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Zebrafish models of cerebrovascular disease
Brian P Walcott1,2 and Randall T Peterson2,3

Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While
there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes,
the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke,
blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel
lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal,
development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of
cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be
genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.

Journal of Cerebral Blood Flow & Metabolism (2014) 34, 571–577; doi:10.1038/jcbfm.2014.27; published online 12 February 2014

Keywords: aneurysm; arteriovenous malformation; cavernous malformation; moyamoya; stroke; zebrafish

ZEBRAFISH CHARACTERISTICS
Vasculature
Drug discovery involves a stepwise series of processes that typically
begin with biochemical and cellular assays to screen for agents of
potential value, which are later validated in animal models, and
ultimately in human subjects.1 The process is costly, resource
intensive, and time consuming. The use of zebrafish (Danio rerio)
models in this process has been used effectively to identify new
drugs, discover new indications for already FDA-approved drugs,
and to better understand the mechanisms for various human
diseases.2,3 The advantages of using zebrafish to model human
diseases are numerous, and relate to their ability to study all
developmental stages, coupled with a scale that is not possible
in other vertebrate systems.2,4 For cerebrovascular disease in
particular, the zebrafish offers the unique advantage of their
embryo stage being optically transparent, making it possible to
study the functional and morphological changes in cerebral blood
vessels in a living organism. The study of cerebral vasculature can
be further highlighted with the use of transgenic zebrafish, such
as Tg(flk1:GFP) that express green florescent protein in their
endothelium and can be readily visualized with the use of
epifluorescence microscopy.5 While fluorescent vasculature is not
a direct measurement of cerebral blood flow, it does represent an
in vivo means to assess vascular structures with a high level of
resolution, capable of rapid phenotyping of thousands of individual
subjects. Other methods of physiologic assessment include
microangiography6,7 and laser-scanning velocimetry8, which can
be used to further characterize the qualitative and quantitative
changes in cerebral blood flow. Furthermore, zebrafish embryos are
able to undergo live imaging9,10, allowing for real-time visualization
of angiogenesis and vasculogenesis. In addition, the dimensions
of blood vessels can be measured in any axis following fixation in
resin with an extremely high degree of accuracy.11 These tech-
niques allow for spatial and temporal resolution of alterations in
hemodynamics and blood vessel structure, which are useful tools
in the study of cerebrovascular disease.

Genetics
For zebrafish models of disease to be pertinent to the patho-
physiology of humans, they must share genetic underpinnings,
not just merely a common phenotype. Although the zebrafish
appears as a relatively simple organism, comparison of the two
genomes has demonstrated a high degree of conservation in
genes implicated in processes ranging from oncogenesis to
angiogenesis.12–14 There is also a high degree of conservation
between humans and zebrafish with respect to drug responses,
indicative of a high degree of amino-acid sequence identified at
protein-active sites where many drugs bind.15 Although the
genetic sequence of zebrafish is highly conserved with humans, it
is more readily manipulated for the purposes of experimentation.
Several tools exist in the armamentarium of the zebrafish biologist
that can be used to dissect pathophysiologic pathways. Broadly
speaking, the use of ‘forward’ genetic screens can be used where
chemicals with both known and unknown functions, along with
other mutagens, can be administered to zebrafish and their
phenotype can be characterized.16 Conversely, ‘reverse’ genetic
screens can be performed where the gene of interest is manipu-
lated precisely with one of the several methods and then the
phenotype is observed. Examples of this include morpholino
oligonucleotide knockdown17,18, transcription activator-like effector
nucleases19,20, zinc-finger nucleases21,22, and the clustered, regu-
larly interspaced, short palindromic repeats (CRISPR)--CRISPR-
associated (Cas) systems23, each of which can induce targeted
genetic modifications in zebrafish embryos.

Phenotype Screening
The size of the zebrafish facilitates a large experimental scale size
that is not possible with other vertebrates. Adult zebrafish pairs
can generate up to 300 embryos at each mating, allowing for
experiments with thousands of organisms at a time. Because the
zebrafish embryo is much smaller than 1 mm in diameter, experi-
ments can be performed in 96 or 384-well plates. Most small
molecules readily diffuse into zebrafish, requiring only a dilution of
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the drug into the fish water to effectively ‘treat’ organisms. Tens of
thousands of known and unknown compounds are commercially
available, including libraries specifically generated with FDA-
approved compounds.2 The zebrafish’s microscopic size, high
fecundity, and ease of drug administration, coupled with ease of
phenotype recognition, make it well suited for high-throughput
screening.24

ZEBRAFISH STROKE MODELS
Cerebral Amyloid Angiopathy
Cerebral amyloid angiopathy is a cause of potentially fatal lobar
intracranial hemorrhage, particularly in the elderly.25 Histologically,
the diagnosis is characterized by deposition of amyloid peptides
around brain vessels, resulting in fibrinoid necrosis, micro-
aneurysm development, and ultimately, vascular rupture.26

Effective therapeutics do not currently exist that have been
shown to alter the natural history of the disease and the exact
pathogenesis of the condition remains elusive. One of the leading
hypothesis underlying cerebral amyloid angiopathy-related
hemorrhage is that beta amyloid deposition leads to endothelial
dysfunction (early senescence).27 Emerging work in a zebrafish
model has been used to explore the pathogenic mechanisms of
the disease.28 In these experiments, beta amyloid peptide was
administered via diffusion in fish water and a senescence pheno-
type was assessed by measuring beta-galactosidase activity and
the cyclin-dependent kinase inhibitor p21 expression (in situ
hybridization in whole-mount zebrafish embryos). This work
demonstrated that amyloid deposition has activity related to the
senescence of the endothelium, producing progressive alterations
of microvessel morphology and function. Importantly, it also
highlights the utility of the zebrafish model in the investigation of
this disease. Future studies are anticipated to further elucidate the
effects of beta amyloid administration in the endothelium. Given
that small peptides can diffuse into zebrafish, small molecule
screens to identify novel therapeutic targets may be indicated
in cerebral amyloid angiopathy, Alzheimer disease, and other
disorders of amyloid deposition.

Cerebral Arteriovenous Malformation
Arteriovenous malformations (AVMs) of the brain are vascular
anomalies of children and adults who carry a high risk of
hemorrhage, about 2% to 4% per year over the patient’s lifetime.29

The primary pathological phenotypic character of AVMs is a direct
communication between arteries and veins without an inter-
vening capillary bed. Treatment of these lesions, either with
surgery, endovascular embolization, or external beam radiation
(stereotactic radiosurgery), carries significant risks, especially when
lesions are large or located in eloquent brain areas. No specific
medical therapies currently exist and their pathogenesis is
incompletely understood. Despite a robust understanding of
vasculogenesis and angiogenesis30–39, the mechanisms behind
the formation of discrete AVMs are not well known. It is thought
that abnormalities in blood vessel formation and segregation
during embryonic development are thought to be responsible,
although de novo and recurrent lesions have been seen in adult
life and dysfunctional angiogenic processes have also been
implicated.40–42

Arteriovenous malformations occur sporadically or much
more rarely, in the context of a hereditary syndrome. One such
syndrome in humans, hereditary hemorrhagic telangiectasia type
2 (OMIM phenotype ID 600376), is caused by a mutation in the
gene encoding activin receptor-like kinase 1, a type 1 transform-
ing growth factor beta receptor in the BMP signaling pathway.43

This known mutation provides an opportunity to study the
pathogenic mechanisms of AVMs in vertebrate models.44,45

Another syndromic form of cerebral AVM development, such as

CM-AVM (OMIM phenotype ID 608354), is caused by a mutation in
RASA1,46,47 a gene that has been fully sequenced in the zebrafish.
Even though only a small percentage of AVMs are thought to be
related to these different Mendelian patterns of inheritance,48–50

evidence does exist that that single nucleotide polymorphisms in
genes such as alk1 occur in many sporadic occurring AVMs.51,52

Therefore, further dissection of mechanistic pathways leading to
AVM development may be applicable to AVMs that occur in the
sporadic setting, as well as in cases of Mendelian inheritance.

Several mammalian models of cerebral AVMs exist, but are
limited in their applicability for drug discovery. For example,
cerebral AVMs have been created in swine, but this method
requires a surgical intervention to generate a lesion that mimics
the human condition.53 Other animal models, including mice,
have been used, although they require angiogenic stimulation
with vascular endothelial growth factor, in addition to genetic
manipulation to generate lesions.54–56 In comparison, zebrafish
are an attractive model in that their endothelium is visualized
easily with fluorescent proteins and their entire cranial circulation
can be observed in vivo. By manipulating gene expression, AVMs
can be generated in the cranial circulation of zebrafish, recapitu-
lating the human disease with a high level of fidelity.44,45

(Figure 1) Beyond the appearance of the abnormal blood vessels,
zebrafish models of cerebral AVM also demonstrate systemic
manifestations of the accompanying pathophysiologic hemody-
namic response that is seen in humans, such as in high output
cardiac failure in the pediatric population.46,57,58 The recent
announcement from the National Institute of Neurological Disorders
and Stroke halting enrollment in the ARUBA trial because of the
procedural risk associated with any form of interventional
treatment emphasizes the urgent need to find effective medical
therapies for these lesions.59 Zebrafish models show promise in
not only accelerating the discovery of pathogenic mechanisms,
but also in the discovery of effective, targeted therapeutics
through high-throughput screening.

Cerebral Aneurysm
Aneurysms are lesions of the cerebral vasculature that have a
typical phenotypic characteristic of an outpouching of a blood
vessel wall as a result of an inherent weakness. As aneurysms
enlarge, their propensity for catastrophic rupture increases.60

Treatment of these lesions is optimally performed prior to an
hemorrhagic event, either with microsurgical obliteration or
endovascular techniques.61 Their pathogenesis is generally thought
to result from the interaction between genetic and epigenetic
factors (such as cigarette smoking and hypertension).62,63

Evidence for the genetic aspects of aneurysm pathogenesis is
well established from powerful population based studies, such as
the familial intracranial aneurysm study.64 In addition, informative
studies, known as genome-wide linkage studies, have been
performed on rare families that are affected with aneurysms.65,66

What is known from these studies is that there are many
genetic susceptibilities implicated in the development of familial
aneurysms.67 Furthermore, cerebral aneurysms can occur in the
setting of autosomal dominant polycystic kidney disease (OMIM
phenotype ID 601313), a hereditary condition caused by a
mutation in the PKD1 gene. This syndrome has effectively been
modeled in the zebrafish, where knockdown of PKD1 orthologs
resulted in a distinct phenotype, related to deficiencies in
extracellular matrix integrity.68

The understanding of aneurysm development is best examined
experimentally where in vivo imaging and genetic analysis can be
performed. Multiple types of organisms have been utilized in the
study of aneurysms, including the rabbit69,70, the mouse71,72 and
the dog.73 While the size of these organisms allows for detailed
physiologic study, it also inherently prohibits their use in high-
throughput-type experiments. The embryonic zebrafish is an ideal
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organism for the study of aneurysmal disease. It is completely
transparent allowing for visualization of its cranial vasculature, is
readily genetically modified, and has a genetic homology that is
strikingly similar to humans.12 Angiography is readily performed
allowing for determination of hemodynamic variables that are key
to aneurysm pathogenesis, such as blood flow rate and wall shear
stress.74,75 In this way, the zebrafish approximates the human
condition and allows for its manipulation in unparalleled ways.

Cerebral Cavernous Malformations
Cerebral cavernous malformations, also known as cavernous
angiomas or cavernomas, are one of the few causes of stroke known
to reliably be caused by one of at least three genetic mutations.76

Histologically, they consist of enlarged capillary cavities (low flow,
low pressure) without any intervening brain parenchyma. These
lesions can result in seizure and/or hemorrhage, and therefore,
the treatment is typically recommended for when they are
symptomatic.77,78 Currently, no therapeutics exist outside the
realm surgery79,80 or focused external beam radiation (stereotactic
radiosurgery).81–83 Treatment becomes challenging, carries
significant risk, or can even be considered impossible for lesions
situated deep within critical brain structures. In addition, lesion
multiplicity also complicates treatment suitability and is more
commonly seen with familial cases.84

While both Mendelian inheritance and sporadic cases exist,
mutations in CCM1, CCM2, or CCM3 can be identified the majority
of these lesions.85–87 A growing understanding of the function of
their gene products has allowed for progress toward elucidating
the basic mechanisms of disease pathogenesis.88–92 However, a
more complete understanding of the biochemical and cellular
processes that lead to the disease phenotype are necessary, and
require the context of an in vivo assay. The zebrafish continues to
be used as a model organism given its optical transparency of the
embryonic stage and its ability to be genetically manipulated.

The zebrafish exome shares a striking similarity with humans,
and the orthologs of the three genes (CCM1, CCM2, and CCM3)
responsible for cavernous malformations have been identified
(santa, valentine, and pcdc10, respectively).93–95 These mutations
can be introduced in zebrafish either through genome editing or
with the use of morpholino knockdown technology. Loss of these
gene products results in impaired cardiovascular development,
specifically a characteristic dilated heart phenotype.96 In addition,
zebrafish with loss of function in these genes also develop a
vascular phenotype, in addition to their cardiac developmental
abnormalities. Looking at the cerebral vasculature, the zebrafish
develop thin-walled vessels that are prone to hemorrhage,
reminiscent of what is seen in pathologic human lesions.95,97

(Figure 2) The experience with CCM modeling in zebrafish is one
of the leading examples of how cerebrovascular disease can be
studied in animal models.

Moyamoya Disease
Moyamoya disease is a life-threatening cerebrovascular disease
that predisposes patients to both ischemic and hemorrhagic
stroke.98 The key angiographic feature that defines the condition
is progressive stenosis of the intracranial internal carotid arteries
and their branches. The classic configuration of their intracranial
circulation is described as a ‘puff of smoke’, with network of
abnormally dilated collateral vessels that attempt to compensate
for the lack of blood flow through the normal conduits in the circle
of Willis. A variety of direct and indirect surgical revascularization
procedures are used to treat the condition, each with varying rates
of success.99–101 No pharmacologic therapy has been shown to
alter the natural history of the disease. Although several suscep-
tibility loci have been identified102,103, the pathogenesis of the
condition remains elusive.

Zebrafish have proven to be valuable tools in this condition
by allowing further investigation of gene function. Following

Figure 1. Phenotype comparison of zebrafish and human arteriovenous malformations (AVM). (A) In wild-type embryos (row 1), transient
connections between the basal communicating artery (BCA) and primordial midbrain channel (PMBC) carry blood at 32 hpf but regress by
48 hpf (white arrows). In alk1 mutants (row two), one or both of these bilateral connections may be retained, forming an abnormal BCA–to–
PMBC arteriovenous connection (white arrows). More posteriorly, lumenized connections drain the basilar artery (BA) to the primordial
hindbrain channel (PHBC) in wild-type embryos at early times, but almost all regress by 48 hpf (row 3, white arrows). In alk1 mutants, one or
more of these connections may be retained, forming a BA–to–PHBC AVM (row 4, arrows). This model resembles the human condition, seen in
a digital subtraction cerebral angiogram. (B) In human AVMs, arterial branches (red arrows) connect directly to the venous circulation (blue
arrows) through a high-flow fistula (purple arrow). One theory for AVM development is that they represent the abnormal persistence of
normal transient developmental connections. Scale bars, 50 mm. Zebrafish images are two-dimensional confocal projections of
Tg(kdrl:GFP)la116; Tg(gata1:dsRed)sd2 embryos, dorsal views, anterior leftwards. Endothelial cells are green; erythrocytes are magenta. Human
digital subtraction angiogram is a lateral projection carotid artery injection in the late arterial phase. (Figure and legend modified from Corti P
et al.44 Distributed under the terms of the Creative Commons Attribution (CC-BY) License).
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genome-wide linkage analysis of affected families, a candidate
gene RNF213 has been identified and subsequently knocked down
in a zebrafish model.104 The phenotype generated by morpholino
oligonucleotide injection was abnormal vessel sprouting and
irregular vessel diameter, supporting the role of RNF213 in vascular
development and stability. In another study, a rare x-linked
moyamoya syndrome was found to be caused by Xq28 deletions
(removing MTCP1/MTCP1NB and BRCC3). In a functional study of
BRCC3, morphant zebrafish were generated. Knockdown of this
gene resulted in angiogenesis defects, which were also rescued by

endothelium specific expression of BRCC3.105 These studies
demonstrate the utility of zebrafish to serve in experiments of
gene function, allowing for the visualization of abnormalities in
the cranial vasculature in vivo. By establishing a model phenotype
based on gene mutations found in humans, dissection of
corresponding signal cascades can be performed. Establishment
of these novel morphants and mutant lines also facilitates their
integration into high-throughput screening platforms in search of
small molecules that rescue the disease phenotype. Certain
limitations of embryonic zebrafish in the study of arterial disease
and vascular malformations must be acknowledged, and are
centered on the apparent lack of pericytes and smooth muscle
cells in the very young embryo, which are known to contribute to
disease pathogenesis in humans.106

Ischemic Stroke
Ischemic stroke, resulting from cerebral vascular occlusion, is a
major cause of death and disability worldwide. With the exception
of tissue plasminogen activator, there are no targeted medical
therapies available, highlighting the need for accelerated drug
discovery. The use of zebrafish in the study of ischemic stroke lags
behind hemorrhagic stroke, and only relatively few preliminary
research efforts have been published on the subject. A notable
study describes the establishment of a zebrafish model of
hypoxic–ischemic injury107, with a follow-up report from the
same group describing the neuroprotective effects of a zinc
chelator using the same model.108 Furthermore, certain hereditary
forms of ischemic stroke in humans, such as cerebral autosomal
dominant arteriopathy with subcortical infarcts and leukoence-
phalopathy have been modeled in the zebrafish.109 This model,
generated by mutations in the notch3 gene, has a phenotype in
the fish typified by enlargement of vessels in the telencephalon
and fin, disorganization of the normal stereotyped arrangement of
vessels in the fin, and gaps in the arterial wall.

Even though limited work has been performed with ischemic
stroke models, zebrafish represent a vast platform to investigate
gene function. In particular, genes that control the expression of
ion transport channels are central importance in understanding
the pathophysiologic sequelae that follows an initial ischemic
insult.110 For example, the cation-chloride co-transporter NKCC1
(sodium-potassium-chloride co-transporter 1) is one of the key ion
channels that contributes to the development of cytotoxic and
ionic edema following ischemia.110–114 This ion channel is well
described in the zebrafish and has been shown to be important in
the regulation of endolymph volume in the otic vesicle and swim
bladder volume.115 Even though an inhibitor of this ion channel is
available in humans (bumetanide), it is limited by low blood–brain
barrier penetration116 and lack of specificity at high concen-
trations.117 The zebrafish represents an opportunity to discover
another more selective NKCC1 inhibitor with better blood–brain
barrier penetration, with potential as therapy to preempt post-
ischemic cytotoxic and ionic edema. Several other channels
implicated in dysregulation of the neurogliovascular unit following
ischemic stroke, such as the N-methyl-D-aspartate receptor
and acid-sensing ion channel, have been described in the
zebrafish.118,119

In addition to mitigating the secondary effects from ischemic
stroke, such as hemorrhagic transformation and cerebral edema
formation, an effort to understand the mechanisms of post-stroke
recovery has the potential to uncover novel therapeutic targets.
Specifically, a focus on adult neurogenesis and the migration
of regenerating neurons in the post-injury recovery period
is an ongoing area of research.120–122 These processes are
being studied in the zebrafish, using adult fish as model
organisms.123–125 Further refinements in experimental injury will
allow for the study of brain recovery from injury, whether it is from
stroke or trauma.

Figure 2. Phenotype comparison of zebrafish and cerebral caver-
nous malformation. In an magnetic resonance imaging of a human
(A), a cerebral cavernous malformation is apparent in the right
frontal lobe (blue arrow). These lesions can result in catastrophic
hemorrhage and/or seizure activity. Treatment with surgery is
effective, and complete resection can be achieved (B) if lesions are
in accessible areas. When lesions are deep or multiple, surgical
treatment may not be indicated, underscoring the need to develop
novel therapeutics. To understand the molecular mechanisms in the
CCM pathway, zebrafish models of the disease have been generated
using morpholino technology. Compared with control organisms (C
and D), morphant knockdowns of rap1b (E and F), a gene that
encodes a Ras GTPase effector protein for CCM1/Krit1, demonstrate
disrupted endothelial junctions, resulting in intracranial hemorrhage
(black arrows), similar to human lesions. Bars, 250 mM. (Figure
modified from Gore A V et al.95 Distributed under the terms of the
Creative Commons Attribution (CC-BY) License).
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In any zebrafish model of cerebrovascular disease, it should be
noted that many physiologic aspects of the cerebral circulation in
zebrafish are not yet well known. Factors that have proven
important in human ischemic stroke, such as collateral circula-
tion126 and autoregulatory capacity127, are yet to be evaluated in
the zebrafish.

SUMMARY
Zebrafish have been used as model organisms in the investigation
of both hemorrhagic and ischemic stroke. They have been shown
to be useful not only in the investigation of gene function, but also
as a high-throughput drug discovery screening platform. With the
conservation of many molecular mechanisms of disease among
vertebrates, zebrafish experiments are poised to result in a better
understanding and new therapeutics for human cerebrovascular
disease.
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