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ABSTRACT: The conjugation of complex post-translational modifica-
tions (PTMs) such as glycosylation and Small Ubiquitin-like
Modification (SUMOylation) to a substrate protein can substantially
change the resulting peptide fragmentation pattern compared to its
unmodified counterpart, making current database search methods
inappropriate for the identification of tandem mass (MS/MS) spectra
from such modified peptides. Traditionally it has been difficult to
develop new algorithms to identify these atypical peptides because of the
lack of a large set of annotated spectra from which to learn the altered
fragmentation pattern. Using SUMOylation as an example, we propose a
novel approach to generate large MS/MS training data from modified
peptides and derive an algorithm that learns properties of PTM-specific
fragmentation from such training data. Benchmark tests on data sets of
varying complexity show that our method is 80−300% more sensitive than current state-of-the-art approaches. The core concepts
of our method are readily applicable to developing algorithms for the identifications of peptides with other complex PTMs.

KEYWORDS: small ubiquitin-like modification (SUMOylation), posttranslational modification (PTM), combinatorial peptide library,
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■ INTRODUCTION

In recent years the focus in proteomics has shifted from
cataloging the “parts list” of gene products inside the cell
toward understanding the structural and functional properties
of proteins in a systematic and high-throughput manner.1 A key
step toward this goal is the comprehensive characterization of
protein post-translational modifications (PTMs). These “dec-
orations” on the protein surface have been shown to play
crucial roles in determining a protein’s activity state, local-
ization, turnover rate, and interactions with other proteins.2,3

Recent advances in mass spectrometry (MS) and enrichment
protocols that selectively capture peptides with specific PTMs
have enabled the detection of many PTMs on a large scale, thus
providing scientists with a global view on various PTMs and
their interplay at a systems level.4−8 However, such success has
mostly been limited to PTMs that result from the addition of a
relatively simple chemical group to one or more amino acid
residues in the proteins. Common examples include acetylation,
deamidation, phosphorylation, and oxidation. These modifica-
tions can be readily identified with tandem mass spectrometry
(MS/MS) by considering characteristic shifts in peptide
precursor mass as well as in modified fragment ion masses.

However, more complex PTMs, such as glycosylation,9 Small
Ubiquitin-like Modification (SUMOylation),10 PUPylation,11

and ADPribosylation,12 present a more difficult problem
because the PTMs themselves are large and complex molecules
rather than simple chemical moieties, creating unusual
“branched” structures for the modified peptides. As a result,
these modified peptides display rather different fragmentation
pattern than their unmodified counterparts, and thus new
experimental and computational methods are needed for the
analysis of peptides with complex PTMs.
We propose an automated approach, Specialize (Spectra of

complex-PTModified peptides identification tool), to derive
new algorithms for any type of modified peptide fragmentation
using synthetic peptide libraries. While previous studies have
mostly used synthetic peptide libraries to evaluate peptide
identification algorithms,13−15 Specialize learns the PTM-
specific fragmentation patterns from the peptide libraries and
is able to generalize to peptides that are not in the libraries
across different biological samples. In addition, the cost of
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generating the peptide libraries is kept very low by using
combinatorial peptide synthesis. A training data with thousands
of unique peptides was generated using only three peptide
synthesis experiments as opposed to synthesizing each peptide
separately. To illustrate the concept, we focus on one specific
example of complex PTMs (SUMOylation) and use it to
demonstrate the feasibility and practicality of our approach.
Small Ubiquitin-like Modifiers (SUMO) are small proteins of
around 100 amino acids that reversibly attach to substrate
proteins to modify their functions. SUMOylation has been
shown to be involved in many cellular pathways such as cellular
trafficking, cell cycle, and DNA repair and replication.16 It is
also implicated in several neurodegenerative diseases such as
Alzheimer’s disease and Huntington disease.17,18 Similar to
ubiquitination, SUMOylation is regulated by a series of
enzymatic reactions involving SUMO-activating enzymes,
conjugating enzymes, and SUMO E3 ligases that covalently
attach SUMO to substrate proteins via an iso-peptide bond
between the C-terminus of SUMO and a specific lysine residue
on the substrate protein. Previously it was thought that
SUMOylation occurred within a strict consensus motif [XK(D/
E)],19 but more recently it has been shown that several motifs
including an “inverted” consensus motif, a hydrophobic patch
motif, and a phosphorylation dictated motif exist as common
localizers of SUMOylation.20 It has also been observed in many
cases that SUMOylation can occur on lysine residues not
located within any predetermined motif, hence the increased
need for unbiased methods to detect SUMOylated lysine
residues. Upon enzymatic digestion of SUMOylated proteins,
peptides that contain the SUMO conjugation site will be
covalently linked to a C-terminal remnant or tag of SUMO,
resulting in ‘y-shaped’ linked peptides (see Figure 1a).
Unbiased detection of this type of linked peptide is the most
informative as it provides direct evidence that a protein is a
SUMO substrate as well as revealing the specific amino acid site
of SUMOylation. However these branch-linked peptides
present several challenges when being analyzed by MS/MS
methods to detect SUMOylated lysine residues.
First, the attachment of a SUMO tag to the substrate peptide

inhibits tryptic digestion due to steric hindrance and therefore
inaccessibility of the enzyme to the SUMO-conjugated lysine
residue, generating peptides with internal lysine that are
unusual in unconjugated tryptic peptides. In addition, the
SUMO tag resulting from tryptic digestion is relatively large,
ranging from 20 to 30 residues depending on the isoforms of
SUMO. As a result the SUMO tag tends to dominate the MS/
MS spectrum and make it difficult to identify the substrate
peptide using current MS/MS methods. In order to address
these issues, previous studies have generated SUMO mutants
by inserting a lysine or arginine at specific positions along the
SUMO C-termini tail so that shorter SUMO C-termini tags
(4−6 residues) can be generated upon trypsin digestion.21−25

On the other hand, alternative enzymes such as chymotrypsin,
GluC, and LysC can also be used to generate shorter SUMO
tags (4−12 residues) attached to the substrate peptides,26

making them more suitable for MS/MS analysis.
Even as we circumvent these hurdles and manage to generate

SUMOylated peptides with favorable properties to be analyzed
by tandem mass spectrometry, it remains a challenge to
interpret the resulting MS/MS spectra because almost all
mainstream database search algorithms are designed for MS/
MS spectra from linear, unlinked peptides. In contrast, an MS/
MS spectrum from a SUMOylated peptide contains a mixture

of fragment ions from both the substrate peptide and the
SUMO tag. In addition, the linkage of two peptides together
results in fragmentation patterns that are different from those of
common linear peptides. While there have been several
attempts to address these issues, none of them captured the
specific fragmentation pattern of SUMOylated peptides due to
the lack of appropriate training data.27,28 Here, we propose a
novel experimental and computational hybrid procedure to
reliably generate large MS/MS reference data for SUMOylated
peptides, which are then used to derive a database search
algorithm capturing the PTM-specific fragmentation patterns of
SUMOylated peptides.

■ RESULTS

Fragmentation Pattern of SUMOylated Peptides

In order to obtain a large MS/MS data set with identified
SUMOylated peptides, we designed and synthesized three
combinatorial peptide libraries, each with a SUMO C-terminus

Figure 1. Conceptual model of SUMOylated peptides. (a) Small
Ubiquitin-like Modifiers (SUMO) are small proteins that reversibly
attach to substrate proteins to regulate their functions. Upon
enzymatic digestion of SUMO-conjugated proteins, peptides that
contain the SUMO conjugation site in the substrate protein have a
SUMO C-terminus remnant (or SUMO tag) covalently attached to
the lysine residue, resulting in ‘y-shaped’ peptides. Here we use
QQQTGG as an example of SUMO-tag, which is the last six amino
acid residues at the C-terminus of Human SUMO2 protein. (b)
SUMOylated peptides are modeled as two peptides: a substrate
peptide carrying a modification of mass +599 Da (the mass of the
SUMO tag) at the lysine residue and a peptide with sequence
QQQTGG carrying a modification at the C-terminus with mass equal
to that of substrate peptide (which is assumed to be 1650 Da for
illustration purposes). Theoretical fragments from a SUMOylated
peptide are represented as two sets of fragment ions, one set from the
substrate peptide and another set from the SUMO tag peptide. This
way, different scoring models can be used for the substrate peptide and
the SUMO tag to account for their distinct fragmentation patterns. (c)
Fragment ions from SUMOylated peptides are divided into two
categories: linked-fragments and unlinked fragments. Linked fragments
are from peptide fragment ions that are covalently linked to a second
peptide. Linked and unlinked fragments have different fragmentation
statistics, and thus different scoring models are used to score each type
of fragment.
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Figure 2. Generating training data using combinatorial synthetic peptide libraries. We designed and synthesized three combinatorial peptide libraries,
each with a SUMO tag (QQQTGG) attached via a lysine residue at a different position along the library peptide. The sequence pattern for each
library is shown on the left. The symbols X and h stand for variable positions where multiple amino acid residues are possible. MS/MS spectra from
peptide libraries were identified using a two-step search strategy. First for library I, since the SUMO tag is attached to the library peptide at the first
residue, this is essentially equivalent to the substrate peptide having a prefix extension of QQQTGG. Thus, we can identify MS/MS spectra from
library I by searching a database where the sequence QQQTGG is concatenated to the N-terminus of every possible peptide sequence in library I.
This initial set of identified MS/MS spectra from SUMOylated peptides was used to build a SUMO-specific database search tool to identify MS/MS
spectra from libraries II and III, which are more a realistic representation of SUMOylated peptides. Identified spectra from library II and III were
then incorporated into the training data to build an even better scoring model. This refined method was used to search the spectra from all three
libraries to obtain a final set of MS/MS spectra from SUMOylated peptides.

Figure 3. Contribution of ion intensity from SUMO tag. We computed the fraction of ion intensity corresponding to fragment ions from the SUMO
tag in our training data. As shown in panel a, the fragment ions from the SUMO tag contribute a significant fraction (10−60%) of total intensity in
the MS/MS spectra (red line). The fractions of total ion intensity from SUMO tag peptides are compared to those from substrate peptides (cyan),
substrate peptide and SUMO tag combined (magenta), and linear, unlinked peptides (blue). (b−d) Examples of identified MS/MS spectra from
SUMOylated peptides from the synthetic peptide libraries. Peaks explained by substrate peptides are colored blue, while peaks explained by SUMO
tag are colored red. Peaks corresponding to neutral-losses or explained by both substrate peptide and SUMO tag are colored in black. (d) An
example in which peaks from the SUMO tag dominate the observed MS/MS spectra.
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tag (QQQTGG) attached via a lysine residue at different
position along the peptide (see Figure 2). The peptide libraries
are designed with the goal of promoting sequence diversity
while also representing a realistic model of endogenous
SUMOylated peptides. For example, in library III the known
consensus motif for SUMOylation is incorporated into the
sequence pattern. The synthetic SUMOylated peptide libraries
were analyzed using an LTQ-Orbitrap mass spectrometer, and
MS/MS spectra were identified using our proposed two-step
search strategy that takes advantage of the special design of the
library peptides (see Figure 2). A total of 10216 MS/MS
spectra from SUMOylated peptides were identified, corre-
sponding to 3492 unique peptides. To our knowledge this is
the largest mass spectral data set for SUMOylated peptides
known to date. From this training data, we studied the PTM-
specific fragmentation pattern of SUMOylated peptides. First
the prominence of the SUMO fragment ions presented in the
MS/MS spectra was assessed by the fraction of total ion
intensity corresponding to SUMO tag fragments. As shown in
Figure 3, SUMO fragment ions can contribute a large fraction
of the total intensity in MS/MS spectra, ranging from 10% to
60% of total intensity, with an average of 20%. To put these
statistics in context, we also show the fractions of total intensity
from linked substrate peptides (light blue) and from common,
unlinked peptides (dark blue line). Since the SUMO tag
represents a significant fraction of total ion intensity in the MS/
MS spectra, our new database search method, Specialize,
considers all possible fragment ions from both the SUMO tag
and the substrate peptide when matching a SUMOylated
peptide against a query spectrum rather than simply treating it
as a peptide with a big mass offset at lysine residue as is
presently modeled in current database search methods (see
Figure 1b). Moreover, we use a separate scoring model for the
substrate peptide and SUMO tag to account for their difference
in fragmentation statistics (see Supplementary Figure 1a).
In addition to generating extra fragment ions, the

conjugation of a SUMO tag to a substrate peptide changes
its physicochemical properties and thus changes its fragmenta-
tion pattern in MS/MS spectra. Conceptually, fragment ions
from SUMOylated peptides can be divided into two categories:
linked-fragments and unlinked fragments (see Figure 1c).
Linked fragment ions are from peptide fragments that remain
covalently linked to a second peptide. Assuming there is no
double-fragmentation, for substrate peptides, these are frag-
ments that are linked to the SUMO tag; for the SUMO-tag
peptide, these are fragments that are linked to the substrate

peptide. In general, unlinked fragments result in fragmentation
patterns similar to those of common, unlinked peptides (see
Supplementary Figure 1b), while linked fragments result in
fragmentation patterns substantially different from those of
unlinked peptides (see Supplementary Figure 1c). In particular,
multiply charged fragments are more prominent (i.e., fragment
ions have more intense peaks). This makes intuitive sense
because linked fragments are covalently attached to a second
peptide that contains an additional N and C-terminus that are
also available to capture additional charges. Specialize accounts
for these characteristics by introducing different ion models for
linked and unlinked fragments (e.g., linked b-ions vs unlinked
b-ions). Therefore, during training of the Peptide-Spectrum-
Match scoring function, separate probabilistic models are used
for linked and unlinked fragments.

Identifying SUMOylated Peptides in Combinatorial Peptide
Library

To benchmark Specialize, we searched MS/MS spectra from
the three synthetic peptide libraries using a standard database
search tool, InsPecT,29 with variable lysine modifications
+599.266 Da (for SUMO tag QQQTGG) and +582.239 Da
(for SUMO tag with a pyro-Q modification). To avoid
overfitting, we split the data evenly into two subsets and
trained Specialize on one subset and tested it on the other
subset (i.e., 2-fold cross validation30). As shown in Table 1,
Specialize identified 3−7 times more MS/MS spectra from
SUMOylated peptides than InsPecT at 1% FDR. To provide
some perspective, we also ran InsPecT on a Yeast data set31

representing a typical proteomics experiment designed for
linear, unlinked peptides. Out of the 76,177 MS/MS spectra in
the Yeast data set, InsPecT identified 22,658 spectra
corresponding to an identification rate of 29.7%. However in
the three synthetic libraries of SUMOylated peptides, the
identification rate for InsPecT drops to 3.2−16.4% (see Table
1), substantially lower than that of the Yeast data set even
though the combinatorial peptide libraries are much less
complex samples than the Yeast lysate. This supports the
observations that attachment of SUMOylation tags to substrate
peptides indeed changes peptide fragmentation patterns in a
way that limits the ability of current database search tools to
identify MS/MS spectra from SUMOylated peptides. In
contrast, using Specialize’s scoring models that capture
SUMO-specific fragmentation characteristics, the identification
rate in the SUMOylated peptide libraries was increased to 19−

Table 1. Identified Spectra from SUMOylated Peptides and Unique SUMOylated Peptides Identifieda

Identified spectra from SUMOylated peptides

library I library II library III Yeast

InsPecT 743 (6.1%) 1826 (16.4%) 531 (4.4%) 22658 (29.7%)
Specialize 2320 (19.0%) 4967 (44.7%) 2929 (24.2%) N/A
no. of MS/MS spectra 12202 11113 12177 76177

Unique SUMOylated peptides identified

library I library II library III

InsPecT 543 941 385
Specialize 1018 1404 1070

aMS/MS spectra from each synthetic peptide library were analyzed by Specialize and InsPecT, and the number of identified spectra and unique
peptides from SUMOylated peptides at 1% FDR are shown. Numbers inside the parentheses indicate the identification rate, which is the percentage
of total number of spectra that are identified. The Yeast data set represents a typical proteomic experiment designed for linear, unlinked peptides. In
comparison InsPecT’s identification rate is much lower for SUMOylated peptides as compared to unlinked peptides. On the other hand, Specialize’s
identification rate for SUMOylated peptides is comparable to InsPecT’s identification rate for unlinked peptides.
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44.7%, which is comparable to InsPecT’s identification rate for
linear, unlinked peptides.

Identifying SUMOylated Peptides from Cell Lysate

In order to demonstrate Specialize’s ability to process biological
samples, we synthesized 20 peptides from the human myeloid
cell leukemia protein (MCL1_Human) with a SUMO tag
QQQTGG attached to a lysine residue. Since MCL-1 carries
canonical SUMOylation motifs, these synthetic peptides were
used as a model for endogenous SUMOylated peptides. The
samples were analyzed using an LTQ-Orbitrap mass
spectrometer, and a total of 207 MS/MS spectra from
SUMOylated peptides were identified by Specialize. This
corresponds to 18 out of the 20 SUMOylated peptides
synthesized. The remaining two peptides that Specialize was
unable to identify because they are very short (3 and 5 residues
long), reflecting the general limitation of database search
methods in identifying short peptides (short peptides tend to
have relatively few fragment ions in MS/MS spectra).
To test the identification of SUMOylated peptides in

complex samples, the synthetic SUMOylated peptides from
MCL1 were spiked into a Jurkat human cell lysate background
and analyzed by MS/MS (Jurkat data set). From this data set
Specialize was able to identify 13 unique MCL1 SUMOylated
peptides, while Mascot was able to identify 6 unique
SUMOylated peptides at 5% FDR. To estimate an upper
bound for the number of SUMOylated peptides that could have
been identified from the set of acquired spectra, identified MS/
MS spectra from the pure MCL-1 data set described above
were used to build a spectral library of MCL1 SUMOylated
peptides. This spectral library was then used to search the
Jurkat data to determine a list of possible SUMOylated peptides
that were selected by the instrument for MS/MS analysis out of
all acquired spectra. Spectral library search identified a total of
16 unique MCL1 SUMOylated peptides in the Jurkat lysate
sample, which indicates that Specialize has a sensitivity of
approximately 13/16 ≈ 80%. We noted that this is not related
to the sensitivity of mass spectrometry to detect SUMOylated
peptides but rather reflects the ability of computational tools to
identify SUMOylated peptides given that such MS/MS spectra
have already been acquired.
Specialize was also evaluated on two large-scale proteomic

experiments from two previous studies on SUMOylation in

Human20 and Arabidopsis.32 Most SUMOylation studies to date
have focused on identifying potential substrate proteins. While
these studies often identified many potential substrate proteins
after immunoprecipitation, the number of SUMOylated
peptides identified is usually rather small, underscoring the
current challenges in distinguishing true SUMO substrates from
immunoprecipitation artifacts.21−24,26,33 As shown in Figure 4,
in both SUMO data sets Specialize was able to increase the
number of identified SUMOylated peptides by 54−125% over
what was identified by Mascot34 at 5% FDR. A detailed
comparison shows that Specialize was able to identify 41 out of
68 SUMOylated peptides found by Mascot. Further inves-
tigation into those SUMOylated peptides missed by Specialize
showed that either the substrate peptides are very long (e.g., ≥
27 aa, see Supplementary Figure 2a) or the fragment ions from
the SUMO tag display relatively low intensity in the MS/MS
spectra: an average of only 5% of the total intensity in the
spectrum as compared to 10−20% of the intensity for cases that
were identified by Specialize (see Supplementary Figure 2b). It
is perhaps not surprising that Specialize did not identify this
subgroup of SUMOylated peptides because these observed
characteristics highlight the limitations of the peptide libraries
used to train Specialize. For example, the peptides in the
libraries have a fixed length of 12 residues, which reflects the
average length of a tryptic peptide. However, this limited
diversity in peptide length may lead to a scoring model that
does not capture the fragmentation pattern for long peptides
very well. Similarly, in the training data the SUMO tag always
contributes a significant fraction (on average 20−25%) of the
total intensity in the MS/MS spectra (see Supplementary
Figure 3). As a result Specialize gives considerable weight to
these fragment ions from the SUMO tag when evaluating
whether a SUMOylated peptide is a good match to an MS/MS
spectrum. When many fragment ions from the SUMO tag are
missing or of relatively low abundance in the MS/MS spectrum,
Specialize is likely to assign a low score. We argue that this may
actually be a desirable feature for automatic methods to have,
since the presence of these fragment ions from the SUMO tag
help confirm that the PTM is a SUMOylation rather than some
other combination of sequence variation and modifications that
happen to result in the same peptide parent mass. Nevertheless,
by capturing the specific fragmentation characteristics of
SUMOylated peptides, Specialize was clearly shown to be

Figure 4. Comparison of identification of SUMOylated peptides between Specialize and Mascot. The ability of Specialize to identify SUMOylated
peptides was tested on three data sets. The Jurkat data set contains a set of 20 synthetic SUMOylated peptides from the human MCL1 protein
spiked into a background of Jurkat human cell lysate. The Arabidopsis and Human SUMO data sets were obtained from two previous proteomic
studies on SUMO site identification. The numbers of MS/MS spectra from SUMOylated peptides as well as the numbers of unique SUMOylated
peptides identified by Specialize are compared with those identified by Mascot at 5% FDR. As shown in the figure, Specialize is able to improve the
identification of SUMOylated peptides by 54−125%.
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able to substantially increase the identification of SUMOylated
peptides in various data sets.

■ DISCUSSION
A key requirement for the development of efficient and
accurate computational tools for the automatic identification of
MS/MS spectra is the availability of a sufficiently large set of
identified spectra from distinct peptides. However, creating
such a data set for atypical classes of peptides is difficult without
efficient informatics tools to identify these spectra in the first
place, a recurring “chicken-and-egg” problem. Traditionally
these reference data sets were only possible when mass
spectrometrists manually curated hundreds to thousands of
MS/MS spectra, but such an approach is very labor intensive
and not scalable. We demonstrated that combinatorial peptide
libraries are an efficient way to address this challenge by quickly
generating large numbers of unique modified peptides at very
low cost. There is also no need to enrich for modified peptides
from a large background of unmodified peptides because
modifications are directly attached to the peptides during
synthesis. MS/MS spectra from the modified peptides are
readily identified using a search strategy that takes advantage of
the design in the peptide libraries. Using this approach, we
observed two main characteristics that make fragmentation of
SUMOylated peptides different from those of linear, unlinked
peptides. First, the SUMO tag fragments contribute signifi-
cantly to the total ion intensity in the spectrum and require
search algorithms to consider both fragment ions from the
peptide and the PTM when matching spectra against
SUMOylated peptides. Second, the residual attachment of a
SUMO tag to the substrate peptide generates highly charged
fragment ions that are not commonly observed in linear,
unlinked peptides. These differences in fragmentation statistics
makes current database search methods, which have mainly
been designed based on linear, unlinked peptides, inappropriate
for identification of MS/MS spectra from SUMOylated
peptides. In our benchmark analysis of synthetic peptides, we
observed that the identification rate for a regular database
search tool dropped by 2−10-fold when applied to MS/MS
spectra from SUMOylated peptides. On the other hand, the
incorporation of PTM-specific fragmentation statistics into
Specialize increased the identification rate of SUMOylated
peptides and made it comparable to that of linear, unlinked
peptides. Further testing on several data sets unrelated to the
training data demonstrated that Specialize is able to identify
significantly more SUMOylated peptides from biological
samples when compared to InsPecT or Mascot. These samples
originated from multiple species, and different techniques were
used to enrich for the SUMOylated peptides, leading to
different SUMO C-terminus tags present on substrate peptides.
Specialize’s ability to identify SUMOylated peptides across
these samples demonstrates its robustness in identifying
SUMOylated peptides from various sources in an unbiased
manner. One current limitation of our approach is that the
training data may not generalize to all possible SUMOylated
peptides; this is illustrated by the handful of SUMOylated
peptides identified by Mascot that were not identified by
Specialize. It is common for different search engines to perform
better on different subclasses of peptides.35−39 As with
Specialize this is usually because they tend to perform best
on data similar to those used to develop the algorithm.
However, in universal tools such as PepNovo,40 Percolator,41 or
MSGFDB,42 it is possible to retrain the models for different

types of data and classes of peptides.43 Similarly, one could
potentially train a specific Specialize model for each subtype of
SUMOylated peptides in order to maximize the sensitivity of
the search tool at detecting SUMOylated peptides (similar to
what is already done for peptides with different charge states).
In fact, one of the major advantages of Specialize is that this
would be readily addressable in our framework as one could
retrain it by synthesizing additional peptide libraries with more
diversity in sequence composition and length or by using
additional spectra of SUMOylated peptides from any other
sources. Finally, the core concepts of the proposed approach for
developing PTM-specific search methods are not specific to
SUMOylation and can potentially be used to develop new tools
to identify peptides with other complex PTMs by designing and
synthesizing new peptide libraries for each complex PTM.

■ METHODS

Combinatorial Peptide Libraries of SUMOylated Peptides

We used combinatorial peptide synthesis to generate peptide
libraries with the following sequence patterns:

(I) K(QQQTGG)A[X]D[X]ES[X]LRAK
(II) TALH[X]K(QQQTGG)[X]S[X]TFR
(III) A[h]K(QQQTGG)[X][DE]T[X]FRAK

Each peptide library was synthesized with a SUMO tag
(QQQTGG) attached via a lysine residue at positions 1, 6, and
3 along the substrate peptides, respectively (see Figure 2). The
letter in square brackets indicates that multiple residues are
possible at that position. The possible residue choices are [X] =
ARDEHLKMFPSTYV, and [h] = FILVYW. The sequence
patterns were designed to generate sufficient sequence
variability as well as to provide a realistic model for
SUMOylated peptides seen in real samples. In particular the
sequence pattern for library III contains the canonical sequence
motif ([XK(D/E)]) for SUMOylated peptides.19

After synthesis, the peptides libraries were analyzed and
identified using tandem mass spectrometry. Samples from each
library were injected via an autosampler for separation by
reverse phase chromatography on a NanoAcquity UPLC
system (Waters, Dublin, CA). Peptides were loaded onto a
Symmetry C18 column (1.7 m BEH-130, 0.1 mm × 100 mm,
Waters, Dublin, CA) with a flow rate of 1 μL a minute and a
gradient of 2% Solvent B to 25% Solvent B (where Solvent A is
0.1% formic acid/2% ACN/water and Solvent B is 0.1% formic
acid/2% water/ACN) applied over 60 min with a total analysis
time of 90 min. Peptides were eluted directly into an Advance
CaptiveSpray ionization source (Michrom BioResources/
Bruker, Auburn, CA) with a spray voltage of 1.4 kV and were
analyzed using an LTQ Velos Orbitrap mass spectrometer
(ThermoFisher, San Jose, CA). Precursor ions were analyzed in
the FTMS at a resolution of 60,000. MS/MS was performed in
the LTQ with the instrument operated in data dependent mode
whereby the top 15 most abundant ions were subjected for
fragmentation.
Synthetic MCL1 Data Set

All possible chymotryptic peptides with internal lysine residues
in the human myeloid cell leukemia protein (MCL1_Human)
were synthesized with a SUMO2 tag (QQQTGG) attached to
the lysine residue. This corresponds to a total of 20
SUMOylated peptides, including variants of the same peptide
with SUMO attached to different lysine positions. This set of
synthesized peptides serves as a benchmark data set to test our
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algorithm and also as a reference spectral library for identifying
SUMOylated peptides in a real sample. To test our algorithm’s
ability to identify SUMOylated peptide in a complex mixture,
the synthetic SUMOylated peptides from MCL1 (125fmol/
peptide) were also spiked into 1 μg whole cell lysate of the
human Jurkat cell. The samples were then analyzed by LC−
MS/MS as described for the combinatorial peptide libraries.

Identification of SUMOylated Peptides from Combinatorial
Peptide Libraries

As illustrated in Figure 2, a two-stage search strategy was used
to identify the MS/MS spectra from the three synthetic peptide
libraries. For peptide library I, the SUMO tag is attached to the
library peptide at the first residue, which is conceptually similar
to library peptides having a prefix extension of QQQTGG.
Thus MS/MS spectra from peptide library I can be identified
by searching a custom database where a prefix QQQTGG is
added at the N-terminus of every possible peptide sequence in
library I. In addition to these target sequences, an E. coli protein
sequence database (downloaded from NCBI with Taxonomy
ID 511145, ver. 08/25/2009) was used as the decoy database.
The E. coli database was appended to the target library peptide
sequences in order to generate a sufficient large database for the
target/decoy approach44 to get a reasonable estimation of FDR,
since a sequence database containing only library peptide
sequences would be too small for TDA to accurately estimate
FDR.45 While a decoy database of larger size than the target
database may result in overestimation of the actual FDR, we
opted for this more conservative approach because the
identified spectra were used as reference training data for our
proposed scoring models. The database search was performed
using InsPecT29 with a 1% spectrum-level false discovery rate
(FDR). This allows one to identify an initial set of MS/MS
spectra from SUMOylated peptides that are then used to build
a SUMO-specific database search method (see next section) to
identify MS/MS spectra from peptide libraries II and III, which
are a more realistic representation of endogenous SUMOylated
peptides. Library II contains peptides with a SUMO tag
attached near the middle of the peptide, and library III contains
peptides whose sequence pattern conforms to the canonical
sequence motif [XK(D/E)]19 for SUMOylated peptides. After
spectra from SUMOylated peptides were identified from
libraries II and III, they were incorporated in our training
data and used to build a better scoring model for SUMOylated
peptides. Finally, this improved method was used to search the
spectra from all three libraries one more time to get a final list
of MS/MS spectra from synthetic SUMOylated peptides. To
avoid overfitting and FDR underestimation by training and
testing Specialize on the same set of PSMs, we used 2-fold
cross-validation.30,41 The PSMs were randomly split into two
subsets of equal size, and Specialize was trained on one subset
and tested on the other subset (and vice versa, as in standard 2-
fold cross-validation). Since InsPecT does not support small
precursor mass tolerance, it was run with 3 Da parent mass
tolerance and 0.5 Da fragment mass tolerance. Specialize search
was run with a 50 ppm precursor mass tolerance and 0.5 Da
fragment mass tolerance. To make the search space
comparable, when we compared the search result between
Specialize and InsPecT, Specialize was also run with a 3 Da
parent mass tolerance. With 50 ppm precursor mass tolerance
Specialize identified a total of 2357, 4967, and 2990 MS/MS
spectra from libraries I, II, and III, respectively, while with 3 Da

precursor mass tolerance it identified 2320, 4967, and 2929
spectra from SUMOylated peptides, respectively.

Building a PTM-Specific Database Search Method for
SUMOylated Peptides

In general MS/MS spectra from SUMOylated peptides have
two defining characteristics: (1) they tend to contain a mixture
of SUMO tag fragment ions and substrate peptide fragment
ions, and (2) the attachment of the SUMO tag to the substrate
peptide makes higher-charged fragment ions much more
prominent than on spectra of unlinked peptides. To model
the first characteristic we assume that each SUMOylated
peptide can only fragment once and conceptually think of a
SUMOylated peptide as a mixture of two peptides: a substrate
peptide carrying a modification of mass +599 Da (the mass of
QQQTGG) at the lysine residue and a peptide with sequence
QQQTGG carrying a modification with mass of the substrate
peptide at the C-terminus (see Figure 1b). In common MS/MS
database search, one tries to evaluate how well a single
candidate peptide matches to an MS/MS spectrum; for
SUMOylated peptides we evaluate how well a pair of peptides
(substrate peptide and SUMO tag) matches to a MS/MS
spectrum. In previous work (MixDB46) we introduced a
probabilistic model that describes how well a pair of peptides
matches to a mixture MS/MS spectrum from coeluting
peptides. The statistical framework used here extends that
used in MixDB by further capturing the specific fragmentation
pattern of branch-linked peptides.
Briefly, an MS/MS spectrum is represented as a vector of n

bins, each representing a mass interval of width δ Da (δ
depends on instrument resolution). An experimental MS/MS
spectrum is represented as a vector S = s1, s2, ..., sn where si
represents the peak intensity rank (ranked from most to least
intense) of the highest-intensity peak in each bin. Similarly, a
theoretical spectrum of a peptide P = p1, p2, ..., pn is represented
as a vector where pi indicates the ion-type of the fragment ion
(e.g., b-ion or y-ion) with mass in that bin. The model captures
peptide fragmentation statistics by using a set of annotated MS/
MS spectra to learn the probability that each type of ion
generates an observed peak with a given rank: Prob(s|p).
Similarly, a noise model, Prob(s|0), can be learned using
unannotated peaks in the spectrum (where the symbol 0
represents noise). The scoring function for a Peptide Spectrum
Match (PSM) is thus defined as the likelihood ratio of the
probability that the observed spectrum S is generated from the
candidate peptide P versus the probability that the observed
spectrum is generated from noise: Score(S,P) = ∑Score(si,pi) =
∑ log[(Prob(si|pi))/(Prob(si|0))]. Since a spectrum from a
SUMOylated peptide is a mixture spectrum from two peptides,
we can represent a SUMOylated peptide as two vectors
SUMO(P) = (U,T). The vector U = u1, u2, ..., un encodes all
possible fragment ions from the substrate peptide (having the
SUMO tag as a lysine modification), while the vector T = t1, t2,
..., tn contains all possible fragments from the SUMO tag
(having the substrate peptide as a C-terminus modification). In
order to account for their different fragmentation patterns,
separate scoring models were learned to score U and T against
S. For example, for b-ion Specialize will uses a different scoring
model for substrate peptides (Score(s,bsubstrate) and the SUMO
tag (Score(s,btag)). Thus, the likelihood score that a spectrum S
is generated from a pair of peptides (U,T) is defined as: Score(S,
(U,T)) = ∑ max(Score(ui,pi),Score(ti,pi)). The max operation is
used to model the dependency between the substrate peptide
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and the SUMO tag; when theoretical fragment ions from both
U and T match to the same peak in the spectrum, the model
assign the peak only to the theoretical fragment ion with higher
probability. This avoids using the same peak twice to support
the identification of substrate or tag peptides, which if not
explicitly prevented will incorrectly bias toward unusually high
scores for pairs of peptides with shared masses for many of their
theoretical fragment ions.
In order to further capture the fragmentation statistics of

branch-linked peptides Specialize separates the fragment ions
from a SUMOylated peptide into linked and unlinked
fragments (see Figure 1). Linked fragments are defined as
fragment ions that are covalently linked to a second peptide.
Specialize introduces new ion types to account for linked
fragments. The original MixDB scoring model considered the
standard ion types: b, b(iso), b−H2O, b−NH3, y, y(iso), y−H2O,
y−NH3, where (iso) indicates the isotopic peak of b or y ions.
Specialize further adds the ion types bX, b(iso)X, b−H2OX, b−
NH3X, yX, y(iso)X, y−H2OX, y−NH3X to represent the
corresponding linked-fragment ions that can be generated
from SUMOylated peptides. For each ion type Specialize
considers charge states from one to the precursor charge of the
observed MS/MS spectrum. With these new ion types, the
fragmentation properties of linked-fragment ions were learned
during training, and different probability/weights were assigned
to linked and nonlinked fragment ions when matching a
SUMOylated peptide against an MS/MS spectrum. We noted
that Specialize does not attempt to find new, nonstandard ion
types from peptide libraries; however, this capability could be
implemented using the offset frequency function.42,47

Since it is not known in advance whether each spectrum
comes from a SUMOylated peptide, both SUMOylated peptide
candidates and non-SUMO peptide candidates are considered
during database search. SUMOylated peptide candidates are
scored using models with both linked and unlinked fragment
ions as described above, and unlinked peptides are scored using
only models with unlinked fragment ions. The top scoring
peptide candidate, whether SUMOylated or not, is taken as the
final match for the particular query spectrum. Because
Specialize used the assigned precursor charge state in the
MS/MS spectrum to determine the list of candidate peptides
and the appropriate scoring model, spectra with unassigned
charge states were not considered. We note that it is important
to consider both SUMOylated and unlinked peptide candidates
when searching a spectrum against a database even though the
main goal is to identify SUMOylated peptides. This is because
an MS/MS spectrum generated from a long, unlinked peptide
can be mistaken as a shorter peptide candidate carrying a
SUMO modification at a lysine site near the N or C-terminus of
the peptide. These incorrect SUMOylated candidates can
sometime obtain good scores, especially when they share a
prefix/suffix with the correct unmodified peptide. Thus
considering both SUMOylated and unlinked candidates for
every query spectrum can reduce the chances of such false
positive IDs.
After determining the highest-scoring match for each

spectrum, top scoring peptide spectrum matches (PSMs)
from SUMOylated peptides are scored using a Support Vector
Machine (SVM)48,49 to distinguish true matches from false
positive ones. Because the current implementation of Specialize
focuses on the identification of peptides with complex PTMs,
non-SUMOylated PSMs were not considered for further
scoring. The features used in SVM were (1) likelihood score

as described above; (2) normalized score: likelihood score from
(1) divided by the number of amino acids in the candidate
peptide; (3) explained MS/MS intensity: total intensity of
annotated peaks divided by total intensity of the spectrum; (4,
5) fraction of b and y ions present: number of b and y ions
present in the spectrum divided by the number of b/y ions
possible from the peptide (2 features); (6, 7) longest
consecutive series of b and y ions (2 features); and (8) average
mass error between theoretical and observed masses.
For SUMOylated peptides, each of the above features can be

computed for the substrate peptide and SUMO tag, thus
resulting in a total of 16 features. Together with the combined
likelihood score that considers fragments from both the
substrate peptide and SUMO tag (as described above), this
defines the final list of 17 features used in the SVM model for
SUMOylated peptides. The SVM model was trained using the
identified MS/MS spectra from the combinatorial libraries. For
each training data set, the correct PSMs were used as positive
training data while top-scoring PSMs from the decoy database
were used as negative training data.

Estimation of False Discovery Rate for SUMOylated
Peptides

All database searches were performed against a concatenated
database consisting of the target database and a decoy database
created by reversing each protein sequence in the target
database. For each database search result, all top scoring PSMs
with peptides having the SUMO modifications were considered
as SUMOylated PSMs. All SUMOylated PSMs were extracted
and a false discovery rate (FDR) specific for SUMOylated
PSMs was determined using the standard Target/Decoy
Approach.44 Briefly, let SUMOtarget be the number of
SUMOylated PSMs matched to the target database and
SUMOdecoy be the number of SUMOylated PSMs matched to
the decoy database, the FDR for SUMOylated PSM was
calculated as follows:

=FDR
SUMO

SUMO
decoy

target

Identification of SUMOylated Peptides in Biological Data
Sets

For the synthetic MCL1 SUMOylated peptides (pure MCL1
data set), Specialize was run with same parameters while
allowing the following two SUMO tags: QQQTGG and
Q(−17.0265)QQTGG where Q(−17.0265) indicates pyro-
glutamate formation. The data were searched against a database
containing all synthetic MCL1 peptide sequences with an
appended E. coli sequence database (downloaded from NCBI,
ver . 08/25/2009) as decoy. All SUMOylated peptide PSMs
were extracted, and then a 5% FDR was enforced using the
standard target/decoy strategy (TDA). We used a FDR
threshold slightly higher than the 1% that is usually used in
typical proteomic experiment because the number of spectra
from SUMOylated peptides in the sample is usually small (i.e.,
30−200 in the MCL1 data set). As a result, it is difficult to get a
robust estimation of FDR using the TDA approach when only a
very small number of decoy SUMOylated PSMs are allowed to
pass the FDR threshold (i.e., 0−2 PSMs). For the human Jurkat
cell lysate data set with spiked-in MCL1 peptides (Jurkat data
set), searches were done against a database containing all
synthetic MCL1 peptide sequences and a Human protein
sequences (downloaded from NCBI Refseq, ver. 10/29/2010).
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To estimate the an upper bound for the number of
SUMOylated peptides that could have been identified from
the set of acquired spectra, identified MS/MS spectra from the
pure MCL-1 data set described above were used to build a
spectral library of MCL1 SUMOylated peptides. This spectral
library was then used to search the Jurkat data to determine a
list of possible SUMOylated peptides that were selected by the
instrument for MS/MS analysis out of all acquired spectra.To
estimate the an upper bound for the number of SUMOylated
peptides that could have been identified from the set of
acquired spectra, identified MS/MS spectra from the pure
MCL-1 data set described above were used to build a spectral
library of MCL1 SUMOylated peptides. This spectral library
was then used to search the Jurkat data to determine a list of
possible SUMOylated peptides that were selected by the
instrument for MS/MS analysis out of all acquired spectra. The
search was done using M-SPLIT50 using default parameters.
To compare the performance of Specialize and Mascot, the

Jurkat, the Arabidopsis32 and the Human SUMO20 data sets
were analyzed by both Specialized and Mascot. For the
Arabidopsis data set, because only a subset of the MS/MS data
were provided to us by the authors, only results in the following
data files are considered in this manuscript: MM_col-
d_091609o.mzXML; MM_Sumo_hot_091609qṁzXML; Vier-
s t r a _ S u m o _ 0 6 2 2 0 9 d . m z XM L ; V i e r s t r a _ s u -
mo_070109dṁzXML. For the Human SUMO data set,20 we
considered only MS/MS data that were generated in the
Collision-induced dissociation (CID) mode since our training
data was generated in CID only. All searches were done using
50 ppm precursor mass tolerance and 0.5 Da fragment mass
tolerance with variable modification N-terminal acetylaton
(Nterm+42.011) and methionine oxidation (M+15.995).
Because different SUMO modifications are generated in
different data sets the following SUMO tags or modifications
were allowed on lysine residue during the searches. For the
Jurkat data set, QQQTGG (+599.266) and Q(−17.0265)-
QQTGG (+582.23) were considered; for the Arabidopsis
SUMO data set, QTGG (+343.33) and Q(−17)TGG
(+326.12) modifications were considered; and for the Human
SUMO data set, QQTGG (+454.18) and Q(−17.0265)QTGG
(471.21) were considered. All top-scoring PSMs with the
SUMO modifications were extracted and filtered to have a
precursor mass error less than 15 ppm and a 5% FDR was
enforced using the TDA approach. The sequence databases
used were the Arabidopsis thaliana protein sequence database
(downloaded from UniProt, ver. 5/13/2012) and the Human
protein sequences (downloaded from NCBI Refseq, ver. 10/
29/2010). For the Human and Arabidopsis data sets decoy
databases were generated as usual44 by reversing each protein
sequence in the target databases.
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