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Abstract: Long non-coding RNAs (IncRNAs) play critical roles in human cancers. HOXA11 anti-sense
RNA (HOXA11-AS) is an IncRNA belonging to the homeobox (HOX) gene cluster that promotes
liver metastasis in human colon cancer. However, its role and mechanism of action in human oral
squamous cell carcinoma (OSCC) are unclear. In this study, we investigated HOXA11-AS expression
and function in human OSCC tissues and cell lines, as well as a mouse model of OSCC. Our analyses
showed that HOXA11-AS expression in human OSCC cases correlates with lymph node metastasis,
nicotinamide adenine dinucleotide (NAD)(P)H: quinone oxidoreductase 1 (NQO1) upregulation, and
dihydronicotinamide riboside (NRH): quinone oxidoreductase 2 (NQO2) downregulation. Using
the human OSCC cell lines HSC3 and HSC4, we demonstrate that HOXA11-AS promotes NQO1
expression by sponging microRNA-494. In contrast, HOXA11-AS recruits zeste homolog 2 (EZH2) to
the NQO2 promoter to suppress its expression via the trimethylation of H3K27. The upregulation of
NQOT1 enzymatic activity by HOXA11-AS results in the consumption of flavin adenine dinucleotide
(FAD), which reduces FAD-requiring glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity
and suppresses glycolysis. However, our analyses show that lactic acid fermentation levels are
preserved by glutaminolysis due to increased malic enzyme-1 expression, promoting enhanced
proliferation, invasion, survival, and drug resistance. In contrast, suppression of NQO?2 expression
reduces the consumption of NRH via NQO2 enzymatic activity and increases NAD levels, which
promotes enhanced stemness and metastatic potential. In mouse tumor models, knockdown of
HOXAT11-AS markedly suppressed tumor growth and lung metastasis. From these findings, targeting
HOXA11-AS may strongly suppress high-grade OSCC by regulating both NQO1 and NQO2.
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1. Introduction

The worldwide incidence of oral squamous cell carcinoma (OSCC) is 6.2% and 3.6% in
men and women, respectively, with corresponding mortality rates of 3.3% and 1.6% [1]. The
frequency of this disease continues to increase [2], which is cause for concern as the 5-year
survival rate for OSCC is approximately 60%, and the prognosis is poor in the advanced
stages [3]. In recent years, drug therapy for head and neck squamous cell carcinoma
has progressed rapidly. OSCC is typically treated with cytotoxic anticancer drugs, such
as those based on platinum (cisplatin, carboplatin) and taxane (docetaxel, paclitaxel),
but immune checkpoint inhibitors, such as epidermal growth factor receptor tyrosine
kinase inhibitors (cetuximab), and anti-programed cell death-1 antibodies (nivolumab and
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pembrolizumab), are also available [4]. However, the prognosis for high-grade OSCCs
remains poor. Anticancer drugs offer clear benefits for the treatment of this cancer, which
makes the identification of new molecular therapeutic targets for OSCC an urgent issue.

Homeobox (HOX) genes play an important role in embryonic development and car-
cinogenesis. There are 39 HOX genes in four clusters in humans, and each cluster also
contains numerous non-coding RNAs that do not code for proteins, including several long
non-coding RNAs (IncRNAs), such as HOXA11-AS anti-sense RNA (HOXA11-AS), that are
dysregulated in cancer [5]. The 1628 bp long HOXA11-AS gene produces an IncRNA that
is involved in the growth and metastasis of malignant tumors [6], and has been reported
to promote colon cancer liver metastasis [7]. HOXA11-AS functions as a protein scaf-
fold for polycomb repressive complex-2, lysine-specific histone demethylase-1, and DNA
methyltransferase-1, forming an RNA-protein complex that epigenetically modifies chro-
mosomes in the nucleus. HOXA11-AS also sponges miRNAs as a competing endogenous
RNA [8]. Furthermore, HOXA11-AS epigenetically regulates genetic expression through its
action with EZH2. [9].

The quinone oxidoreductases nicotinamide adenine dinucleotide (NAD)(P)H: quinone
oxidoreductase 1 (NQO1) and dihydronicotinamide riboside (NRH): quinone oxidoreduc-
tase 2 (NQO2) are flavoproteins. NQO1 catalyzes metabolic detoxification and protects
cells from redox cycling and oxidative stress, whereas the function of NQO2 is unclear [10].
Their cofactor and substrate affinities are also different. NQO1 requires NAD(P)H as an
electron donor, whereas NQO2 requires NRH. NQO1 is overexpressed in many cancers and
is involved in carcinogenesis, drug resistance, and cancer progression [11,12]. In contrast,
decreased expression of NQO2 correlates with liver metastasis in colorectal cancer [7].
HOXA11-AS is involved in NQO2 downregulation to enhance metastasis [7], but the mech-
anism by which it regulates the expression of NQO2 is unclear. Both NQO1 and NQO2 are
oxidative stress-related genes; HOXA11-AS has been reported to repress NQO2 expression,
whereas the role of HOXA11-AS in NQOI1 expression is unclear. Furthermore, the roles of
HOXA11-AS and NQOs in OSCC remain poorly understood.

In this study, we elucidated the roles and interactions of HOXA11-AS and NQOs in
OSCC, and investigated their potential as therapeutic targets.

2. Results
2.1. Expression of HOXA11-AS and NQOs in Human OSCCs

We first examined the expression of HOXA11-AS and NQOs in tissues from 16 OSCCs
(Figure 1). HOXA11-AS expression correlated with the degree of lymph node metastasis, as
did NQOT1 expression, whereas NQO?2 levels showed an inverse correlation (Figure 1A).
Comparing the expression of NQO1, NQO2, and HOXA11-AS in lymph node metasta-
sis negative cases (pNO0) and positive cases (pN1-3), all showed significant differences
(Figure 1B). Regression analysis results showed that there was a direct correlation between
NQO1 and HOXA11-AS expression, whereas NQO?2 exhibited an inverse correlation with
HOXA11-AS expression (Figure 1C,D).
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Figure 1. Relationship between HOXA11-AS and NQO1 or NOQ2 in 16 OSCC cases. (A) Relative
mRNA expression of NQO1, NQO2, and HOXA11-AS. (B) Relationship between nodal metastasis
and expression (T/N ratio) of NQO1, NQO2, and HOXA11-AS. Statistical differences were calcu-
lated by unpaired t-test with Welch correction. (C) Relationship of expression (T/N ratio) between
HOXA11-AS and NQOI1. (D) Relationship of expression (T/N ratio) between HOXA11-AS and NQO2.
Regression analysis was performed using Pearson’s r-test. Error bars indicate the SD calculated
using Student’s t-test from three independent trials. OSCC, oral squamous cell carcinoma; T/N
ratio, tumor-to-normal ratio; NQO1, NAD(P)H: quinone oxidoreductase 1, NQO2, NRH: quinone
oxidoreductase 2; pNO, no nodal metastasis; pN1, metastatic node <3 cm; pN2, metastatic node
3-6 cm; pN3, metastatic node >6 cm or >3 cm with extranodal invasion [13].

2.2. Role of HOXA11-AS in NQO1 Activation in Human OSCC Cell Lines

Next, we determined the expression of HOXA11-AS and the NQOs in the human
OSCC cell lines HSC3 (highly metastatic) and HSC4 (poorly metastatic). We observed
higher expression of HOXA11-AS and NQO1, but lower expression of NQO2, in HSC3
compared to HSC4 cells (Figure 2A). When HOXA11-AS was knocked down in HSC3 cells
using siRNA, NQO1 expression decreased to 25% of that in the siControl (siC) cells, but
NQO2 expression increased by 2.5-fold (Figure 2B).

We speculated that the ability of HOXA11-AS to upregulate NQO1 might be due to
its role as a microRNA sponge and we therefore examined the effect of knocking down
HOXA11-AS in HSC3 cells on the expression of nine types of miRNAs that have previously
been reported to upregulate NQO1 [14-22]. Our results showed that only miR-494 expres-
sion was enhanced by HOXA11-AS knockdown (Figure 2C). Knocking down miR-494 in
HSC3 cells increased NQO1 expression but did not alter NQO2 expression (Figure 2D).
When we examined the effect of miR-494 on NQO1 activity, we observed that the miR-
494 mimic decreased NQO1 activity, whereas the miR-494 inhibitor increased its activity
(Figure 2E). Furthermore, NQO1 activity was decreased by HOXA11-AS knockdown alone
but was enhanced when HOXA11-AS knockdown was combined with the miR-494 inhibitor
(Figure 2F).
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Figure 2. Roles of HOXA11-AS in expression of NQO1 and NQO?2. (A) Expression of HOXA11-
AS, NQO1, and NQO2 RNAs in HSC3 and HSC4 human OSCC carcinoma cell lines. (B) Effect of
knockdown of HOXA11-AS on expression of HOXA11-AS, NQO1, and NQO2 RNAs in HSC3 cells.
(C) Effect of knockdown of HOXA11-AS on expression of various microRNAs associated with NOQ1
expression in HSC3 cells. The references are shown in Table 1. (D) Effect of inhibiting miR-494 on the
expression of miR-494, NQO1, and NQO2 in HSC3 cells. (E) Effect of miR-494 mimic and miR-494
inhibitor in HSC3 cells. (F) Effect of HOXA11-AS knockdown and miR-494 inhibition on NQO1
activity. (G) Effect of EZH2 knockdown on expression of EZH2, NQO1, and NQO?2 in HSC3 cells.
(H) Chromatin immunoprecipitation of NQO2 in HOXA11-AS knockdown HSCS3 cells. Error bars
indicate the SD calculated using Student’s ¢-test from three independent trials. Asterisk, p < 0.05.
OSCC, oral squamous cell carcinoma; NQO1, NAD(P)H: quinone oxidoreductase 1, NQO2, NRH:
quinone oxidoreductase 2; RQ, relative quantity; siHOXA, small interfering RNA for HOXA11-AS;
siC, control small interference RNA; 494 mimic, miR-494 mimic; 494 inh, miR-494 inhibitor; EZH2,
enhancer of zeste homolog 2; siEZH2, short interference RNA for EZH2; H3K27me3, trimethylation
of histone H3 at lysine 4.
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Table 1. Primer sets.

Gene Name Gene ID Forward (5'-3') Reference
Promoter DNA
NQO2 promoter AY334547.1 Upper TGGCATCTCACAAAGGACAG
Lower GCCGCTGGTGTACTGGTATT
RNA
nucleostemin (NS) BC001024.2 Upper ATTGCCAACAGTGGTGTTCA
Lower AATGGCTTTGCTGCAAGTTT
CD44 FJ216964.1 Upper CATTCAAATCCGGAAGTGCT
Lower GTTGCCAAACCACTGTITCCT
NQO1 BC007659.2 Upper AAAGGACCCTTCCGGAGTAA
Lower CCATCCTTCCAGGATTTGAA
NQO2 BC006096.2 Upper CACACCAGGAACCCAAGTCT
Lower TTGTAGGCTTCGTGGGTTTC
ACTB NM_001101.3 Upper GGACTTCGAGCAAGAGATGG
Lower AGCACTGTGTTGGCGTACAG
IncRNA
HOXA11AS NR_002795.2 Upper TCTCCTGGAGTCTCGCATTT
Lower TCGGAAGTGACCATGAATGA
miRNA
mir-128 NR_029672.1 Upper GCCGTAGCACTGTCTGAGAG [14]
Lower GCAGCTGAAAAAGAGACCGG
mir-140 NR_029681.1 Upper TGTGTCCTGCCAGTGGTTTT [15]
Lower GTCCGTGGTTCTACCCTGTG
mir-144 NR_029685.1 Upper AGTTTGCGATGAGACACTACAGT [16]
Lower GGTGCCCGGACTAGTACATC
mir-145 NR_029686.1 Upper CTTGTCCTCACGGTCCAGTT [17]
Lower TTCCTGGGAAAACTGGACCG
mir-200a NR_029834.1 Upper AGCATCTTACCGGACAGTGC [18]
Lower TGGGAAATCCAGCACTGTCC
mir-450b LM609945.1 Upper AAGTGTATTGGGATCATTTTGCA [19]
Lower ACTATGGATGCAAAATGATCCCA
mir-494 NR_030174.1 Upper CTCGAAGGAGAGGTTGTCCG [20]
Lower AGAAGACAACACGGACAACCT
mir-592 NR_030323.1 Upper GCGATGATGTGTTGTGATGGC [21]
Lower CGTCATGATGTTGCGTCACC
mir-4523 NR_039749.1 Upper TCGGCTGTGTGAGGACTAGA [22]
Lower CTCGGCCGCCTCTAGTCC

2.3. Role of HOXA11-AS in NQO2 Repression in Human OSCC Cell Line

We next considered that the suppression of NQO2 expression by HOXA11-AS may
be due to an EZH2-mediated epigenetic mechanism and examined the effect of EZH?2
knockdown in HSC3 cells (Figure 2G). EZH2 knockdown promoted NQO?2 expression but
did not alter NQO1 expression. Moreover, the binding of EZH2 and trimethylated H3K27
to the NQO2 promoter DNA was reduced by HOXA11-AS knockdown (Figure 2F).

Together, our analyses indicate that HOXA11-AS sponging of miR-494 upregulates
NQOT1 expression, whereas NQO2 expression is suppressed by HOXA11-AS-induced EZH2
inhibition of the NQO2 gene promoter and H3K27 trimethylation.

2.4. Effect of HOXA11-AS on Malignant Phenotypes of OSCC Cells

To examine the effects of HOXA11-AS on the malignant phenotype of OSCC cells, we
knocked down HOXA11-AS in HSC3 and HSC4 cells (Figure 3). HOXA11-AS knockdown
reduced cell proliferation and invasive capacity to a more pronounced extent in HSC3 cells
(Figure 3A,B). Apoptosis was increased in both cell types (Figure 3C), while sphere-forming
ability was decreased by knockdown of HOXA11-AS (Figure 3D), and the changes in both
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assays occurred to a greater degree in HSC3 compared to HSC4 cells. Furthermore, when
sensitivity to CDDP was examined, sensitivity was enhanced in both cells (Figure 3E,F).

A 2rg—e B . W sic
B siHOXA M SiHOXA
5 :
£ 100 2
o 5
3 w
3
50/ =
HsC3 HsC4
C 2 W sic D W sic
B siHOXA B siHOXA
— *
15 ]
g x
o g
D an i
% 10 2
o =
2 o
2 J
Q.
(7]
HsC3  Hsc4
E 120Hsc3 —e-siC F 120jHscs —e-siC
-&-siHOXA —-siHOXA
10 =
*
g s 80 .\ X
oy B \.\ IC50 =2.4
£ £ 60
3 IC50 =so.s7\ \ 3
§ 40 .\\ 3 40 1C50.5.0.39
7 21) FRURRRSE SERTR. FOO J.. Y.
0 ; 0 o)
0001 001 01 1 10 100 0.001 001 01 1 10 100
CDDP (ug/mL) CDDP (ug/mL)

Figure 3. Effect of HOXA11-AS knockdown on malignant phenotypes in OSCC cells. (A-D) Effect of
HOXA11-AS knockdown on cell growth (A), invasion (B), apoptosis (C), and sphere formation (D).
(Inset in (A)) Cell morphology. Scale bar, 50 um. (E,F) Effect of HOXA11-AS knockdown on sensitivity
to CDDP in HSC3 (E) and HSC4 (D) cells. Error bars indicate the SD calculated using Student’s t-test
from three independent trials. Asterisk, p < 0.05. OSCC, oral squamous cell carcinoma; siHOXA,
small interfering RNA for HOXA11-AS; siC, control small interfering RNA; CDDP, cisplatin.

2.5. Role of NQO1 in OSCC Cell Lines

NQOI1 requires FAD in enzymatic reactions. FAD concentration in the cytoplasm
increased with NQO1 knockdown (Figure 4A). In contrast, NQO1 knockdown increased
the activity of GAPDH, a cytosolic glycolytic enzyme, which requires FAD for its reaction
(Figure 4B). Extracellular lactate, which indicates glycolytic activity, increased (Figure 4C).
The expression of malic enzyme (ME)-1, an enzyme involved in glutaminolysis (an alter-
nate lactate fermentation pathway), was reduced by 38% following NQO1 knockdown
(Figure 4D). It has been suggested that NQO1 activity inhibits glycolysis and enhances
glutaminolysis through the promotion of ME1 expression. When HSC3 and HSC4 cells
were treated with ME1-inhibitory lanthanides [23], there was no change in FAD concentra-
tion and GAPDH activity, but extracellular lactate concentration decreased alongside ME1
repression (Figure 4A-D).
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Figure 4. Role of NQO1 in malignant phenotypes in OSCC cells. (A-D) Effect of NQO1 knockdown
or ME1 inhibition (LAN, 1 uM) for 48 h on FAD concentration (A), GAPDH activity (B), extracellular
lactate (C), and ME1 expression (D). (E-G) Effect of NQO1 knockdown or ME1 inhibition on cell
growth (E), invasion (F), and sphere formation (G). (H) Effect of NQO1 knockdown or ME1 inhi-
bition on expression of CD44 and NS. Error bars indicate the SD calculated using Student’s ¢-test
from three independent trials. Asterisk, p < 0.05. OSCC, oral squamous cell carcinoma; NQO1,
NAD(P)H: quinone oxidoreductase 1; siNQO1, small interfering RNA for NQO1; siC, control small
interfering RNA; LAN, lanthanide; ME, malic enzyme; FAD, flavin adenine dinucleotide; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; eLactate, extracellular lactate; NS, nucleostemin.

We also examined the roles of NQO1 and ME1 in mediating the malignant phenotypes
promoted by HOXA11-AS (Figure 4E-H). Cell proliferation, invasive ability, apoptotic
viability, sphere-forming ability, and expression of the stem cell markers CD44 and NS were
all suppressed by both NQO1 knockdown and MEI1 inhibition. The degree of suppression
was more pronounced in the presence of ME1 inhibition. Together, these results suggest
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that the promotion of malignant phenotypes by the HOXA11-AS-NQO1 axis is influenced
by glutaminolysis.

2.6. Role of NQO?2 in OSCC Cell Lines

To examine the action of NQO?2, we treated the OSCC cells with HOXA11-AS siRNA,
an NQO1 inhibitor (dicumarol), or an NQO2 inhibitor (529434) alongside HOXA11-AS
siRNA (to inhibit NQO2 activity upregulated by HOXA11-AS knockdown) (Figure 5). Our
analyses show that HOXA11-AS knockdown and NQOT1 inhibition resulted in a similar
suppression of cell growth, but HOXA11-AS knockdown + NQO?2 inhibition resulted in
only mild growth suppression (Figure 5A). Intracellular NAD concentration decreased in
response to HOXA11-AS knockdown and HOXA11-AS knockdown + NQO2 inhibition, but
there was very little change in the presence of the NQO1 inhibitor (Figure 5B). HOXA11-
AS knockdown and NQO1 inhibition suppressed invasion to the same extent; however,
HOXA11-AS knockdown + NQO?2 inhibition resulted in milder suppression of invasion
(Figure 5C). In contrast, apoptosis was increased by HOXA11-AS knockdown and HOXA11-
AS knockdown + NQO2 inhibition, but to a lesser extent by NQO1 inhibition (Figure 5D).
Furthermore, HOXA11-AS knockdown and HOXA11-AS knockdown + NQO2 inhibition
reduced the sphere-forming ability of the cells, but this tumor characteristic was only
slightly diminished by NQO1 inhibition (Figure 5E). The decreases in sphere-forming
ability shown in Figure 5E were rescued by the addition of NAD (Figure 5F).
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Figure 5. Differential roles of NQO1 and NQO2 in OSCC cells. To compare the roles of NQO1 and
NQO?2 in malignant phenotypes, cells were treated with siHOXA, NQO1-I (1 nM), or siHOXA+NQO2-I
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(15 nM) for 48 h. (A-E) Effects of these treatments on cell growth (A), NAD concentration (B), invasion
(C), apoptosis (D), and sphere formation (E). (Inset in (A)) Cell morphology. Scale bar, 50 um. (F) The
effect of NAD on sphere formation. Error bars indicate the SD calculated using Student’s t-test from
three independent trials. Asterisk, p < 0.05. OSCC, oral squamous cell carcinoma; NQO1, NAD(P)H:
quinone oxidoreductase 1; NQO2, NRH: quinone oxidoreductase 2; siHOXA, small interfering RNA
for HOXA11-AS; NQO1-I, NQO1 inhibitor (dicumarol); NQO2-I, NQO2 inhibitor (529434); NAD,
nicotinamide adenine dinucleotide.

These findings suggest that NQO1 overexpression is the main factor involved in
HOXA11-AS-mediated cell proliferation and invasion, while NQO2 suppression is involved
in the enhancement of stemness characteristics. Furthermore, our data also suggest that
the increased levels of NAD resulting from decreased NQO2 expression are involved in
promoting features of stemness.

2.7. Effect of HOXA11-AS Treatment of OSCC

Finally, we performed experiments in a mouse model to examine the potential of
HOXA11-AS as a therapeutic target (Figure 6). In the highly metastatic HSC3 subcuta-
neous tumor model, HOXA11-AS knockdown inhibited tumor growth by 25% more than
lanthanide inhibition of ME1, a putative mediator of NQO1 (Figure 6A). In contrast, in
the low metastatic HSC4 line which expresses low levels of HOXA11-AS, HOXA11-AS
knockdown only increased tumor growth by 11% over lanthanides (Figure 6B). When we
compared the effects of the treatments on mouse survival, we observed that lanthanide
treatment only increased the mean survival time of mice harboring HSC3 tumors by 2 days
compared to the control group, whereas the HOXA11-AS knockdown group exhibited an
increase in mean survival time of 12 days over a 7-week period, with 60% of the mice still
alive at the end of the experiment compared with 0% in the control and lanthanide groups
(Figure 6C). In contrast, in mice carrying HSC4 tumors, both the HOXA11-AS knockdown
and lanthanide groups displayed improved survival compared with the control group, but
there was no significant difference between them (Figure 6D).

In the lung metastasis model induced by tail vein inoculation, mice with HSC4 tumors
exhibited a decrease in lung weight of 7% in the lanthanide group and 22% in the HOXA11-
AS knockdown group (Figure 6E). In contrast, mice with HSC3 metastases displayed a
reduction in lung weight of 29% in the lanthanide group and 81% in the knockdown
group. NAD concentrations in mice with HSC3 tumors decreased by 17% following
lanthanide treatment, whereas a 79% decrease was observed with HOXA11-AS knockdown
(Figure 6F). In addition, lactate concentration decreased by 47% and 60% in the lanthanide
and knockdown groups, respectively.

Thus, mice harboring HSC3 tumors (that express high levels of HOXA11-AS) benefited
substantially more from HOXA11-AS knockdown with respect to both tumor growth and
metastasis than those with HSC4 tumors, which exhibit low HOXA11-AS expression. In
addition, compared to the lanthanide-mediated suppression of NQO1 alone, the inhibition
of both NQO1 and NQO2 by HOXA11-AS knockdown markedly enhanced the suppression
of tumor growth and metastasis, with a particularly strong effect in the latter.
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Figure 6. Effect of targeting HOXA11-AS on tumor growth and metastasis of OSCC cells.
(A,B) Subcutaneous HSC3 or HSC4 tumors were treated with liposome-encapsulated siHOXA11-AS
(20 pmol/mouse, i.p.) or lanthanide (0.5 umol/kg body weight, i.p.) on Day 1, 3, and 7. (Inset)
Immunostaining of NQO2. Scale bar, 50 um. (C,D) Survival of mice in “no treatment” control (None),
lanthanide, and siHOXA11-AS groups. (E) In the lung metastasis model, mice were treated with
siHOXA11-AS or lanthanide on Day 1, 3, and 7. (Inset) Immunostaining of NQO2. Scale bar, 50 pm.
(F) Intratumor concentration of NAD and lactate in the subcutaneous tumors. Error bars indicate
SD calculated using Student’s t-test for five mice. Asterisk, p < 0.05. OSCC, oral squamous cell
carcinoma; siHOXA, small interfering RNA for HOXA11-AS; LAN, lanthanide; NAD, nicotinamide
adenine dinucleotide.

3. Discussion

In this study, we examined the role of HOXA11-AS as a regulator of NQOs in OSCC.
Our findings show that HOXA11-AS had opposing effects on the NQOs, promoting NQO1
expression and suppressing the expression of NQO?2. The results showed that they pro-
moted proliferation, invasion, survival of cancer cells, induction of drug resistance, and
increased stemness, which in turn promoted OSCC progression and metastasis.

Our data indicate that the upregulation of NQO1 in HOXA11-AS-expressing cells is
mediated by the ability of the IncRNA to sponge miR-494, thus alleviating its suppression of
NQOI1. The action of “sponging”, when an IncRNA binds to a microRNA and suppresses its
action, is an important regulatory feature of IncRNAs [24]. HOXA11-AS has been reported
to act as a sponge for many microRNAs, including miR-454-3p (resulting in upregulation of
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c-Met expression) [25], and miR-148b-3p (thus upregulating IGFBP5) [26]. In contrast, miR-
494 is known to be sponged by several IncRNAs. Suppression of miR-494 by the IncRNA
PCAT29 promotes PTEN expression [27], while a similar action by the IncRNA SBF2-AS1
promotes FGFR2 expression [28]. The downregulation of NQO1 by miR-494 has been
shown to inhibit the Nrf2 signaling pathway [20], and we previously reported that miR-494
induces a quiescent state in cancer cells by suppressing oxidative phosphorylation [29].

Studies have demonstrated that IncRNAs such as HOXA11-AS function as protein
scaffolds for polycomb repressive complex 2, lysine-specific histone demethylase 1, and
DNA methyltransferase 1, as well as recruiting EZH?2 to the promoter DNA of genes,
thereby regulating epigenetic gene expression [8,30]. Our results revealed that, unlike
its upregulation of NQO1, HOXA11-AS recruited EZH2 to the NQO2 gene promoter to
suppress the expression of NQO2. Our data indicate that the regulation of NQO2 expression
involves H3K27 trimethylation of histones binding to the promoter DNA of the NQO2 gene.
H3K27me3 epigenetically represses gene expression [31]. It has been suggested that NQO2
is regulated by epigenetic expression [32], but this study indicated that its expression is
regulated by H3K3me3.

In our data, ME1 expression was induced along with NQO1 overexpression. This has
the effect of compensating for the reduction in the glycolysis caused by GAPDH activity
due to FAD consumption of NQO1 by glutaminolysis. Glutaminolysis provides a substrate
for lactate fermentation, and promotes anaerobic energy metabolism. Glutaminolysis is
elevated in cancer cells and correlates with cancer metastasis [33]. We previously reported
that in OSCC, enhanced glutaminolysis mediated by ME1 expression leads to budding,
enhanced stemness, induction of EMT, and acquisition of metastatic potential at the leading
edge of tumor invasion [23,34]. The results from this study indicate that HOXA11-AS-
mediated NQOT1 expression is one of the causes of ME1 upregulation.

It has been reported that decreased NQO?2 expression correlates with colorectal cancer
liver metastasis and lymph node metastasis [7,35]. NQO2 knockout mice developed
myelodysplastic syndrome as a result of bone marrow cell hyperplasia and decreased
apoptosis [36]. NQO2 differs from NQOL1 in that it requires NRH as a coenzyme [10]. NRH
is a precursor of NAD [37] and increases intracellular NAD levels [38,39]. Our experiments
showed that an increase in NQO?2 following HOXA11-AS knockdown resulted in a decrease
in NAD concentration. This suggests that NQO2 activation reduces NRH levels, resulting in
decreased NAD levels. NAD plays an important role as a coenzyme in energy metabolism
reactions, such as glycolysis, the TCA cycle, and oxidative phosphorylation, and is also
required for PARP-mediated DNA repair [40]. Studies have demonstrated that NAD
is required for the survival of cancer tissues and cancer stem cells [41,42]. Our study
also confirmed this, as we observed that a reduction in stemness caused by HOXA11-AS
knockdown was restored by NQO2 knockdown or NAD supplementation.

We examined the differential effects of these two NQOs by comparing the results
of inhibiting NQO1 with dicoumarol, and NQO2 with HOXA11-AS knockdown. Our
data showed that NQO1 promoted cell proliferation, invasive capacity, viability, and drug
resistance. In contrast, NQO2 enhanced stemness. HOXA11-AS induces a strong malignant
phenotype in OSCC cells by simultaneously upregulating NQO1 and downregulating
NQO2. In our therapeutic experiments using mouse models, knockdown of HOXA11-AS
markedly suppressed tumor growth and metastasis.

We compared the results of inhibition of NQO1 with dicoumarol and NQO2 with
HOXA11-AS knockdown to examine the differences in the actions of these two NQOs.
The results revealed that NQO1 promotes cell proliferation, invasive capacity, viability,
and drug resistance. In contrast, NQO2 promoted stemness, and HOXA11-AS induced a
strong malignant phenotype in OSCC cells by simultaneously upregulating NQO1 and
downregulating NQO2. In therapeutic experiments using mouse models, knockdown of
HOXA11-AS markedly suppressed tumor growth and metastasis.

Our data show that HOXA11-AS upregulates NQO1 expression by sponging miR-494
and downregulates NQO2 expression by EHZ2-mediated H3K27 trimethylation; over-
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expression of NQO promotes malignant phenotypes by promoting glutaminolysis, and
suppression of NQO2 expression enhanced cancer stemness by increasing intracellular
NAD levels. Furthermore, NQO1 plays a role in neutralizing oxidative stress and detox-
ification, which may promote cancer cell survival [10]. NQO1 upregulation and NQO2
downregulation are provided synchronously by HOXA11-AS, resulting in the phenotype
alterations described above and promoting cancer metastatic potential. The HOXA11-AS-
NQO1/NQO2 axis is emphasized as a novel metastasis-promoting mechanism in OSCC.
Oncogenic IncRNAs, which are upregulated in cancer, are expected to be diagnostic
markers, prognostic factors, and even novel therapeutic molecular targets [43]. HOXA11AS
is one of the 16 most dysregulated IncRNAs in head and neck cancer and has attracted
attention as a therapeutic target [44]. Attempts to apply IncRNA targeting to therapy have
included the use of antisense oligonucleotides and small molecules to block the functional
interactions between IncRNAs and proteins, and inactivation of IncRNA-encoding genes
and the transcripts based on the CRISPR-Cas system are under development [45]. Therefore,
we believe that HOXA11-AS may be a novel molecular target for the treatment of OSCC.

4. Materials and Methods
4.1. Surgical Specimens

Fresh surgical specimens frozen at —80 °C from 16 primary OSCCs treated at the Nara
Medical University Hospital were randomly selected for use in this study. Tumor stage
was determined using the TNM classification system [13], and the personal information of
the patients was anonymized by the staff. All procedures were performed in accordance
with the Ethical Guidelines for Human Genome/Gene Research enacted by the Japanese
Government and were approved by the Ethics Committee of Nara Medical University
(approval number 937, 20 October 2010).

4.2. Cell Culture

The human tongue squamous cell carcinoma cell lines HSC3 and HS5C4 were purchased
from the Health Science Research Resources Bank (Osaka, Japan). The cells were maintained
in Dulbecco’s modified Eagle medium (DMEM) containing 450 mg/dL glucose and 10%
fetal bovine serum in a 5% CO; atmosphere at 37 °C.

4.3. Reagents

These reagents were purchased from the indicated suppliers: miR-494 mimic and
miR-494 inhibitor (Invitrogen, Carlsbad, CA, USA); ME inhibitor, lanthanide (1 uM, WAKO,
Osaka, Japan) (Nakashima C, Cancer Sci. 2018); cisplatin (CDDP, WAKO); NQO1 inhibitor
(NQO1-I, dicumarol Sigma-Aldrich Chemical Co., St. Louis, MO, USA); NQO2 inhibitor
(NQO2-1, 529434, Sigma); and beta-NAD (MP Biomedicals, Inc., Irvine, CA, USA).

4.4. Cell Proliferation, Cell Infiltration, and Apoptosis

To assess cell proliferation, cell numbers were determined using an autocytometer
(CDA-1000;  Sysmex, Kobe, Japan) or MTS [3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. MTS assays were per-
formed using the Celltiter 96 Aqueous One Solution Cell Proliferation Assay kit (Promega
Biosciences, Inc., San Louis Obispo, CA, USA). Wound healing assays were performed to
assess cell infiltration. The area of cell migration was measured using digitally captured
images. In some experiments, the cells were treated with lanthanide for 48 h at 37 °C.
Apoptosis was assessed by examining 1000 cells stained with Hoechst 33342 dye (Life
Technologies, Carlsbad, CA, USA) and viewed using a fluorescent microscope.

4.5. Sphere Formation Assay

Cells (1000 cells/well) were seeded onto uncoated bacteriological 35 mm dishes
(Corning Inc., Corning, NY, USA) in 3D Tumorsphere Medium XF (Sigma) [46]. After seven
days of culture, images of the spheres were acquired using an inverted microscope coupled
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with a camera (Carl Zeiss, Gottingen, Germany). The captured images were analyzed using
a computer, and the number of spheres was counted using Image] software (version 1.52;
NIH, Bethesda, MD, USA).

4.6. Small Interfering RNA

Stealth Select RNAIi (siRNA) targeting human HOXA11-AS, NQO1, and EZH2 was
purchased from Sigma. AllStars Negative Control siRNA was used as the control (Qiagen,
Valencia, CA, USA). The cells were transfected with 10 nM siRNA using Lipofectamine
3000 (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
recommendations.

4.7. Reverse Transcription Polymerase Chain Reaction (RI-PCR)

Total RNA (1 pg) was used to synthesize cDNA using the ReverTra Ace quantitative
PCR (qPCR) RT kit (Toyobo, Osaka, Japan). The PCR reaction was performed according to
the manufacturer’s instructions. PCR products were electrophoresed on 2% agarose gels
and visualized using ethidium bromide. The primer sets used are listed in Table 1. Primers
were synthesized by Sigma-Aldrich (Ishikari, Japan).

4.8. gRT-PCR for IncRNA

Total cellular RNA was isolated from primary OSCC tissues using TRIzol reagent
(Invitrogen) and reverse-transcribed using the Prime Script RT reagent kit together with
gDNA Eraser (Perfect Real Time; Takara, Kyoto, Japan) in accordance with the manufac-
turer’s instructions. HOXA11-AS expression was analyzed using qRT-PCR, with reactions
performed in triplicate using a SYBR Green PCR kit (Takara). Glyceraldehyde3-phosphate
dehydrogenase (GAPDH) mRNA was used as the internal control. The primer sets are
listed in Table 1.

4.9. Detection of miRNA

A mirVana™ miRNA isolation kit was used to extract miRNAs, according to the
manufacturer’s protocol (Thermo Fisher Scientific). To quantify miRNA expression levels,
RT-PCR was performed using the TagMan miRNA reverse transcription kit (Applied
Biosystems) and Pri-miRNA Assay kit (Hs04225959_pri, Applied Biosystems) according to
the manufacturer’s protocols. The primer sets are listed in Table 1.

4.10. Protein Extraction

To prepare whole-cell lysates, the cells were washed twice with cold PBS and harvested.
The cells were lysed with 0.1% NP-40-added RIPA buffer (Thermo Fisher) [47]. Protein
assays were performed using the Protein Assay Rapid Kit (Wako).

4.11. Determination of Lactate, NAD, and FAD Concentrations, and Activity of NQO1 and
GAPDH

Concentrations of lactate, NAD, and FAD were determined using a D-lactate assay kit
(Cayman Chemical, Ann Arbor, MI, USA), NAD/NADH assay kit (Dojindo, Kumamoto,
Japan), and FAD ELISA kit (As One, Tokyo, Japan), respectively.

The activities of NQO1 and GAPDH were determined using NQO1 and GAPDH
activity assay kits (Abcam, Cambridge, UK), respectively. All reactions were performed
according to the manufacturer’s instructions.

4.12. Chromatin Immunoprecipitation Assay

A chromatin immunoprecipitation assay was performed in HSC3 cells using a com-
mercial kit (Sigma). After cross-linking with 1% formaldehyde at 37 °C for 10 min, the
cells were harvested in sodium dodecyl sulfate lysis buffer and the DNA was sheared
to fragments of 500 bp by sonication. Pre-cleared chromatin was incubated overnight
with antibodies against EZH2, H3K27me3, or non-specific IgG. Protein G-agarose beads
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were then added and incubated at 4 °C for 1 h. After reversing the cross-links, the DNA
was isolated and used for PCR. The specific primers used for PCR detection of the NQO2
promoter are shown in Table 1.

4.13. Animal Models

Male 5-week-old BALB/c nude mice were purchased from Japan SLC (Shizuoka,
Japan). Mice were maintained in accordance with the institutional guidelines approved by
the Committee for Animal Experimentation of Nara Medical University and the current
regulations and standards established by the Ministry of Health, Labor, and Welfare
(approval number 12047, 17 July 2017).

To prepare a subcutaneous tumor model, HSC3 and HSC4 cells (1 x 107 cells) sus-
pended in Hank’s balanced salt solution (100 pL, Sigma-Aldrich) were inoculated into the
scapular subcutaneous tissue of the mice. At week 4, the tumors were excised for analysis.
To prepare a lung metastasis model, HSC3 and HSC4 cells (1 x 10° cells) suspended in
Hank’s balanced salt solution (50 pL, Sigma-Aldrich) were inoculated into the caudal
vein. At week 4, the lungs were excised for analysis. Each experimental group contained
five mice.

For tumor treatment, lanthanide (0.5 umol/kg body weight in 200 uL) or HOXA11-AS
siRNA (Qiagen, 20 pmol encapsulated with liposome, Nippon-Oil&Fats Co., Tokyo, Japan)
was injected intraperitoneally on days 1, 3, and 7 [48].

4.14. Statistical Analysis

Statistical significance was assessed using Student’s t-test with the assumption of a
Gaussian distribution according to the Kolmogorov and Smirnov method or unpaired ¢-test
with Welch correction. Regression analysis was performed using Pearson’s r analysis with
the assumption of a Gaussian distribution. Analyses were performed using the InStat
software (GraphPad, Los Angeles, CA, USA). Survival curves were calculated using the
Kaplan-Meier model (StatView 4.5, Abacus Concepts, Inc., Berkeley, CA, USA). Differences
in survival times were calculated using the Cox proportional hazards model (StatView 4.5).
Statistical significance was defined as p < 0.05.
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Abbreviation

IncRNA Long non-coding RNA

HOX homeobox

HOXA11-AS HOX-A11 antisense

oscc oral squamous cell carcinoma

NQO1 NAD(P)H: quinone oxidoreductase 1

NQO2 NRH: quinone oxidoreductase 2

EZH?2 enhancer of zeste homolog 2

H3K27me3 trimethylation of histone H3 at lysine 4

CDDP cisplatin

LAN lanthanide

ME malic enzyme

FAD flavin adenine dinucleotide

GAPDH glyceraldehyde-3-phosphate dehydrogenase

NAD nicotinamide adenine dinucleotide
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