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The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration,
and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in
embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and
induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and
differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for
drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer,
providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration,
and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in
understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver
cancers.

1. Introduction

Worldwide, liver cancer is the fifth most common malig-
nancy [1] and the third most common cause of cancer
death [2]. Five hundred million individuals are infected with
Hepatitis B or C and a proportion will progress to liver failure
and cancer. As a result, the imperative to understand the
mechanisms of liver disease and to improve treatments for
liver disease has resulted in a dramatic expansion in liver
research. Accordingly, this has driven forward the technical
developments essential to the isolation, maintenance and
propagation of highly purified cell subtypes which will
underpin the therapies of the future. Better understanding
of the physiology of liver development and the responses
to liver injury has revealed emerging themes common
to ontogeny, regeneration, and carcinogenesis. Regulatory
pathways observed in one may form the basis for therapeutic
intervention in another. This review describes recent insights
into liver development, and the relationships with liver stem

cells, hepatocyte proliferation, differentiation, and cancer.
Potential therapeutic options are now emerging from our
developing understanding of these pathways.

2. Liver Development

During embryonic development, totipotent stem cells of
the blastocyst inner cell mass differentiate into multipotent
tissue-specific progenitor cells. Fate-mapping experiments
have shown that the liver arises from the lateral domains
of endoderm in the ventral foregut [3, 4] and from a
small group of cells tracking down the ventral midline [4].
During foregut closure, the medial and lateral domains
fuse together and the endoderm cells are specified to a
hepatic fate under the influence of inductive signals and
genetic regulatory factors that are highly conserved among
vertebrates. Studies in chick, frog, mouse, and zebrafish
models indicate that coordinated signalling of fibroblast
growth factors (FGF) from the cardiac mesoderm and
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bone morphogenetic proteins (BMP) from the septum
transversum mesenchyme is critical in hepatic induction
[5–9].

Following hepatic specification of the foregut endoderm,
the cellular responses to inductive signals elicit new gene
expression programmes required for cell differentiation.
Wnt signalling, initially repressed by Wnt inhibitors to
maintain foregut identity and allow hepatic induction [10,
11], becomes necessary to promote liver bud emergence
and differentiation [10, 12, 13]. The newly specified hepatic
cells, at this stage referred to as hepatoblasts, change to a
columnar shape and invade the septum transversum mes-
enchyme to form the liver bud [14]. This transition involves
coordinated interkinetic nuclear migration and proliferation,
loss of intercellular adhesion, hepatoblast migration, and
tissue-specific differentiation [15]. A number of studies in
mutant mice have shown that liver bud formation is tightly
controlled by a network of transcription factors, including
haematopoetically expressed homeobox factor (Hex) [14,
16, 17], GATA-6 [18], hepatocyte nuclear factor (HNF)-
6 [19], Onecut (OC)-2 [19], T-box transcription factor 3
(Tbx3) [20], and prospero-related homeobox 1 (Prox-1)
[21]. Once hepatoblasts bud into the local mesenchyme, they
continue to proliferate under the influence of a variety of
cytokines and growth factors secreted by mesenchymal cells
in the septum transversum, such as FGF, epidermal growth
factor (EGF), hepatocyte growth factor (HGF), transforming
growth factor (TGF)-β, tumour necrosis factor (TNF)-α,
and interleukin-6 (IL-6) [22–25]. Stimulatory signals to
hepatoblasts from neighbouring endothelial cells are of
particular importance as the presence of endothelial cells,
independent of the blood supply, is critical for normal
liver organogenesis throughout development [26, 27]. The
specific molecular signals from endothelial cells are being
studied; a recent study in the developing chick showed that
Wnt9a secreted by the hepatic sinusoids not only stimulates
hepatoblast proliferation, but it also controls global liver
morphology [28, 29].

Hepatoblasts in the liver bud express serum protein genes
specific to hepatocytes such as albumin (alb), transthyretin
(ttr), and α-fetoprotein (afp) [30, 31]. These cells are bipo-
tential and soon after mesenchyme invasion differentiate into
hepatocytes (α-fetoprotein+/albumin+) and cholangiocytes
(cytokeratin (CK)-19+) [5, 32]. The proper balance in the
numbers of hepatocytes and cholangiocytes from hepato-
blasts is achieved by integrated signalling and transcriptional
networks. The Jagged-Notch pathway controls differentia-
tion of hepatoblasts towards a biliary epithelial phenotype
[33, 34], while HGF antagonises biliary differentiation and
in conjunction with oncostatin M (OSM) promotes hep-
atocyte differentiation [35]. Following lineage segregation,
the percentage of bipotent cells is markedly reduced and
most cells are unipotent and irreversibly committed to either
the hepatocytic or cholangiocytic lineage. Committed cells
exhibit progressive change in morphology and physiologic
functions, and this maturation process extends until several
weeks after birth as demonstrated by a number of gene array
analyses in rodent liver development [36–38]. An overview
of embryonic liver development is presented in Figure 1.

3. Stem/Progenitor Cells in
Human Foetal Liver

Studies in human liver development are relatively few in
number as they rely heavily on ex vivo liver specimens.
These studies are invaluable as not only do they pro-
vide direct observations and knowledge of the regulatory
factors involved in human liver organogenesis but their
findings could also lead to successful isolation and in
vitro propagation of foetal liver progenitor cells suitable
for clinical use. Human embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs) hold great promise
for a potentially abundant source of hepatocytes; however,
directing their differentiation into specific, fully functional
adult cell lineages remains a significant challenge. The use
of foetal human liver progenitor cells abrogates the issue of
forced differentiation, as foetal progenitors have undergone
sufficient morphological and physiological differentiation so
that they are committed to a hepatic fate, and yet they
retain their “stemness” by maintaining their bipotentiality,
proliferative capacity, and transplantability.

The phenotype of foetal human liver progenitor cells
remains controversial. A range of cell markers based on
rodent studies, such as Liv2 [39, 40], E-cadherin [41], and
delta like kinase-1 (Dlk-1) [42], have only been characterised
in human livers by immunodetection methods in vitro [43,
44]. To date, the only convincing evidence to show that
liver progenitors can be isolated from human foetal livers
comes from immunoselection for epithelial cell adhesion
molecule (EpCAM)-positive cells [45]. In situ studies reveal
that EpCAM+ foetal liver progenitors are located in the
ductal plate. Once isolated, these cells are capable of self-
renewal and clonogenic expansion, as well as differentiation
into both hepatocytic and biliary lineages in defined culture
conditions [45]. Moreover, purified EpCAM+ foetal liver
progenitors when transplanted are able to engraft the livers
of immunodeficient adult mice yielding mature human liver
tissue [45].

Another potential stem cell population, side population
(SP) cells, has been found to contribute to haematopoietic
and epithelial lineages in the early gestational phase of
human liver development [46]. SP cells have been isolated
using fluorescence-activated cell sorting based on their abil-
ity to efflux DNA-labelling Hoechst dye [47], a phenotype
determined by expression of ATP-binding cassette (ABC)
transporters encoded by the multidrug resistance (MDR)-1
gene [46]. Their location in situ however remains uncertain,
not least because of the widespread distribution of ABC
transporters in the liver [48]; clearly the vast majority of
cells in the liver expressing ABC proteins are not stem cells
[49].

4. Translating Liver Development to
Disease Models

4.1. Liver Regeneration. The normal adult liver has consid-
erable inherent regenerative capacity. Following acute liver
injury, such as partial hepatectomy, the tissue mass is restored
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Figure 1: The lineage of the developing liver in vivo. Pluripotent embryonic stem (ES) cells from the blastocyst inner cell mass give rise to
three principal germ layers: ectoderm, mesoderm, and endoderm. The anterior region of the endoderm will form the foregut. Following
hepatic specification of foregut endoderm, hepatic cells (now called hepatoblasts) will bud into the septum transversum and continue to
proliferate and differentiate. Maturation into hepatocytes and bile epithelial cells continue until several weeks after birth. The red bars
highlight the key stages of liver development. The black bars in the middle are mouse embryos at different stages of development, and the
blue bars at the bottom indicate the equivalent stages in human development.

by mitotic division of mature hepatocytes [50]. This division
of mature hepatocytes provides an efficient means by which
the normal liver can regain liver mass. The molecular
signals underpinning this form of regeneration are now well
understood (reviewed in [51]). However, this regenerative
capacity is overwhelmed during massive or chronic injury
and facultative liver progenitors (in rodents called oval cells)
are activated. The two reparative processes are quite distinct
yet not entirely mutually exclusive, as liver progenitors and
hepatocyte replication can be observed simultaneously in
some injury models [52, 53]. Nonetheless, gene ontology
analysis shows that restoration after hepatectomy and liver
development differ significantly with regards to transcription
factors and chromatin structure modification [54].

On the contrary, although the exact mechanisms con-
trolling progenitor activation in chronic liver injury remain
elusive, collective data suggest that in progenitor-mediated
regeneration of the adult liver, the molecular signals may
follow a pattern suggestive of a recapitulation of foetal
development. Whilst undoubtedly simplistic, this helps
provide a framework to understand the adult response,
though unequivocally this will not be a complete parallel.
First, EpCAM+ cells purified from normal and injured
adult human livers possess similar biological characteristics
to those from foetal livers and function as bipotential
progenitor cells [45, 55]. Second, in situ antigenic profiling
shows that EpCAM+ progenitor cells are located at the canals
of Hering, adult remnants of the ductal plates [55]. The
progenitor nature of cells at the canals of Hering is further

supported by a recent lineage tracing experiment [56].
Third, the same cytokines and growth factors involved in
foetal development are also implicated in adult regeneration
(reviewed in [57]). In rodent models of chronic liver injury,
HGF [58–60] and EGF [58, 61] upregulate proliferation and
expansion of oval cells while TGF-β [62] and OSM [63]
have the opposite effect. Fourth, upregulation of the Wnt/β-
catenin pathway in rodent models of both acute chemical
[64] and chronic [65] liver injuries suggest symmetry
between foetal development and adult regeneration at the
transcription level. Taken together, adult liver regeneration
parallels foetal development and involves progenitor cells
that can be identified by anatomic, antigenic, and biochemi-
cal profiles.

It is evident that knowledge of the developmental biology
of the liver provides clues to the molecular mechanisms
in liver regeneration. This is critical in the search for a
cure for chronic liver disease as specific pathways may be
selectively targeted via pharmacological means to manipulate
the progenitor cell compartment in adult liver. This has
already been proven to be feasible with imatinib mesylate,
a tyrosine kinase inhibitor, which has been shown to
inhibit the liver progenitor cell response, liver fibrosis,
and liver cancer formation in a mouse model of chronic
liver injury [66]. Alternatively, this method of progenitor
manipulation may be used to enhance liver regeneration
in situ without the complications of cell engraftment and
immunological rejection associated with transplantation.
Further, efforts in programming human ESCs and iPSCs
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to generate hepatocytes de novo (reviewed in [67, 68])
are founded on understanding how hepatocytes normally
develop and differentiate in the embryo and how hepatocytes
arise during regeneration in adults, in response to tissue
damage and disease. The precise conditions that exist within
the embryo which promote the differentiation of hepatocytes
from pluripotent stem cells can be mimicked in vitro,
for example, by using extracellular factors and recruiting
accessory cell types to yield highly functional derivatives for
drug screening, human bioartificial liver construction and,
potentially, transplantation therapy.

4.2. Liver Stem Cells and Cancer. In the UK, the incidence
of primary liver cancer has tripled in the last 30 years,
and the associated mortality has increased by 40% over
the last decade. Most worryingly, provisional data for 2008
indicate that the number of deaths from primary liver cancer
is accelerating, with a 9% increase over the previous 12
months [69]. Given these statistics, there is an urgent need to
understand the mechanisms of carcinogenesis in the liver and
thereby aid the development of new forms of cancer therapy.

The cellular origin of HCC has long been debated,
but whether HCC originates from mature hepatocytes,
stem/progenitor cells, or both remain unclear. The fact that
many liver tumours arise during cirrhosis when hepatocyte
senescence triggers the activation of liver progenitors causes
further confusion [70]. In the liver, there may be at
least three distinct cell lineages susceptible to neoplastic
transformation: hepatocytes, intrahepatic stem cells, or
small hepatocytes [71, 72]. Most well-differentiated HCCs
in the early stages are detected as small nodules with
normal levels of AFP. Subsequently, they increase in size
and become moderately or poorly differentiated cancerous
tissues producing AFP [73]. This suggests that HCC might
arise due to dedifferentiation of mature hepatocytes that
have retained their ability to divide [74]. In addition, it
is now accepted that the arrested differentiation of tissue-
based stem cells or their immediate progenitors, the concept
of blocked ontogeny, is linked to hepatocarcinogenesis [75–
77]. It has been suggested that intrahepatic stem cells can
give rise to HCC and cholangiocarcinoma (CC) [78], as
activation of oval cells has been demonstrated in rodent
models of HCC and CC [79, 80]. Further, the role of
intrahepatic stem cells in carcinogenesis is supported by
a histological subtype of liver malignancies that displays
features of both HCC and CC (HC-CC) combined with the
presence of numerous liver progenitor cells [81, 82]. The
development of HC-CC in mice implanted with p53-null
oval cells suggests that dysregulated propagation of liver pro-
genitors is an important early step in hepatocarcinogenesis
[83].

There are several lines of evidence to suggest that hepato-
carcinogenesis in part recapitulates foetal liver development,
as both cell types have the capacity to self-renew, produce
heterogeneous progeny, and divide limitlessly. First, hepato-
blastomas presenting in their less differentiated phenotype in
the livers of human infants represent an early stage in the cel-
lular lineage pathway observed in the development of highly

differentiated HCCs seen in adults, thereby supporting the
progenitor cell differentiation arrest model [72]. Second, SP
cells, which have hepatocytic and cholangiocytic potential in
foetal livers, have been isolated in a number of HCC cell
lines and are capable of tumour formation with a starting
population of as few as 103 cells in serial xenotransplantation
experiments [84]. Third, foetal liver progenitors and HCC
cell lines share a number of oncofetal markers. A recent study
has shown that Huh1, Huh7, and Hep3B cell lines all express
EpCAM to varying degrees, with up to 99.2% of Hep3B
cells being EpCAM+ [85]. Purified EpCAM+ cells from HCC
cell lines and human clinical specimens possess progenitor
features and, when injected into immunodeficient adult
mice, exhibit tumorigenic and invasive capacity [85, 86].
Moreover, individuals with HCC whose gene expression pro-
files match that of foetal hepatoblasts have a poorer prognosis
compared to those with adult genomic profiles [82, 86].
Fourth, signalling mechanisms central to embryonic liver
development have been implicated in hepatocarcinogenesis.
Activation of Wnt/β-catenin signalling is observed in OV6+

HCC cells in rats [87] and EpCAM+ HCC cells in humans
[88] and is linked to their excessive self-renewal capability
and tumorigenicity. Aberrant TGF-β and IL-6 signalling has
also been found to promote the growth of stem/progenitor
cells in their undifferentiated state and contributes to the
modulation of HCC [89].

In recognition of the symmetry between liver devel-
opment and carcinogenesis and the possible role of liver
cancer stem cells, new approaches to the treatment of
primary liver cancer have been proposed. The inhibition
of specific molecular pathways is one promising strategy.
A recent study has shown that Hep3B cell growth can be
inhibited by RNA interference-based blockage of EpCAM,
a direct transcriptional target of Wnt/β-catenin signaling
[85]. Encouragingly, EpCAM-specific antibodies, though
not licensed for treating HCC, are currently in phase
II clinical trials for the treatment of EpCAM+ colorectal
carcinoma [90]. An alternative strategy is differentiation
therapy, whereby liver cancer stem cells are induced to
differentiate and in so doing lose their self-renewal capacity
and tumorigenic potential. In transgenic mice in which the
c-Myc oncogene is inactivated, tumorigenesis is reversed
with HCC cells losing their neoplastic properties and
differentiating into hepatocytes and biliary cells [91]. It
is also conceivable that the fate of liver progenitors may
be manipulated by targeting the stem cell niche, as the
specified microenvironment in which stem cells reside often
dictates self-renewal and differentiation [92]. One potentially
effective target is endothelial cells, as not only are they a
critical component of the liver progenitor cell niche but
they are responsible for neovascularisation which is a crucial
prerequisite for hepatocarcinogenesis [93, 94]. A number of
anti-angiogenic agents, namely, bevacizumab, erlotinib, and
sorafenib, have already entered clinical trials for HCC and
shown efficacy in some instances [95, 96]. Although these
agents hold much promise, their effect on the improvement
in overall survival is still marginal [95, 96]. There is no
doubt that much more research on the microenvironment
supportive for HCC progression is urgently needed.
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5. Conclusion

There are common threads which span liver development,
regeneration and carcinogenesis, notably the cellular func-
tional phenotype responsible for each process and the
molecular machinery dictating appropriate cell fate. The
identification of stem cell candidates in the developing
liver, and cancer stem cells in liver tumours, has revealed
physiological themes relating to surface markers and the reg-
ulation of proliferation and differentiation. Further progress
towards the clinical application of stem cells and ES-derived
liver cells is critically dependent on detailed understanding
of all of these mechanisms. Only when the generation of
nontumorigenic cells for liver therapy and the interactions of
these cells with host tissues are understood, can the promise
of liver stem cell therapy be fully realised in human liver
disease.
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