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Abstract

How a particular attribute of an organism changes or scales with its body size is known as

an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to

result from selection to maximize how vascular networks fill space yet minimize internal

transport distances and resistances. The West, Brown, Enquist (WBE) model argues that

these two principles (space-filling and energy minimization) are (i) general principles under-

lying the evolution of the diversity of biological networks across plants and animals and (ii)

can be used to predict how the resulting geometry of biological networks then governs their

allometric scaling. Perhaps the most central biological allometry is how metabolic rate

scales with body size. A core assumption of the WBE model is that networks are symmetric

with respect to their geometric properties. That is, any two given branches within the same

generation in the network are assumed to have identical lengths and radii. However, biologi-

cal networks are rarely if ever symmetric. An open question is: Does incorporating asymmet-

ric branching change or influence the predictions of the WBE model? We derive a general

network model that relaxes the symmetric assumption and define two classes of asymmetri-

cally bifurcating networks. We show that asymmetric branching can be incorporated into the

WBE model. This asymmetric version of the WBE model results in several theoretical pre-

dictions for the structure, physiology, and metabolism of organisms, specifically in the case

for the cardiovascular system. We show how network asymmetry can now be incorporated

in the many allometric scaling relationships via total network volume. Most importantly, we

show that the 3/4 metabolic scaling exponent from Kleiber’s Law can still be attained within

many asymmetric networks.

Author summary

We present a model for incorporating geometrically asymmetric branching into biological

resource distribution networks. Our work shows how space-filling and fluid flow princi-

ples constrain allowed branching morphologies within the context of our model.
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Simultaneously, we demonstrate that there is a wide range of asymmetrically branching

network architectures that still give rise to 3/4 metabolic scaling exponents.

Introduction

One of the pervasive characteristics of biology is that the metabolic rate, B, of an organism

scales with its body mass,M. When viewed across several orders of magnitude this relationship

is approximated by the power law,

B ¼ B0M
y ð1Þ

where B0 is a normalization constant, and θ, the allometric scaling exponent, tends to cluster

around the value of 3/4 [1–5]. This metabolic scaling relationship spans more than twenty five

orders of magnitude in mass, from respiratory complexes at 10-18 grams to the largest mam-

mals at 107 grams [6]. The mechanistic origin of the 3/4 scaling exponent has been one of the

longest running debates in biology [1, 7–11].

The West, Brown, and Enquist (WBE) model offers an alternative hypothesis for the origin

of allometric scaling exponents in biology, in particular the 3/4 exponent of metabolic scaling

[9]. The WBE model shows theoretically how numerous allometric scaling exponents are the

result of a repeated, or self-similar, branching architecture. The pattern to be repeated consists

of one parent branch and two or more child branches and is shown in Fig 1A. This pattern is

sometimes referred to as a branching node, or generator, and depending on the geometric

properties constitutes space-filling fractal [9, 12]. One of the appeals of the WBE model is that,

Fig 1. Diagram of symmetric and asymmetric bifurcations. Symmetric branching (A) is characterized by every branch within a given

generation j having equal values of radius and length. Positive asymmetry (B) is such that one child branch is larger than the other in both

radius and length. Negative asymmetry (C) is such that one child branch has a larger radius and shorter length while the other has a smaller

radius and greater length.

https://doi.org/10.1371/journal.pcbi.1005394.g001
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with relatively few starting assumptions, it predicts numerous biological allometric scaling

relationships within and across diverse organisms (such as plants and animals).

The WBE model for biological resource distribution networks has seen extensive applica-

tion across a wide range of scientific disciplines. Within the original context of cardiovascular

networks it has been used to further understanding regarding tumor growth [13], the tempera-

ture dependence of basic metabolic function on allometric scaling [14], and the limits of its

applicability under the constraint of finite-size networks [15]. Beyond cardiovascular net-

works, the WBE model has aided in the advancement of understanding respiratory networks,

plant vascular networks, ecosystem dynamics, and has even served as motivation for the study

of other observed allometries, such as the form and function of major metropolitan cities [9,

12, 16–20]. Of note in all of these extensions is the underlying principle that the network is

geometrically symmetric.

While the WBE model predicts the metabolic scaling exponent of θ = 3/4, several have ques-

tioned its assumptions and ability to explain the observed variation in metabolic scaling expo-

nents as well as capture the biological variation in organism form and function [10, 21, 22]. In

response, several studies have pointed to extensions of the WBE model to explain variation in

biological allometries and have shown how relaxation of some of its assumptions can indeed

account for observed variation in biological scaling [14, 15, 23, 24]. Nonetheless, it still is

unclear if the assumptions of how the WBE model characterizes hierarchical branching net-

works in biology hold across the diversity of life. A fundamental assumption of the theory is

that vascular networks exhibit symmetric branching, where every branch in a given generation

has identical geometric properties (namely radius and length). Branching symmetry is rarely,

if ever, the case within biology where vascular networks are observed to branch asymmetrically

[25–31].

Existing in nature are several biological examples of observed asymmetric branching pat-

terns that help to motivate our approach. In an early study focusing on casts of the human

heart, Zamir introduced a characterization of two branching strategies based on differences in

the scaling of vessel diameters. By measuring the differences in sibling branch radius (Fig 1)

with respect to the frequency of branching events, one can distinguish between so-called dis-
tributing vessels and delivering vessels. The former, which act to transport blood toward myo-

cardial zones, correspond to large differences in sibling radii; whereas the latter type,

responsible for transporting blood into the myocardial zones, correspond to small differences

in radius [26]. Recently, studies of the interplay between genetics and vascular morphology

have led to additional branching strategy classifications. In particular, a clear hierarchical pat-

tern is formed during the development of the mouse lung that starts with domain-type branch-

ing (“scaffolding”) and transitions to either planar-type branching (“edge” features), or

orthogonal-type branching (“surfaces” and “interiors”). The qualitatively defining characteris-

tics of these branching types are as follows: in domain-type branching there are large differ-

ences between sibling branch lengths (Fig 1); in planar and orthogonal there are little to no

differences between sibling branch characteristics, but in the former all branches exist in the

same geometric plane, whereas in the latter a rotation of roughly π/2 occurs at every branching

event [28]. At the whole-organism scale, the Zebrafish has become a remarkable standard for

the study of vascular form and development, owing to the translucent nature of its skin. A par-

ticularly stark feature of the Zebrafish vasculature is the presence of patterned asymmetric

branching in the intersegmental vessels originating from the dorsal vein [29].

The rarity of symmetric branching networks in biology violates a core assumption of the

WBE model and questions its validity. As all of the predictions of the WBE model are derived

from a symmetric network, an important question is, does incorporating asymmetry impact

the predictions of the model? However, the fact that approximate 3/4 scaling is observed
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within and across organisms characterized by asymmetric branching suggests that perhaps the

3/4 scaling may not depend on the degree of asymmetry exhibited [32].

The study of asymmetric branching patterns itself has a long history. At its earliest, asym-

metric branching was included in some of the first uses of energy minimization procedures in

studying the cardiovascular system [25, 33–35]. In these early studies, the energy minimization

procedures were imposed at the nodal level instead of the whole network level, where a node is

defined by the occurrence of a branching. Thus, the influence of branching asymmetry on bio-

logical scaling was not explored. More recently, asymmetric branching has been studied within

the context of leaf venation patterns, river branching, and both cardio- and plant vascular met-

abolic rates [32, 36]. Nonetheless, these studies do not provide detailed analytic treatments of

the role of asymmetry in governing the scaling behavior of biological networks.

Here, we present a more general model for the origin of allometric scaling laws. We present

a theoretical foundation for incorporating asymmetric branching in the WBE framework for

the cardiovascular system. As a result, this model can better capture the diversity of network

morphologies observed in biology by allowing for generational variation in the values of

branch radii and lengths between sibling branches. Our model shows how different scaling

exponents, such as 2/3 and 1, can be associated with different levels of asymmetry, where 2/3 is

the value associated with the idea that metabolic rate is limited by the ability of an organism to

dissipate heat [37], and 1 is the value associated with isometric scaling. We also make predic-

tions regarding a generational transition in asymmetry type that is associated with the transi-

tion in fluid flow from pulsatile to constant. Lastly, we show that there exists a wide range of

asymmetric network morphologies that result in 3/4 metabolic scaling.

Models

Defining asymmetry

Our work starts with the same assumptions outlined in Ref. [9, 15]. However, we relax the

assumption that child branches arising from a parent branch have equivalent lengths and radii

(Fig 1A). As shown in Fig 1 there are two possible asymmetric network types. A positive asym-

metry network is one in which the larger radius is paired with the larger length and the smaller

radius with the smaller length (Fig 1B). A negative asymmetry network is one in which the

larger radius is paired with the smaller length and the smaller radius is paired with the larger

length (Fig 1C).

For any pair of two sibling branches, the asymmetric radii (rj,μ, rj,ν) and lengths (lj,μ, lj,ν) can

be expressed in terms of their averages (rj, lj) and differences (Δrj, Δlj) as,

lj;m ¼ lj þ Dlj lj;n ¼ lj � Dlj
rj;m ¼ rj þ Drj rj;n ¼ rj � Drj

ð2Þ

where,

lj ¼
lj;m þ lj;n

2
Dlj ¼

lj;m � lj;n
2

rj ¼
rj;m þ rj;n

2
Drj ¼

rj;m � rj;n
2

ð3Þ

Here the subscript j denotes the branching generation within the network, and the subscripts μ
and ν distinguish the two child branches, as shown in Fig 1. In this formalism, the differences

Δlj and Δrj can vary from positive to negative, and in so doing allow for smooth transitions

between the two different asymmetry types. For example, in Fig 1B, Δrj> 0 and Δlj> 0, which
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corresponds to positive asymmetric branching, whereas in Fig 1C, Δrj> 0 but Δlj< 0, which

corresponds to negative asymmetric branching. Note that, due to the definitions in Eq (2), the

described examples are effectively identical to the scenarios in which Δrj< 0 and Δlj< 0 for

positive asymmetry, and Δrj< 0 but Δlj> 0 for negative asymmetry.
Next, we define the scale factors between the physical child and parent dimensions,

gj;m ¼
ljþ1;m

lj
gj;n ¼

ljþ1;n

lj

bj;m ¼
rjþ1;m

rj
bj;n ¼

rjþ1;n

rj

ð4Þ

Using our definitions for the big and small radii and lengths from Eq (2), and introducing the

average scale factors βj = rj+1/rj and γj = lj+1/lj, and the difference scale factors Δβj = Δrj+1/rj and

Δγj = Δlj+1/lj, we can express the quantities in Eq (4) as,

gj;m ¼ gj þ Dgj gj;n ¼ gj � Dgj

bj;m ¼ bj þ Dbj bj;n ¼ bj � Dbj

ð5Þ

The difference scale factors will come to represent the measures of asymmetry exhibited

within a network. Specifically, Δβj = Δγj = 0 represents maximally symmetric branching (see

Fig 2A and 2B), and Δβj� ±βj and Δγj� ±γj represent maximally asymmetric branching (see

Fig 2C and 2D).

The benefits of defining asymmetry in the manner described above are twofold. At the the-

oretical level this will allow us to express all results in terms of contributions due to symmetri-

cally (β and γ) and asymmetrically (Δβ and Δγ) defined quantities. Furthermore, we are not

restricted to any particular pair of values for the scale factors (e.g. γμ and γν). That is, any pair

of scale factors can be described by their average and difference scale factors. At the experimen-

tal level this allows for an easy way to measure asymmetry. Traditionally, in studies conducted

under the symmetric paradigm, the values of the scale factors are calculated as nodal averages,

or alternatively, distributions of the scale factors for entire networks are collected, where the

means of the distributions are meant to represent the average value of the scale factor for that

network [30, 36, 38, 39].

An alternative formulation for characterizing asymmetry can also be made. In this

approach, the physical scale factors are expressed in terms of the symmetricWBE scale factors

and perturbations from those values. Starting with an analogous form of Eq (2), we can write

the physical lengths and radii of a pair of sibling branches as,

lj;m ¼ ~l j þ D~l j;m lj;n ¼ ~lj � D~l j;n
rj;m ¼ ~r j þ D~r j;m rj;n ¼ ~rj � D~rj;n

ð6Þ

We can express the above in terms of scale factors using Eq (4), to arrive at,

gj;m ¼ ~gWBE þ D~g j;m gj;n ¼ ~gWBE � D~g j;n

bj;m ¼
~bWBE þ D~b j;m bj;n ¼

~bWBE � D~b j;n

ð7Þ

where ~bWBE and ~gWBE are the symmetric WBE scale factors and D~g j;m, D~g j;n, D~b j;m and D~b j;n are

subsequently called the symmetric-difference scale factors. Furthermore, ~bWBE ¼ ð1=2Þ
1=2

for

pulsatile flow and (1/2)1/3 for constant laminar flow, and ~gWBE ¼ ð1=2Þ
1=3

for both types of

flow, while the symmetric-difference scale factors are free to vary. While this approach is
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beneficial in that it allows for results to be expressed strictly in terms of deviations from the

symmetricWBE results, it does not as easily distinguish between positive and negative type

asymmetry, and in certain circumstances may even obscure the presence (or absence) of

asymmetry all together. For example, should both child branches have physical length scale

factors of 0.8, then the symmetric-difference length scale factors would have non-zero values

of D~g j;m ¼ 0:8 � ~gWBE and D~g j;n ¼ ~gWBE � 0:8. For a further exploration of this approach, see

S3 Text.

Results

Of significant interest is examining the effect of asymmetric branching on the predicted values

of the metabolic scaling exponent θ. As we are still working under the main principles of the

symmetricWBE model, we focus our study on the class of asymmetric networks that minimize

energy-loss during fluid transport, and that have a branching architecture that can be

Fig 2. Rendering of Selected Networks. An assortment of networks are presented with associated average (β, γ) and difference (Δβ,Δγ) scale

factors, and metabolic scaling exponents (θ). Note that in all of these cases there is no switching of asymmetry type either within or across

generations, and the scale factors are assumed to be constant both within and across branching generations. Networks (A) and (B) represent the

symmetric limits under the constraints associated with pulsatile flow (Eqs (16) and (17)) and constant flow (Eqs (20) and (21)), respectively. Networks

(C) and (D) represent the two extreme asymmetric limits. Networks (E) through (J) exhibit varying degrees of branching asymmetry while satisfying

the constraints associated with pulsatile flow. Each of these tree networks are represented as points that fall along the 3/4 metabolic scaling contour

as shown in Fig 4. Networks (I) through (P) satisfy constant laminar flow, and they also fall along the 3/4 metabolic scaling contour as shown in Fig 5.

https://doi.org/10.1371/journal.pcbi.1005394.g002
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characterized as a space-filling fractal. These principles act to constrain the allowed values of

the scale factors by forcing them to covary according to specific mathematical relationships at

the nodal, or generational, level. We do this for networks consisting of either pulsatile flow, or

constant laminar flow. The specifics of the techniques for minimizing energy loss and impos-

ing space-filling are described in our Methods section. The results are summarized in Fig 3,

and presented at length in the Nodal level results section.

Fig 3. Results of Minimizing Network Energy Loss. In the pulsatile flow regime (A) either network asymmetry type is allowed, but both must

follow the area-preserving and space-filling principles at the nodal level, as per Eqs (16) and (17). In this regime switching between asymmetry

types can occur both within and across generations. In the constant laminar flow regime (B) only positive network asymmetry is predicted, and the

scale factors must follow the space-filling and Murray’s Law relations, as per Eqs (20) and (21). We also find that the asymmetric version of

Murray’s Law allows for an expression of the total cross-sectional area, A, of any two child branches in terms of the parent area and the average

and difference scale factors, showing that asymmetric branching allows for a toggling between branching with increasing area and constant area.

Lastly, the average radius and length scale factors are predicted to be equal, as well as the difference radius and length scale factors. When

combining these two results with the space-filling and Murray’s Law expressions, we can make a strict prediction of the metabolic scaling exponent

θ = 1 for the constant laminar flow regime.

https://doi.org/10.1371/journal.pcbi.1005394.g003
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Metabolic scaling

Deriving the exponent. Here we outline the calculation for the metabolic scaling expo-

nent for asymmetric networks under the following assumptions:

1. The networks are space-filling fractals that minimize energy-loss such that Eqs (16) and

(17) are satisfied for pulsatile flow, and Eqs (20) and (21) are satisfied for constant laminar

flow.

2. No mixing of asymmetry type occurs either across, or within, all branching generations.

3. The scale factors are assumed to be constant both across, and within, all branching

generations.

4. Truncation effects associated with the terminal capillary size are neglected. Specifically, we

assume NC� 2N, where NC is the number of terminal capillaries, and N the total number of

generations.

While biologically realistic organisms may exhibit some variation in asymmetry type within

and across generations, non-constant scale-factors, and truncation due to finite-size effects,

our assumptions still provide general insight into how asymmetric branching influences the

metabolic scaling exponent as a first order approximation.

Similar to the symmetricWBE model, the metabolic scaling exponent θ can be related to the

whole-organism mass M by,

y ¼
ln ðNCÞ

ln ðM=M0Þ
ð8Þ

where M0 is a normalization constant, and NC is the total number of capillaries [9, 15]. This

relationship is a result of the core WBE assumption that many organism properties scale allo-

metrically with organism vasculature. In the context of the cardiovascular system, we are inter-

ested in the scaling of the number of terminal branches or capillaries, NC, with body mass, M,

or NC/Mθ. Furthermore, it can be shown that the whole-organism mass is proportional to

the total network volume, M/ VTOT, which comes as a result of the energy-loss minimization

procedure (see S1 Text).

To derive an expression for the metabolic scaling exponent for an asymmetric network, we

must begin with the total volume of the network. In our Methods section we derive such a

relationship and present here the result. Having utilized assumptions 1–4, the total volume of

a vascular network can be approximated as,

VTOT �
NCVC

b
2

m
gm þ b

2

n
gn

h iN ð9Þ

where VC ¼ pr2
ClC is the volume of a capillary. Using M/ VTOT to substitute the above expres-

sion into Eq (8) gives,

y �
ln ð2Þ

ln ð2Þ � ln b
2

m
gm þ b

2

n
gn

� � ð10Þ

Up until this point we have not chosen a particular characterization of asymmetry with

which to work. That is, either of the average/difference or the symmetric/difference formalisms

may be substituted for the physical scale-factors. We will adopt the average/difference formal-

ism. From the definitions for the scale factors in Eq (4), we can express the above in terms of
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the average and difference scale factors,

y � �
ln ðb2

gÞ

ln ð2Þ
þ

ln 1þ 2DbDg

bg
þ Db2

b2

� �

ln ð2Þ

8
<

:

9
=

;

� 1

ð11Þ

where the first term in the above expression yields the 3/4 metabolic scaling exponent result in

the symmetric limit that β = (1/2)1/2, γ = (1/2)1/3, and Δβ = Δγ = 0.

Eq (11) is convenient in that it clearly highlights the symmetric and asymmetric contribu-

tions to the metabolic scaling exponents. However, it is limited in that it does not make trans-

parent the explicit covariation between the average and difference scale factors that results from

our first assumption. To examine the metabolic scaling exponent in this scenario, we have

graphed Eq (11) in Figs (4) and (5) for when the average and difference scale factors are con-

strained to satisfy Eqs (16) and (17) for pulsatile flow and Eqs (20) and (21) for constant laminar

flow. In these graphs the value of the metabolic scaling exponent is plotted as a function of the

difference scale factors Δβ and Δγ. Positive asymmetry is presented in the first and third quad-

rants where Δβ and Δγ are both positive (or both negative), and negative asymmetry is in the

second and fourth quadrants where Δγ is positive (or negative), but Δβ is negative (or positive).

In both Figs (4) and (5) we can see that the metabolic scaling exponent depends heavily on

asymmetry, ranging in value from 0 to 1. These limits are of interest when considering meta-

bolic rate per mass, where sub-linear scaling indicates that more massive organisms are more

efficient energy converters per mass. Thus, a scaling exponent of 1 represents linear scaling

and zero advantage in greater size, while an exponent of 0 represents the extreme limit of sub-

linear scaling and maximal advantage in greater size.

It is important to connect these limits in organismal metabolic performance to physical net-

work manifestation. The network corresponding to the limit of θ = 0 is shown in Fig 2D. The

values of the physical scale factors here are: βμ = 1, βν = 0, γμ = 0, and γν = 1. These values pro-

duce a highly non-physical network due to the fact that at every node one of the child branches

has zero length, while the other child branch has zero diameter. On the other hand, the net-

work corresponding to the limit of θ = 1 is shown in Fig 2C. Here the values of the physical

scale factors are: βμ = 1, βν = 0, γμ = 1, and γν = 0. This limit produces a network that takes on

the shape of one singular cylinder with constant radius.

Metabolic scaling in a pulsing flow network. The extent to which asymmetry in radius or

length can influence the metabolic scaling exponent for values of θ between 0 and 1 varies for

each of the cases. For the region of the cardiovascular network characterized by pulsatile flow,

we see that 3/4 metabolic scaling can be maintained under the presence of asymmetric branch-

ing as long as the network is exhibiting either positive asymmetry, or there is zero length asym-

metry, as indicated by the 3/4 contour line. That is, negative branching asymmetry precludes

values of 3/4 for the metabolic scaling exponent. For the case of asymmetry in both length and

radius, the 3/4 contour line is constrained to a domain of difference scale factors of Δβ between

0.0 and approximately 0.21, and Δγ between 0.0 and 0.5. This suggests that 3/4 metabolic scal-

ing is robust to maximal variation in the physical length scale factors (γμ or γν within [0, 1]), as

long as the variations in physical diameter scale factors (βμ or βν) are restricted to the range of

approximately [0.47, 0.89]. While asymmetry in scale factors has not been directly measured,

these qualitative differences in variation in the scale factors have been observed in cardiovascu-

lar data both for the human head and torso as well as for mouse lungs [30, 31].

For a better understanding of what particular values of scale factors imply in terms of real-

ized network morphology, we present in Fig 2 several networks that fall along the 3/4 contour.
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Additionally, in S1 Video is a continuous animation of the evolution of asymmetric networks

along the 3/4 contour.

For negative asymmetry the metabolic scaling exponent can only decrease from 3/4 upon

the introduction of asymmetric branching, with maximal asymmetry leading to a value of 0 for

the metabolic scaling exponent. This is counter to the case of positive asymmetry, where the

metabolic scaling exponent can either increase or decrease from 3/4 depending on the particu-

lar values of the scale factors.

Fig 4. Colormap of Metabolic Scaling Exponent for Pulsatile Flow. The metabolic scaling exponent is graphed as a function of the difference scale

factors Δγ and Δβ, and is shown to range in value from 0 to 1. The scale factors are such that the networks are space-filling fractals that minimize energy-loss

from resource transport, as dictated by Eqs (16) and (17). Positive asymmetry is graphed in the first and third quadrants, and negative asymmetry in the

second and fourth quadrants. Contours of constant values of the metabolic scaling exponent are plotted in bold. The points labelled A, C, D, and E—J

correspond to the rendered trees found in Fig 2.

https://doi.org/10.1371/journal.pcbi.1005394.g004
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The primary dependence of the metabolic scaling exponent on asymmetry in length can be

better seen by using the alternative characterization of asymmetry presented in Eq (7). This

dependence is obscured from view in the average/difference formalism due to the fact that

we are not explicitly incorporating the covariation between the average and difference scale fac-

tors. However, using the alternative formalism for asymmetry we can substitute into Eq (10)

b
2

n
¼ 1 � b

2

m
and gn ¼ ð1 � g3

m
Þ

1=3
to explicitly incorporate the constraints due to energy mini-

mization and space-filling. Using the definitions bm ¼
~bWBE þ D~bm and gm ¼ ~gWBE þ D~gm, and

Fig 5. Colormap of Metabolic Scaling Exponent for Constant Laminar Flow. The metabolic scaling exponent is graphed as a function of the difference

scale factors Δγ and Δβ, and is shown to range in value from 0 to 1. The scale factors are such that the networks are space-filling fractals that minimize

energy-loss from resource transport, as dictated by Eqs (20) and (21). Positive asymmetry is graphed in the first and third quadrants, and negative

asymmetry in the second and fourth quadrants. Contours of constant values of the metabolic scaling exponent are plotted in bold. The points labelled B, C,

D, and K—P correspond to the rendered trees found in Fig 2.

https://doi.org/10.1371/journal.pcbi.1005394.g005
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with some rearrangement, we can arrive at the following alternative expression for the meta-

bolic scaling exponent,

ymm ¼ �
ln ð~b2

WBE~gWBEÞ

ln ð2Þ
þ

1

ln ð2Þ
ln

1

2~b2
WBE

1

~g3
WBE

� 1þ
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~gWBE

� �3
 !1=3

2

4

8
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þ
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1þ
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 !2
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~gWBE

� �3
 !1=3
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@
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3
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9
=

;

� 1
ð12Þ

In Eq (12) we can now see that variation in the metabolic scaling exponent depends primar-

ily on variations in length. Indeed, we can now show that the metabolic scaling exponent is

actually invariant with respect to asymmetric branching in vessel radii as long as there does

not exist any asymmetric branching in vessel lengths. To see this, note that the argument of

the logarithm within the square brackets can be shown to reduce to ln[1] = 0 when setting

D~gm ¼ 0 (or Δγ = 0) and having substituted the definitions for the symmetricWBE scale fac-

tors, ~bWBE ¼ 1=21=2 and ~gWBE ¼ 1=21=3. Consequently, the only term left is

ln ð~b2
WBE~gWBEÞ= ln ð2Þ, which has no dependence at all on the asymmetry of vessel radii, D~bm

(or Δβ), which we have left unspecified. In fact, this remaining term is exactly equal to 3/4

upon substitution of ~bWBE ¼ 1=21=2 and ~gWBE ¼ 1=21=3.

It should be pointed out that, given the four possible combinations of substituting for βμ, βν,
γμ, and γν, there are in fact four possible ways of expressing the metabolic scaling exponent

under this formalism. However, the differences between these four expressions is primarily in

the sign of the symmetric-difference scale factors, and their associated limits, which do not

influence the general dependence of the metabolic scaling exponent on asymmetry in length

or radius. These differences do influence the specific graph of the metabolic scaling exponent,

or in this case the four graphs associated with the four possible substitutions, which is why we

chose to present the dependence of the metabolic scaling exponent on asymmetric branching

using the average/difference formalism as we can visualize the full extent of asymmetric

branching in one single graph. For further discussion on these substitutions see S3 Text.

Metabolic scaling in a constant laminar flow network. For the constant laminar flow

network the metabolic scaling exponent values are symmetric about the line Δβ = Δγ, while

along that line it maintains the exact value of θ = 1. This symmetry about the line Δβ = Δγ is

due to the fact that both sets of radial and length scale factors, (β, Δβ) and (γ, Δγ), are governed

by the same mathematical expressions, Eqs (20) and (21). Interestingly enough, in the constant

laminar flow regime a prediction of θ = 1 for the value of the metabolic scaling exponent can

be made. This results from the minimization of energy loss due to friction and adherence to

space-filling, represented by Eqs (18)–(21), and is proven here. Starting from Eq (11) and

substituting β = γ and Δβ = Δγ gives,

y ¼ �
ln ðg3Þ

ln ð2Þ
þ

ln 1þ 3Dg2

g2

� �

ln ð2Þ

8
<

:

9
=

;

� 1

ð13Þ

From Eq 20 we can derive the following relationship, 3Δγ2/γ2 = 1/2γ3 − 1, and substitute it into

the above expression to find a predicted value of θ = 1 for the constant laminar flow, positive

asymmetry network. Furthermore, this is the same value as that predicted by the symmetric
version of the WBE model [9].
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Metabolic scaling in a network with a transition from pulsing to constant laminar

flow. So far we have limited our analysis to networks exhibiting not just only one type of

fluid flow, but also being governed by only one set of constant scale factors across each gen-

eration. A natural question to investigate is how our predictions change upon the introduc-

tion of a transition in fluid flow type from pulsing to constant laminar flow. In the symmetric
WBE model, incorporating the fluid flow transition leads to predictions for the metabolic

scaling exponent that fall between 3/4 and 1, depending on which generation the transition

occurs [9, 15].

Under the symmetricWBE model, incorporating a transition in flow type starts by identify-

ing at which generation the two different resistances to fluid flow become equal to one another

from a parent branch to a child branch. This approach is greatly simplified by the symmetric
branching assumption, as the equality of resistance types from parent-to-child is guaranteed to

occur at the same generation throughout the network. Modeling a transition in an asymmetric
network in such a manner is greatly complicated by the fact that such parent-to-child equali-

ties of resistances will occur at different generations. We take an alternative approach to the

problem that, while less physically motivated than matching fluid resistances, still provides for

general insight regarding the presence of a transition in flow type.

In our approach, we forego the requirement that the transitioning generation is determined

by the resistances, and instead simply impose a transition in fluid flow type at a given genera-

tion M. Thus, for all generations less than M, the network has pulsing type flow and is gov-

erned by a set of constant scale factors {β<,μ, γ<,μ, β<,ν, γ<,ν} (where the subscripted less than

sign signifies that these are pre-transition scale factors). For all generations greater than M, the

network has constant laminar type flow and is governed by a new set of constant scale factors

{β>,μ, γ>,μ, β>,ν, γ>,ν}. We can approximate the total volume of such a network in a manner

similar to Eq (9),

VTOT �
NcVc

b
2

>;m
g>;m þ b

2

>;n
g>;n

h iN
b

2

>;m
g>;m þ b

2

>;n
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2

<;m
g<;m þ b

2

<;n
g<;n

 !M

ð14Þ

Substituting the above into Eq (8) gives us,

y ¼
ln ð2Þ

ln ð2Þ þ ðc � 1Þ ln b
2

>;m
g>;m þ b

2

>;n
g>;n

h i
� c ln b

2

<;m
g<;m þ b

2

<;n
g<;n

h i ð15Þ

where we have substituted Nc = 2N, and introduced the generation ratio, c = M/N, the ratio of

the transitioning generation to the total number of generations. For a full derivation of Eq

(15), see S4 Text.

Expressing Eq (15) in terms of the generation ratio allows for a convenient way to investi-

gate the effects of a generation based transition in fluid flow type, and thus in the scale factors,

but without having to specify the network size. When c = 1, the network has no transition and

consists only of pulsatile flow, corresponding to the infinite mass limit discussed in [15]. On

the other hand, when c = 0, the network again has no transition but now consists only of con-

stant laminar flow, corresponding to the small mass limit discussed in both [9] and [15]. These

limiting cases are presented in Fig 6, along with an intermediate case for when c = 0.5, or when

the transition occurs halfway through the network. It is important to point out that in Fig 6 the

networks are such that, both before and after the transition in fluid flow type, the same differ-
ence scale factors describe the network. What does change are the equations used to determine

the corresponding values of the average scale factors. Thus, the colormaps corresponding c = 1
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and c = 0 in Fig 6 are identical to Figs 4 and 5, respectively. To visualize the complete transition

from c = 1 to c = 0 as an animation, see S2 Video.

Of particular importance in Fig 6, as well as in the animation provided in S2 Video, is the

observation that 3/4 metabolic scaling can still be maintained, but at the direct expense of sym-

metric branching (note the change in location of the 3/4 contour). This seems to indicate that

the inclusion of fluid transitions and finite-size-networks need not preclude precise 3/4 meta-

bolic scaling, as discussed in previous work [15]. Even though we still make predictions for a

metabolic scaling exponent of 1 in a constant laminar flow network based on strict morpho-

logical constraints, Eqs (18)–(21), the ability to branch asymmetrically in the pulsatile flow

regime appears to provide for a means for maintaining 3/4 metabolic scaling in a network that

exhibits a transition in fluid flow type.

Nodal level results

Ensuring that the networks are characterized by space-filling fractal branching architectures

that minimize dissipative effects associated with resource transport results in nodal level con-

straints between the scale factors. These constraints are both specific to, and shared between,

the two fluid flow regimes. A summary of these results are presented in Fig 3.

Nodal level results for pulsatile flow. In the pulsatile flow regime we find that impedance

matching across generations requires that the cross-sectional area must be preserved across

individual bifurcations, r2
j ¼ r2

jþ1;m
þ r2

jþ1;n
. When expressed in terms of the average and differ-

ence scale factors this result takes the form of,

1 ¼ ðbj þ DbjÞ
2
þ ðbj � DbjÞ

2
ð16Þ

Treating the blood as an incompressible fluid, the preservation of the cross-sectional area

across bifurcations results in the blood velocity remaining constant through this portion of

the network [40]. Furthermore, the preservation of the cross-sectional area throughout the

Fig 6. Colormap of Metabolic Scaling Exponent for a Network with a Transition in Flow Type. Here we present colormaps of Eq (15) for the cases

when c = 1, c = 0.5, and c = 0. It should be noted that when the transition in flow type occurs within the networks, the same values for the difference scale

factors are used, but the equations that determine the average scale factors switch from Eqs (16) and (17) to Eqs (20) and (21). In all three colormaps, the

contour lines take on the same values as in Figs 4 and 5. In particular, the bolded contour corresponds to a metabolic scaling exponent value of 3/4.

https://doi.org/10.1371/journal.pcbi.1005394.g006
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pulsatile regime does not preclude covariation of the average and difference radial scale fac-

tors, βj and Δβj. That is, different values of the scale factors can occur across generations as

long as Eq (16) is maintained. This is different from the symmertic WBE model result of

β = 1/21/2� 0.707 across all generations. It should be noted that in the limit that Δβj goes to 0,

the asymmetric result converges to the symmetric result of β = 1/21/2. Eq (16) is graphed in

Fig 7, where the branching ratio βj is shown to vary from 1/21/2� 0.707 to 0.5 as the asymme-

try ratio Δβj increases from 0 to 0.5.

The constraint that the networks be space-filling fractals with regard to the scaling of the

lengths across generations results in l3j ¼ l3jþ1;m
þ l3jþ1;n

. When expressed in terms of the average
and difference scale factors takes the form of,

1 ¼ ðgj þ DgjÞ
3
þ ðgj � DgjÞ

3
ð17Þ

As with the radii, this relationship does not constrain the average and difference length scale fac-

tors, γj and Δγj to take on singular values, but instead can covary with each other across genera-

tions. This result is also different from the symmetric WBE model result of γj = 1/21/3� 0.793

across all generations. As with the radius, in the limit that Δγj goes to 0, the asymmetric result

converges to the symmetric result. This functional dependence between γj and Δγj is also

Fig 7. Average vs. Difference Scale Factors for Area-Preserving and Space-Filling/Area-Increasing Principles.

The functional dependence between the average scale factors (β, γ) and the difference scale factors (Δβ, Δγ) are

graphed. For both cases of either the square-law (area-preserving) or the cube-law (space-filling and area-increasing) the

average scale factors decrease from 1/21/2 and 1/21/3, respectively, and converge to 0.5 as the difference scale factors

increase from 0 to 0.5.

https://doi.org/10.1371/journal.pcbi.1005394.g007
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graphed in Fig 7, where γj is shown to vary from 1/21/3� 0.793 to 0.5 as the asymmetry ratio

Δγj increases from 0 to 0.5.

Lastly, no restriction on asymmetry type is predicted by Eqs (16) and (17) for the pulsatile

flow regime. That is, impedance matching and space-filling alone do not preclude the network

from switching between asymmetry types from one generation to the next, or for that matter

exhibiting a mix of asymmetry types within a given generation. The freedom of mixed asym-

metry type has interesting implications for the self-similarity of the network. In particular,

strict self-similarity would require no mixing of asymmetry types whatsoever. On the other

hand, statistical self-similarity could still be exhibited in the presence of mixed asymmetry

types [41, 42].

Nodal level results for constant laminar flow. In the constant laminar flow regime we

find an assortment of strict constraints on the network morphology. These are resultant of the

method of undetermined Lagrange multipliers, used to minimize the effects of resistance to

fluid flow while ensuring that the network is a space-filling fractal. Specifically, we find: a selec-

tion for positive asymmetric branching over negative; a cubic-powered generational covaria-

tion between the average and difference radial scale factors, also known as Murray’s Law; the

same cubic relationship between the average and difference length scale factors; equality of the

average radial and length scale factors; and equality between the difference radial and length

scale factors. These results can be presented by the following equations,

bj ¼ gj ð18Þ

Dbj ¼ Dgj ð19Þ

1 ¼ ðgj þ DgjÞ
3
þ ðgj � DgjÞ

3
ð20Þ

1 ¼ ðbj þ DbjÞ
3
þ ðbj � DbjÞ

3
ð21Þ

The selection of positive asymmetric branching over negative can be seen by fixing the

value of Δβj to be greater then zero and considering the case where Δγj ranges from positive to

negative (the procedure necessary for transitioning from positive to negative asymmetry, as is

diagrammed in Fig 1). In this scenario, when Δγj< 0 we find a contradiction in the form of

Δβj = −Δγj. Thus, negative asymmetric branching is suppressed and only positive asymmetric

branching should occur in the constant laminar flow regime. This result can be better under-

stood by considering the form of the resistance formula for Hagens-Poiseuille (constant lami-

nar) flow. As Zj / lj=r4
j , networks with a greater abundance of long, narrow vessels, as in the

case of networks with repeated negative asymmetric branching, will experience a greater total

resistance to flow.

In the symmetric WBE model Eq (18) is also found, only there the generational dependence

is absent. In fact, in the symmetric limits, where Δβj and Δγj tend to 0, Eqs (20) and (21) give

rise to the symmetric WBE model results of β = γ = 1/21/3� 0.783, as shown in Fig 7.

As discussed above, Eq (20) can be recognized as an asymmetric variation of Murray’s Law,

but expressed in terms of scale factors [25]. Written in terms of the branch radii, Eq (20) takes

the form,

r3

j ¼ r3

jþ1;m
þ r3

jþ1;n
ð22Þ

With some rearrangement (see S2 Text), the above can be expressed in terms of the cross-
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sectional areas of the parent and child generations,

Ajþ1;m þ Ajþ1;n ¼ Aj
1

bj
� 4Db

2

j

 !

ð23Þ

where Aj ¼ pr2
j . This way of expressing Murray’s Law is important as it allows us to examine

how asymmetric branching influences fluid flow rates. In the symmetric limit, where Δβj = 0

and 1/βj = 21/3� 1.26, we find the symmetric WBE model result that cross-sectional area

increases with each generation. Again, treating blood as an incompressible fluid, this results in

a slowing of the flow rate across each generation. In the asymmetric limit, where Δβj = βj = 0.5,

the above equation reduces to Eq (16), and the cross-sectional area is constant across genera-

tions. This results in maintaining the speed of blood flow across generations. As can be seen in

Fig 7, β strictly decreases as Δβ increases. Thus, we can infer that asymmetric branching pro-

vides for a mechanism for controlling the blood flow rate. An interesting consequence of this

is that in the asymmetric limit for the radial scale factor, the metabolic scaling exponent for

constant laminar flow takes on the 3/4 value (see Fig 5).

As with the pulsatile flow regime, the generational dependence of Eqs (20) and (21) imply

that strict self-similarity is not predicted to be exhibited, although it may be exhibited statisti-

cally. Furthermore, not only are these results direct consequences from the Lagrange multiplier

approach, but they are also consistent with the impedance matching conditions, but for the

case of the Hagens-Poiseuille Law for constant laminar flow.

In Fig 7 we can see the relationship between the average and difference scale factors for con-

stant laminar flow. As the values of the difference scale factors are increased from 0 to 0.5, the

values of the average scale factors subsequently decrease from 1/21/3 to 0.5 for both the radii

scale factors and the length scale factors as they both follow the same cube-law.

To summarize, the method of undetermined Lagrange multipliers, used to determine the

network parameters that minimize energy loss due to viscous friction in the constant laminar

flow regime, predicts that negative asymmetric branchings violate energy minimization.

Therefore, selection is expected to act against negative asymmetric branching under these sce-

narios and instead select for either positive asymmetric branching, or strict symmetric branch-

ing. Thus, the overall network architecture of the cardiovascular system is predicted to exhibit

either type of asymmetric branching (positive or negative) in the pulsatile regime and only

positive asymmetric branching in the constant laminar flow regime, with the potential for

symmetric branching throughout. Within these flow regimes, the branches are further pre-

dicted to adhere to cross-sectional area preservation in the pulsatile regime and Murray’s

cubic scaling law in the constant flow regime. Although the networks are still space-filling frac-

tals, self-similarity is no longer predicted to be strictly adhered to in the presence of asymmet-

ric branching. Here, “strict self-similarity” is interpreted as having constant values for the

length scale factors both across and within generations. However, self-similarity may still exist

at a statistical level where an average value for the length scale factors can be identified.

Discussion

The theory we present makes specific predictions for how energy-minimizing and space-filling

principles constrain the variation in network morphology and metabolic scaling exponents.

The theory also shows that metabolic scaling exponents can deviate from the observed 3/4

value due to asymmetric branching. Conversely, we also show that there exists a wide array of

asymmetric branching phenotypes that differ in their degree of asymmetric branching but,

nonetheless, still show 3/4 metabolic scaling.
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We show that branching asymmetry necessitates two flavors of candidate networks: positive

asymmetry, where one child branch is both wider and longer than the other child branch; and

negative asymmetry, where one child branch is wider but shorter than the other child branch.

Noting that there are these two classes of networks, positive and negative, provides a straight-

forward method to classify the diversity of biological resource distribution networks. However,

this classification is particular to only bifurcating branching networks. Previous work on asym-

metric branching [35] suggests that our theory can be extended to trifurcations and even

higher order branching furcation numbers.

Minimizing the cost of resource transport due to power dissipation leads to several predic-

tions. Within the pulsatile flow regime it was found that area-preserving and space-filling

branching at the nodal level are predicted, Eqs (16) and (17), and with no restrictions on either

asymmetry type. This means that variation in the values of βj, Δβj, γj, and Δγj can occur across

generations, as well as a mixing of asymmetry types both within and across generations.

Assuming no mixing of the asymmetry type, and that the scale factors are constant, leads to

the aforementioned observations of the metabolic scaling exponent. Here, negative asymmetry

leads to scaling values strictly less than 3/4, and positive asymmetry leads to scaling between

approximately 0.5 and 1. Future work in considering the tradeoffs between achieving greater

metabolic efficiency (scaling values associated with negative asymmetry) and bio-mechanical

limitations may help to inform how mixed asymmetry and non-constant scale factors influ-

ence the metabolic scaling exponent.

Within the constant laminar flow regime, Murray’s Law and space-filling branching at the

nodal level are predicted, Eqs (16) and (17), as well as the equality of the average scale factors

for length and radius and similarly of the difference scale factors, Eqs (18) and (19). Addition-

ally, it is predicted that only positive asymmetry is permitted. These results combine to show

that the constant laminar flow regime will exhibit only a metabolic scaling exponent of 1, as is

similarly predicted by the symmetricWBE model.

We combine these two fluid types into one network by presenting a third model in which

the fluid flow transition from pulsatile to constant laminar occurs within one single genera-

tion. By allowing the transitioning generation to vary, we can smoothly shift from a network of

complete pulsatile flow to one with complete constant laminar flow, where the intermediate

regime consists of some mixture of both fluid flow types. Here we show, again, that 3/4 meta-

bolic scaling can be achieved, but only in the presence of asymmetric branching. Thus, we rec-

tify a standing problem in the symmetricWBE theory in which fluid flow transitions were

shown to necessitate an increase in the predicted metabolic scaling exponent from 3/4.

The inability to make stricter predictions on the specific values of the scale factors is a con-

sequence of having introduced additional variables to the model (Δβj and Δγj). This is a natural

consequence of introducing additional variables without having introducing additional con-

straints. Nonetheless, we do provide for a mathematically rigorous framework with which to

better describe and characterize already established patterns and hierarchies in vascular

branching, in particular the human heart, mouse lung, and dorsal zone of the Zebrafish [26,

28, 29]. The search for additional constraints on additional variables, based on both physical

and biological principles, is a natural future direction that could reveal important insights and

be necessary to truly understand the architecture and flows of branching networks.

Caveats

Our work highlights some important caveats and areas for future work. First, we have modeled

asymmetric networks as consisting of strict self-similarity in branching rules. Specifically, the

scale factors βj, γj, Δβj, and Δγj are constant throughout the networks. This also assumes that
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the network is characterized by only one set of branching rules. It would be instructive to

explore how relaxing the self-similarity assumption as well as allowing for the mixing of

branching rules (asymmetry types) both across and within generations influences our results.

Second, finite-size effects in an asymmetric network are also of particular interest to

explore. Some of the current (symmetric) allometric relationships rely on assumptions regard-

ing the countability of the number of terminal network tips. Two examples of such assump-

tions are that all terminal tips are identical, and the relationship NTIPS ¼ 2NGEN for a strictly

bifurcating, where NTIPS represents the total number of terminal tips (capillaries) and NGEN
represents the total number of branching generations within the network. In an asymmetric

network, these assumptions do not in general hold, as high degrees of asymmetry can lead to

some branches reaching the terminal tip size sooner than others.

Third, asymmetric branching may provide a novel avenue for studying the flow transition

regime within the cardiovascular system. Previous studies have modeled the transition as

either a discrete step or a continuous shift, but in both cases symmetric branching was

assumed [9, 15]. Asymmetric branching provides for transitions such that within a single gen-

eration there exists branches with both pulsatile and constant laminar flow. This level of mix-

ing in flow types may provide for a more dynamical analysis of the flow transition regime.

Conclusion

The WBE model provides a basis to understand the linkages between organism form and func-

tion. It has served as a platform for broad application to various other fields [6, 13, 16–18].

However, in its original form, the WBE model is built around a questionable assumption of

symmetrical branching networks. As a consequence, it does not capture the great extent of var-

iation in biological form. In biology, symmetric networks are rarely observed. Thus, a core

assumption of the theory is violated. In this paper, we investigated if including asymmetry into

the WBE model yields similar conclusions and predictions as the original model based on sym-

metric branching. Specifically, do optimal asymmetric networks follow 3/4 metabolic scaling?

We have derived a more general form of the WBE model. It incorporates different branch-

ing geometries reflected in differences in branching asymmetry. We believe that our approach

can offer a more general theory that can better relate variation in organismal form and func-

tion than the original WBE model. Our definition of asymmetry in a strictly bifurcating net-

work allows for a more accurate analysis of biological branching networks. In addition, the

theory makes a set of novel predictions for the type of branching asymmetry favored under dif-

ferent fluid flow types/transfer regimes.

Methods

Determining the total network volume

We can first write the total volume of the ith generation in terms of the total volume of the kth

generation, where i> k, as follows,

Vi;TOT ¼ Vk;TOT

Yi� 1

j¼k

b
2

j;mgj;m þ b
2

j;ngj;n

h i
ð24Þ

where the volume of a given branch is expressed as, Vj;m ¼ pr2
j;mlj;n. The above expression

becomes more transparent when setting i = 1 and k = 0. Using the definitions in Eq (4), the

above reduces to an expression of how the volume in the base is split into two volume fractions

for the two child branches. For larger values of i and k, the above expression can then be

expanded to express Vi,TOT in terms of volume fractions of Vk,TOT, where the fractions consist
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of different k to i path-dependent permutations. For example, when i = 2 and k = 0, there are

four volume fractions for the four respective paths from the base branch to the four tips. It

should be noted that Eq (24) already assumes that the scale factors within a given generation

are the same. This does not however imply that all of the big child radii or lengths are equal

within a given generation, and similarly for the small child radii and lengths.

Solving for, and summing over, the dummy generation-index k, and taking the limit that i
goes to the Nth generation, will give us the total volume for an asymmetric network,

VTOT ¼ VN;TOT

XN

k¼0

YN� 1

j¼k

b
2

j;mgj;m þ b
2

j;ngj;n

h i� 1

( )

ð25Þ

where VN,TOT represents the combined volume of all of the terminal capillaries, and can be

expressed as VN,TOT = NC VC. Imposing the assumption that the scale factors are the same

across generations simplifies Eq (25) to,

VTOT ¼
NCVC

b
2

m
gm þ b

2

n
gn

h iN

1 � b
2

m
gm þ b

2

n
gn

h iNþ1

1 � b
2

m
gm þ b

2

n
gn

h i

8
><

>:

9
>=

>;
ð26Þ

A consequence of our first assumption, that the networks are space-filling fractals that min-

imize energy-loss, is that b
2

m
gm þ b

2

n
gn < 1, which allows us to approximate everything in the

brackets in the above expression to a value of 1, to leading order. This can be interpreted as

stating that the total volume in the network is decreasing from one generation to the next, and

is consistent with Eqs (16, 17, 20) and (21). Upon making this approximation we arrive at,

VTOT �
NCVC

b
2

m
gm þ b

2

n
gn

h iN ð27Þ

Minimizing energy loss in space-filling fractal vascular networks

Having identified two candidates for asymmetric networks, we can impose energy minimiza-

tion principles while simultaneously requiring that the networks be space-filling fractals for

the two different flow regimes of constant laminar flow and pulsatile flow. Doing so allows for

constraints on the extent to which asymmetry is exhibited. The underlying concept in these

approaches is to determine which values of βj, γj, Δβj, and Δβj have been naturally selected for,

through the process of evolution, such that the network transports resources with the least

amount of resistance. As there are two different flow regimes, constant laminar and pulsatile,

we use two different methods of energy minimization. In employing our different techniques

for the different types of flow we are considering the flow regimes as independent from one

another in that we do not incorporate transitioning between them. Although in naturally

occurring organisms (i.e. ones with beating hearts) pulsatile flow dominates at lower-order

generations where the vessel diameters are large, constant flow dominates at higher-order gen-

erations where the vessel diameters are small.

Pulsatile flow network. In the pulsatile flow regime of the network, we directly impose

the space-filling constraint,

l3j ¼ l3jþ1;m
þ l3jþ1;n

ð28Þ

Eq (28) represents the physical constraint that the branch lengths scale as space-filling fractals.

The exponent in Eq (28) is the Hausdorff dimension, DH, and is associated with the scaling of
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lengths across generations. In order for the lengths of the network to scale as space-filling frac-

tals, this exponent must be equal to the Euclidean dimension, DE, of the space being filled.

Thus, as a parent branch subdivides into two child branches, the exponent by which the

lengths scale should equal 3. This condition has the interpretation of each branch in a given

generation in the network being responsible for servicing the volumes of the distal branches,

where the volumes are characterized either as spheres with diameter lk, or cubes with length lk
[9, 15, 43, 44].

We also impose impedance matching at the nodal level to minimize the power dissipated

from interference effects due to the reflection of pressure waves at a branching junction. The

impedance for pulsatile flow in a rigid cylinder is given by Zj ¼ c2
0
r=pr2

j c, where c0 is the Kort-

weg-Moens velocity, ρ is the fluid density, and c is the wave velocity. As the child branches can

be considered as being in parallel, then impedance matching across generations takes the form

of,

1

Zj
¼

1

Zjþ1;m

þ
1

Zjþ1;n

ð29Þ

Note that secondary effects, such as the direction of the pressure-waves, are neglected in the

above expression [45]. Impedance matching is biologically essential as having mis-matched

impedances results in pulse reflections traveling toward, and interfering with, the heart.

Constant laminar flow. In examining the constant laminar flow regime of an organism,

we use the method of undetermined Lagrange multipliers to minimize the power dissipated

through the entire network by friction forces working against fluid flow. This technique allows

for performing such a minimization while simultaneously maintaining fixed values for the

total network volume and mass, as well as requiring that the branch lengths scale as a space-

filling fractal.

In this regime we are assuming that the entire network experiences constant laminar flow.

The fluid is assumed to follow the Hagens-Poiseuille Law for impedance to fluid flow in a rigid

cylinder, given by Zj ¼ 8mlj=pr4
j , where μ is the fluid viscosity [40]. The power dissipated

throughout the entire network is given by P ¼ _Q2
0
ZTOT , where _Q0 is the volumetric flow rate

through the aorta, and ZTOT is the equivalent impedance of the entire network. In order to

write down ZTOT, we start first with expressing the total impedance of the ith generation in

terms of the total impedance of the kth generation, where i> k,

Zi;TOT ¼ Zk;TOT
Yi� 1

j¼k

b
4

j;m

gj;m
þ

b
4

j;n

gj;n

" #� 1

ð30Þ

Note that, in the above equation, the limit that i = 1 and k = 0 reduces the expression to that of

the equivalent impedance of a parallel branching with two different impedances. For larger

values of i and k, the above expression can be written as a sum of 2i−k permutations of paths

from the kth generation to the ith generation. To find the total impedance, ZTOT, we solve for

Zk, and sum over all k generations from k = 0 to k = i in the limit that i goes to the Nth genera-

tion, arriving at,

ZTOT ¼ ZN;TOT
XN

k¼0

YN� 1

j¼k

b
4

j;m

gj;m
þ

b
4

j;n

gj;n

" #( )

ð31Þ

In order to minimize the power lost to friction against the constraints of a fixed total volume, a

fixed total mass, and the requirement that the network is a space-filling fractal across each
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generation, we must minimize the objective function Fðbj;m; bjn; gj;m; gj;nÞ to variations in βj,μ,
βj,ν, γj,μ, and, γj,ν. The objective function is defined as,

F ¼ _Q2

0
ZTOT þ lVTOT þ lMM þ

XN

k¼0

lkl
3

N;TOT

YN� 1

j¼k

g3

j;m þ g3

j;n

h i� 1

( )

ð32Þ

where ZTOT is defined in Eq (31), VTOT is defined in Eq (25), and M is the total mass of the net-

work. Here, λ and λM are the Lagrange multipliers that serve to fix the values of the total vol-

ume and mass, respectively. The coefficients λk are the Lagrange multipliers that serve to

enforce the space-filling fractal condition across every generation, which is represented by the

fourth term in Eq (32). The factor l3N;TOT is equal to the sum of all of the cubed-lengths of the

terminal tips in the Nth generation. The derivation of this fourth term can be done in the same

manner as that taken for the total network volume and impedance.

The minimization procedure requires taking derivatives of F with respect to the various

free parameters (βj, γj, Δβj, Δγj) and setting the resulting equations equal to zero to solve for the

subsequent conditions on, or values of, βj, γj, Δβj, and Δγj. These calculations are highlighted in

the supplementary information section S1 Text.
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