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Editorial on the Research Topic

Mechanisms of Fluorescent Proteins

This collection of papers for the Research Topic “Mechanisms of Fluorescent Proteins” (FPs)
samples a broad range of research on physical mechanisms, applications, and molecular engineering
strategies. The papers demonstrate a combination of experimental and computational approaches
and are of broad interest to researchers working on FPs, microscopy, and spectroscopy.

In bioimaging with FPs, increasing the penetration depth and decreasing unwanted scattering are
desirable, which have motivated efforts for engineered FPs with redder emission and higher
brightness (Subach and Verkhusha, 2012; Dedecker et al., 2013). In a combined experimental
and computational work (Gorbachev et al., 2020), the green/red photoconversion of EGFP with
reducing agents was investigated and a novel green-emitting state only present under low-oxygen
conditions was identified. Following photoconversion, the distinct orange and red-emitting forms
(565 and 600 nm emission maxima) differ from the reported red-emitting form (607 nm emission)
via oxidative reaction. This work showcases a complex interplay between the chromophore and
protein environment, generating a neutral quinoid-like green-emitting chromophore (525 nm
emission) as an intermediate. This step leads to a zwitterionic form of the photoexcited
chromophore via charge transfer that bifurcates into the orange and red-emitting forms. Such a
general oxidative mechanism enriches the FP application toolset (Bourgeois and Adam, 2012; Jung,
2012; Krueger et al., 2020; Nasu et al., 2021) with additional tunable “knobs” of oxygen levels and
redox-active compounds to control photoconversion and achieve redder emission.

To brighten the generally dim red and far-red FPs, a systematic study of nonradiative relaxation in
red FPs (RFPs) (Drobizhev et al., 2021) reveals a dominant role of the twisted intramolecular charge
transfer mechanism over the energy gap law. This work substantiates local electrical field control of
fluorescence quantum yield (FQY) of RFPs. Aided by one- and two-photon absorption spectroscopy
and quantum calculations of seven different RFPs with the same chromophore structure, a
spectroscopic method of evaluating local electric fields (amplitude and direction in Ex and Ey) at
the protein chromophore enables separation of contributing factors to the nonradiative relaxation
rate. A small range of positive or negative values for Ex and Ey (–10 to +10 MV/cm) was revealed to
facilitate both a red-shifted absorption and a high FQY, providing rational design principles for site-
specific mutagenesis using RFP scaffold like DsRed.

On a fundamental level, the fluorescence mechanism via excited-state proton transfer (Chattoraj
et al., 1996; Fang et al., 2009; Tonge andMeech, 2009; Fang and Tang, 2020) is elucidated further by a
computational study (Coppola et al., 2020) on the complex hydrogen (H)-bond equilibrium
dynamics for neutral, intermediate, and anionic chromophore forms inside GFP. An accurate
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hybrid QM/MM simulation of the entire protein was performed to
enable the intricate correlation between chromophore site-specific
single H-bond interactions and the chromophore cavity volume, and
noncovalent interactions with distant residues on opposite sides of
the pocket. This work showcases the power of ab initio molecular
dynamics simulations in hybrid form with density functional theory
(DFT) to bridge local and larger-scale effects in FPs.

Most of FPs contain a π-conjugated chromophore,
p-hydroxybenzylidene-imidazolinone (HBDI). Typical examples
are GFP from Aequorea victoria, and DsRed from Discosoma sp.
wherein the HBDI chromophore is amended by an acylimine tail
that lengthens π-conjugation and red-shifts the absorption. Targeted
engineering for brighter variants was typically driven by linear, one-
photon absorption and fluorescence.With the advent of two-photon
laser microscopy, the need for bright and photostable FPs has
increased. Yet two-photon absorption obeys different quantum-
mechanical rules compared with one-photon absorption.
Consequently, the brightest FPs with canonical chromophores for
one-photon imaging are not necessarily optimized for two-photon
excitation. The two-photon cross-sections of ten non-canonical
chromophores (nCCs), inserting substituted tyrosines into the
DsRed scaffold, were calculated using QM/MM schemes with
polarizable embedding and external effective field correction
(Rossano-Tapia et al., 2020). Although none of the model
proteins shows a two-photon cross-section larger than DsRed
(List et al., 2016), the work helps to understand structure-
function relationships and design better two-photon-absorbing FPs.

Three other FPs with nCCs containing Cl-, Br-, and nitro-
substituted tyrosine were prepared from sfGFP scaffold and studied
using a combination of femtosecond transient absorption and
stimulated Raman spectroscopy (FSRS) (Oscar et al., 2020). The
FSRS measurements were supported by DFT calculations of
vibration normal modes for accurate assignments. The high
spectral and temporal resolution obtained by FSRS and transient
absorption allowed delineation of the chromophore protonation
state and isomeric structure. Longer vibrational relaxation times in
the excited state of Cl-sfGFP (4 ps) and Br-sfGFP (11 ps), compared
with the parent sfGFP (1.2 ps), were correlated with the increased
FQY. Moreover, FPs with halogenated chromophores exhibit
advantageous redshifts in their absorption and emission spectra,
rendering them great candidates for bioimaging applications
(Pantazis and Supatto, 2014).

Among the most exciting applications of FPs is their use in
single-molecule and super-resolution fluorescence microscopy.

Such applications necessitate FPs with superior properties such as
high FQY, fraction of time remaining fluorescent, outstanding
photostability, and structural stability (Bourgeois and Adam,
2012; Nienhaus and Nienhaus, 2016; Woodhouse et al., 2020).
In this issue, a bilirubin-activated photoswitching protein called
eUnaG was developed with the highest bulk fluorescence to date,
comparable to organic dyes (Ko et al., 2021). The superior
performance of eUnaG is primarily due to its increased
stability, leading to reduced aggregation and fewer labeling
artifacts. eUnaG promises to support state-of-the-art
performance for high-resolution microscopy.

From this exciting line of inquiries decoding fluorescence
mechanisms of FPs, particularly targeting redder and brighter
emissions, we foresee the interdisciplinary spectroscopy,
microscopy, theoretical, and computational communities to
continue joining forces to paint a comprehensive portrait of
FPs and implement these molecular machines in ever-
expanding applications. Nature has evolved FPs for millions
of years, while GFP has revolutionized molecular and cellular
biology just for several decades (Shimomura et al., 1962; Chalfie
et al., 1994; Tsien, 1998). Much remains to be learned and
developed, and we hope this special Research Topic in Front.
Mol. Biosci. (https://www.frontiersin.org/research-topics/
10542/mechanisms-of-fluorescent-proteins#articles) has
captured the essence of this field and will inspire future
innovations and breakthroughs in both the understanding
and applications of FPs.
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