifier.
Second, even if the mined genes were practically used for
COVID-19 diagnosis, it is relatively costing to analyze 24 genes
for one sample. Considering the limitations, we are planning
to establish sample library and validate our model based on
our collected samples. Overall, we mined optimal COVID-
19 diagnostic biomarkers using machine learning algorithms,
and our study, in combination with existing commercial

nucleic acid detection kits, promises to improve COVID-19
detection accuracy.
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