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Abstract

The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A
breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair
of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how
this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still
obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing
processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent
transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound
reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a
narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are
Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and
constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in
epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces
hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-
cyclodextrin, and hydrogen peroxide) are sufficient to globally activate epidermal wound response genes in Drosophila
embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound
signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture
wounds to mount a transcriptional response, mediating local repair and regeneration.
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Introduction

The development of a specialized epidermal barrier layer

represents a key step during the evolution of multi-cellular

organisms. This outer integument provides protection from the

environment and helps maintain cellular homeostasis. Epidermal

barriers consist of epithelial cells that are tightly joined by

adherens and other types of junctional complexes, as well an apical

extracellular matrix layer that is highly variable. The mammalian

epidermal barrier is constructed from a constantly renewing

multicellular layer, in which cells follow a complex process of cell

division and differentiation to form the stratum corneum [1]. In

arthropods like Drosophila melanogaster, a single epidermal cell layer

secretes a multilayered matrix of cross-linked lipid, protein, and

chitin to generate a largely impermeable cuticle barrier [2,3].

Despite the great differences between the components and

physical makeup of their epidermal barriers, both mammals and

arthropods make use of conserved cellular mechanisms, transcrip-

tional regulators, and signaling pathways during the generation of

epidermal barriers as well as during their regeneration after

wounding [4,5,6,7]. There are many complex processes that

contribute to epidermal wound healing; these include clot

formation, reepithelialization, cellular proliferation, inflammation,

and barrier replacement [8]. Drosophila is a genetically tractable

system for discovering evolutionarily conserved genes involved in

such epidermal wound healing processes, as it has been for

discovering genes that regulate animal septic wound responses [9].

One useful system for elucidating cellular mechanisms involved

in wound healing has been Drosophila dorsal closure—where sheets

of embryonic epidermal cells migrate to join at the dorsal

midline—which uses some of the same cellular processes that

are used to heal wounds [10,11]. For example, both dorsal closure

and wound healing involve the recruitment of an actin-

cytoskeleton ‘‘purse-string’’ to help close the edge of the wound

or the edge of a gap in a migrating dorsal epidermal sheet [12].

Several evolutionarily conserved transcriptional regulatory path-

ways have been linked to developmental control of barrier

formation as well as wound healing [13]. For example, Grainy

head (Grh) transcription factors are required in a variety of

animals for the development of impermeable epidermal barriers as

well as normal wound repair [5,6,14,15,16,17]. In Drosophila, Grh

accomplishes these functions in part through regulation of the

Dopa Decarboxylase (Ddc) and Tyrosine hydroxylase (ple) genes, which

encode enzymes that produce cuticle protein cross-linkers [5,18].
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Other transcription factors with conserved roles in wound repair

are those in the JUN family, which are required for wound

reepithelialization in both mammals and Drosophila [7,19].

Upstream of JUN, the JUN amino-terminal kinase (JNK) signaling

pathway [20] is required in the Drosophila epidermis for dorsal

closure and wound reepithelialization [4,21,22]. misshapen (msn),

which encodes a Drosophila JNK-kinase-kinase-kinase, is distinctive

because it is transcriptionally activated around embryonic, larval

and adult epidermal wounds [4,21,22,23,24,25]. Recent reports

have shown that JNK signaling is also required during Drosophila

wing imaginal disc regeneration [26,27]. Another signaling

pathway involving the gene stitcher (stit), which encodes a receptor

tyrosine kinase, is also activated around epidermal wound sites in

Drosophila embryos, and is required for normal wound reepithe-

lialization, and activation of some epidermal barrier repair genes

[28].

There have been a few focused genetic screens for Drosophila

mutants required for normal epidermal wound repair. One was a

screen of 665 P-element insertional mutants for abnormal wound

reepithelialization phenotypes after laser wounding during em-

bryogenesis. The mutations with the most severe defects were in

the genes for the JUN transcription factor and ßHeavy Spectrin [7].

Interestingly, wound closure defects were not observed in several

genes that are required for dorsal closure and epithelial migration

during Drosophila development, indicating that wound closure and

dorsal closure are, to some extent, under the control of distinct

genetic systems [7]. Another Drosophila genetic screen used a

combination of dominant negative and RNAi-mediated knock-

downs to test about 180 genes, focusing on Receptor Tyrosine

Kinases (RTKs), JNK signaling components, and cytoskeletal

components after pinch or puncture wounding of the larval

epidermis [22,29]. The knockdown or knockout of function in

about 20 genes showed defective reepithelialization after larval

wounding. Genes required for normal larval reepithelialization

include those encoding components of the JNK signaling pathway

like the transcription factors JUN (Drosophila Jra) and FOS

(Drosophila kay), as well as the Drosophila PDGF/VEGF-like receptor

(Pvr), and some proteins that regulate or remodel the actin

cytoskeleton [22,29]. A few of the tested genes (encoding JUN,

JNK, and JUNKK, respectively) were also required for the

transcriptional activation of a wound response reporter gene

(misshapen-lacZ) in larval epidermal cells surrounding sterile wound

sites [22].

We have initiated a large, unbiased, genetic screen to identify

mutations that are required for localized activation of epidermal

genes around clean puncture wounds in Drosophila embryos. At this

point, there are cis-regulatory wound enhancers identified from

the Ddc, ple, msn, kkv, and stit genes [25,28]. These enhancers, when

attached to fluorescent reporter genes (hereafter called wound

reporters) provide a visible readout of wound-induced gene

activation after epidermal wounding, and can be used to identify

mutations that are required to activate or localize (delimit) this

response. A few hours after wounding late stage embryos,

fluorescent signal from these epidermal wound reporters can be

observed in a zone that extends ,5–10 cells from puncture sites.

Some particularly interesting regulatory genes that we discuss in

this paper are those required to delimit or localize the activity of

wound reporters to a zone within a few cell diameters from wound

sites. Mutations in such genes result in a global activation of

wound reporters in most or all epidermal cells after wounding.

One of the wound localization genes we identified is reggie-1/

Flotillin-2 (referred to as flotillin-2 or Flo-2 in Flybase), which was

originally isolated as a gene that is activated in wounded,

regenerating goldfish neurons [30], and as a protein enriched in

lipid rafts [31]. At the cellular level, Flo-2 appears to be involved in

a variety of cell signaling and adhesion functions, at least in part

via its role in clathrin-independent vesicular trafficking

[32,33,34,35,36]. Analogous to wounded fish neurons, the Flo2

gene in Drosophila embryos is transcriptionally activated in cells

surrounding epidermal wounds. We find that Flo-2 interacts in a

pathway involving Drosophila Src42A to delimit epidermal wound

responses, and that overexpression of either Flo-2 or activated

Src42A can inhibit wound reporter activation, whether it is

triggered locally by epidermal puncture, or globally by injection

of trypsin or hydrogen peroxide.

Results

Monitoring the activity of epidermal wound reporters in late

stage Drosophila embryos [25] provides an in vivo assay that can be

used to screen for mutations that are required to activate or

localize the expression of genes that respond to epidermal

wounding. We began such a screen using a collection of well-

defined small chromosomal deletions of the Drosophila melanogaster

genome [37], searching for regions containing zygotic functions

required for normal activation of the wound reporter ple-WE1

[25]. One advantage of this screen is that most Drosophila zygotic

mutants survive to late stages of embryogenesis, differentiate their

epidermis (which can be assayed by the activation of an anal pad

specific enhancer that exists alongside the wound enhancer within

the ple-WE1 sequence), and can still be assayed for wound reporter

activity. At this point, we have screened 300 deletions that include

approximately 4,600 genes on the X and 2nd chromosomes

(Figure 1A). Sixteen of these deletions had abnormal ple-WE1

expression, and therefore contained putative epidermal wound

regulatory genes. Analysis of the genes within the collection of

deletions indicates that the zygotic functions of many signaling

pathways, transcription factors, and other regulators of cellular

properties have no effect on the activation of the ple-WE1

epidermal wound reporter (Table 1). For example, deletion

mutants of patched (Hedgehog pathway), shaggy/GSK3 or disheveled

(Wingless pathway), Notch (Notch signaling pathway), Pvr (PDGF/

Author Summary

An epidermal wound provides signals that initiate a variety
of localized responses, some of which act to regenerate
and repair the breach in the epidermal barrier. The
Drosophila melanogaster embryonic epidermis provides
an excellent system to discover new genes that regulate
wound-healing processes. Using fluorescent epidermal
‘‘wound’’ reporters that are locally activated around
wound sites, we have screened almost 5,000 Drosophila
mutants for functions required to activate or delimit
wound-induced transcriptional responses to a local zone
of epidermal cells. Among the seven new genes required
to delimit the spread of wound responses are Flotillin-2
and Src42A. These two genes are also sufficient, when
overexpressed at high levels, to inhibit wound-induced
transcription in epidermal cells. One new gene required to
activate epidermal wound reporters encodes Dual oxidase,
an enzyme that produces hydrogen peroxide. We also find
that four biochemical treatments (a serine protease, a Src
kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen
peroxide) are sufficient to globally activate epidermal
wound response genes in Drosophila embryos. Our results
define new genetic functions, and the interactions among
them, which regulate the local transcriptional response to
puncture wounds.

Regulation of Epidermal Wound Transcription
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VEGF signaling pathway), domeless (JAK/STAT pathway), and

wengen (TNF pathway) all showed normal ple-WE1 expression after

wounding. It is possible that the maternal contribution of some of

these genes is sufficient to rescue potential effects on wound

reporter activation in zygotic mutants.

Within the 16 regions required for normal epidermal wound

reporter expression, we have currently defined 7 single gene

mutations with new functions in wound reporter activation or

localization (Figure 1B). The functions of two of these genes

(ghost/stenosis, and Duox) are required for wound gene activation,

and five of the genes (flotillin-2, wurst, varicose, Src42A, and the

Drosophila homolog of yeast MAK3) are required to localize wound

reporter activity to the immediate vicinity of wounds. One focus

of this paper is on flotillin-2 (Flo-2). The Flo-2 protein has been

well characterized at the cellular and biochemical levels, but the

genetic interactions of Flo-2 are still enigmatic in the diverse

cellular processes in which it participates [38]. The Drosophila

genome encodes only one Flo-2 ortholog [39]. Null mutants that

eliminate Drosophila Flo-2 protein also accumulate little or none of

the related Flo-1 protein, since it is apparently destabilized in the

absence of Flo-2 [40]. Flo-2 mutant animals have normal

morphology and are viable and fertile [40]. Despite having

normal adult morphology, Flo-2 mutants show a reduced spread

of Wnt and Hedgehog signals in wing imaginal discs [40,41]. Flo-

1 mouse mutants are viable and fertile under standard lab

conditions and the mutants have somewhat reduced Flo-2 protein

levels [42]. We tested a Drosophila deletion mutant that eliminated

the Flo-1 gene, but ple-WE1 expression was normal after

wounding (Table 1).

Normal epidermal activation of our fluorescent protein wound

reporters can be easily detected 4 hours after wounding wild type

stage 16 embryos (Figure 2A, 2B), although transcripts from the

same endogenous wound-activated genes in a narrower zone of

cells can be detected in fixed embryos within 30 minutes after

wounding [5,25]. The fluorescent protein reporters have the great

advantage of being easily detectable in living embryos or larvae,

whereas nucleic acid or antiserum probe permeability into late

stage embryos or larvae with partially or fully differentiated cuticle

is labor intensive at best. However, the fluorescent protein

reporters typically represent a delayed version (by our estimate,

a few hour delay) of the transcriptional response in cells

surrounding wounds. This is due to the requirement of

enhanced-GFP or enhanced-dsRed proteins to oxidatively mature

to fluorescence. We estimate that the fluorescent reporter proteins

we used [5,25,43]. have a half-time to maturation of about an hour

in fly embryos after the reporter gene RNAs are translated.

Additionally, time is required to accumulate detectable levels of

fluorescent protein, and this is dependent on the strength of the

epidermal wound enhancer being tested. For example, the Ddc .47

wound enhancer appears to be slightly stronger than the ple-WE1

enhancer [5,25].

In Flo-2 mutants, fluorescent wound reporter proteins driven by

the ple-WE1 and Ddc .47 wound enhancers are detected at 4 hours

after wounding, but reporter expression is significantly expanded

compared to wild type embryos (Figure 2A, 2B). By 6 hours post-

wounding reporter expression in Flo-2 mutants spreads to include

most epidermal cells in late embryos (Figure 2A, 2B). Using in situ

hybridization or protein immunodetection, we also tested the

Figure 1. Summary of epidermal wound reporter mutants and their phenotypes. (A) Maps of X and 2nd chromosomes. Black bars
represent deleted regions that have a normal epidermal wound reporter phenotype. Red bars represent deleted regions that have an altered
epidermal wound reporter express pattern. (B) A list of new genes identified that affect the localization of the epidermal wound reporter. X:1.2M, for
example, denotes 1.2 Megabases on the Drosophila genome map of the X chromosome [93].
doi:10.1371/journal.pgen.1002424.g001

Regulation of Epidermal Wound Transcription
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effect of Flo-2 mutants on the activation pattern of several

endogenous wound response genes (ple, Ddc, msn, stit, and Src42A),

and found comparable expanded expression domains after wound

induction (Figure S1, and data not shown). Nearly all (,90%) of

wounded Flo-2 mutant embryos survive, hatch to become larvae,

and progress to adulthood, which was similar to that observed in

wounded wild type embryos (data not shown). We did not detect

any characteristics of abnormal epidermal wound healing [26], or

ectopic melanization in the punctured Flo-2 mutants, although we

did not carefully examine the kinetics of healing in the mutants.

Activation of wound reporters in Flo-2 mutants was wound-

dependent; in no instances was constitutive expression of reporters

detected in mutant embryos.

Flo-2 transcripts normally accumulate in all cells of the embryo,

including the epidermis (Figure 3A), with higher apparent levels in

the central nervous system [40,41]. The insertional mutant into

Flo-2 (Flo-2[KG00210]) used in this study fails to accumulate

transcripts (Figure S1A; [40]). A 500 bp region within the largest

of the Flo-2 introns contains predicted high affinity binding sites

for the Grh, AP-1, and ETS transcription factors. Such sites are

found in clusters in previously characterized epidermal wound

response enhancers from the ple, Ddc, msn, and stit genes [25,28].

To test whether Flo-2 is transcriptionally activated around

epidermal wounds, we carried out in situ hybridizations on

wounded embryos using a Flo-2 probe. As seen in Figure 3B,

Flo-2 transcripts are expressed at higher levels in cells surrounding

epidermal wound sites, overlapping with the wound induced

activation of the endogenous Ddc gene. Previous studies showed

the activation of some epidermal wound response genes depends

on the function of the Grh transcription factor [25,28]. As seen in

Figure 3C, Flo-2 transcriptional activation around epidermal

wound sites is dramatically reduced in grh mutant embryos

compared to wild type siblings (Figure 3B), consistent with Flo-2

being activated in a Grh-dependent manner.

With Flo-2 loss of expression resulting in widespread activation

of epidermal wound genes, we wished to test whether overexpres-

sion of Flo-2 would have an effect on wound gene activation. This

was accomplished using a fly line in which the Flo-2 cDNA was

fused to a UAS promoter, in combination with an arm-GAL4

driver [44]. armadillo (arm), the Drosophila homolog of ß-catenin, is

expressed ubiquitously in embryos, and the arm-GAL4 driver can

induce high levels of UAS-Flo-2 expression beginning at stage 10

of embryonic development (Figure S2A, [45]). Ubiquitous high

levels of Flo-2 inhibit the activation of the Ddc .47 and ple-WE1

epidermal wound reporters around wound sites (Figure 4A, Figure

S3A). To test whether the inhibition caused by overexpression of

Flo-2 was cell autonomous, we used en-GAL4 to drive high levels of

Flo-2 in the engrailed (en), posterior compartment of each embryonic

Table 1. Zygotic mutants in these genes show ple-WE1 wound reporter expression in a normal zone in the epidermis around
wounds.

Gene name Signaling pathway or process eliminated

Dof FGF receptor pathways

Pvr Drosophila PDGF/VEGF signaling pathway

Pvf1 Ligand for Pvr

Jra/JUN JUN transcription factor

bsk/JNK JUN Kinase pathway

fused, smoothened Hedgehog signaling pathway

patched Hedgehog receptor

Toll, imd, Dif, dl Innate immune pathways

wengen Tumor necrosis factor/eiger receptor

hopscotch, domeless JAK/STAT signaling pathway

shg/GSK-3 Wg/Wnt canonical signaling pathway

Wnt10, Wnt2 Wg/Wnt ligand

dishevelled Wingless signal transduction, canonical and non-canonical

armadillo/ß-catenin Cadherin protein complex, canonical Wnt signaling pathway

shark One branch of Src-family signaling pathways in Drosophila

Btk29A One branch of Src-family signaling pathways in Drosophila

minibrain/Dyrk One branch of Src-family signaling pathways in Drosophila

Notch Notch signaling pathway

Flotillin-1 Membrane associated protein, component of lipid raft

starry night GPCR, establishment of planar cell polarity

pickle/megatrachea Claudin-like, component of septate junction

Sec24A/B COP II vesicle trafficking

hippo, yorkie Cell proliferation

Dsor MAPKK in RTK signaling pathways

IP3K1 Regulation of Ca++ homeostasis

rab5 GTPase, regulation of endocytosis

moesin ERM protein family, actin cytoskeleton

doi:10.1371/journal.pgen.1002424.t001

Regulation of Epidermal Wound Transcription

PLoS Genetics | www.plosgenetics.org 4 December 2011 | Volume 7 | Issue 12 | e1002424



segment (Figure S2B, [46]). Overexpression of Flo-2 using en-

GAL4 is sufficient to silence the activation of the Ddc .47 and ple-

WE1 epidermal wound reporters in all cells near a wound, even in

those that do not produce Flo-2 at higher levels (Figure 4C, data

not shown). The lack of any activation of the epidermal wound

reporter in the en.Flo-2 overexpression experiments suggests that

Flo-2 can act cell non-autonomously, at least at short range, to

inhibit the ability of cells to respond to wound signals. Higher

levels of Flo-2 do not appear to be toxic, as overexpression of Flo-2

with either the arm-GAL4 or the en-GAL4 drivers does not

obviously alter embryonic development, and animals so treated

survive to produce viable and fertile adults (data not shown).

Although we do not know the signaling mechanisms that allow

cells 5–10 cell diameters from a wound site to sense the presence

of an epidermal break and activate wound gene transcription, one

system that might be involved is an activation of serine protease

cascades. Serine proteases regulate the production of some

localized developmental signals [47], infectious innate immune

signals [9], and activate localized melanization around wounds

[48]. We tested whether a serine protease, trypsin, would be

sufficient to induce widespread activation of epidermal wound

reporter genes when injected into late stage embryos. Injection of

trypsin into the body cavity (or into the perivitelline space) of

stage 16 embryos results in a global activation of Ddc .47 and ple-

WE1 epidermal wound reporters (Figure 4B, Figure S3B). This

trypsin treatment does not appear to result in widespread

epidermal cell death, nor is the epidermal paracellular barri-

er—which prevents diffusion of all but very small molecules

through epithelia—breached when trypsin is injected into the

perivitelline space of stage 16 embryos (R.P., unpublished results).

Although trypsin is sufficient to activate the ple and Ddc wound

reporter genes, as yet we have no current evidence that a specific

endogenous serine protease is required to activate epidermal

wound-induced transcriptional responses. Strikingly, overexpres-

sion of Flo-2 under the control of either arm-GAL4 or en-GAL4 is

sufficient to inhibit trypsin-induced activation of Ddc .47 or ple-

Figure 2. Flo-2 functions to inhibit widespread activation of epidermal wound reporters. (A) Confocal images of Ddc .47-GFP epidermal
wound reporter activity (4–6 hours after puncture wounding). Wild type (wt) embryos show the reporter in cells around the wound site. Flo-2 mutant
embryos show expansion of Ddc .47 reporter expression to most epidermal cells. (B) ple-WE1-dsRed epidermal wound reporter expression expands to
most epidermal cells in Flo-2 mutant embryos 6 hours after wounding. Arrows mark the site of the wound. Dashed lines in the data panels mark the
outlines of embryos. Scale bars = 50 mM.
doi:10.1371/journal.pgen.1002424.g002

Regulation of Epidermal Wound Transcription
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WE1 wound reporters throughout the entire embryonic epider-

mis (Figure 4B, 4D; Figure S3C, S3D). This finding suggests that

puncture-induced and trypsin-induced activation of wound genes

might act through a common pathway that can be inhibited by

overexpression of Flo-2. The inhibition of protease-induced

wound reporter gene activation observed with en.Flo-2 overex-

pression is consistent with the idea that Flo-2 can act cell non-

autonomously.

Similar to Flo-2 mutants, mutants in Drosophila Src42A show

more widespread activation of the ple wound reporter or Ddc

transcription in epidermal cells after localized punctures

(Figure 5A, 5B). Since previous research has uncovered functional

and biochemical interactions between Flotillins and Src family

tyrosine kinases [33,49], we decided next to focus on the

relationships between Flo-2 and Src42A in the regulation of

epidermal wound response genes. Src42A is the Drosophila

homolog of vertebrate c-Src [50]. Src family kinases were found

to play important roles in several signaling pathways [51]. Like

Flo-2, Src42A is itself a wound response gene; Scr42A transcripts

accumulate to high levels in cells surrounding wound sites in wild

type embryos (Figure 5C). Src42A transcription is also globally

activated in all epidermal cells in wounded Flo-2 mutant embryos,

although the converse is not true, as Flo-2 transcript levels are

unchanged in Scr42A mutants (data not shown). In this sense at

least, Flo-2 wound-dependent transcriptional activation is not

behaving as other wound-induced genes like Ddc and ple, which

show widespread wound-induced transcription in Src42A mutants.

Similar to Flo-2, overexpression of Src42A.CA (a constitutively

activated form, [52]) with arm-GAL4 inhibits both the local

puncture, as well as trypsin-induced, activation of the Ddc .47 and

ple-WE1 epidermal wound reporters (Figure 5D, 5F; data not

shown). In contrast to Flo-2, overexpression of Src42A.CA in stripes

using en-GAL4 inhibits the trypsin-induced activation of the ple-

WE1 and Ddc .47 epidermal wound reporters only in the cells

where en.Src42A.CA is over-expressed (Figure 5E, 5G). Thus,

overexpressed Src42A.CA acts cell autonomously to inhibit

epidermal wound reporter activity. Embryos with deletion

mutations that eliminate other Src family tyrosine kinases, e.g.

Btk29A (Tec homolog), shark (Syk homolog), hopscotch (JAK

homolog), and minibrain (DYRK homolog) all had normal,

localized ple-WE1 wound reporter activity (Table 1). This suggests

that the Src42A inhibition of epidermal wound reporter activity is

specific, and not a general property of Src family tyrosine kinases.

To test whether chemical inhibition of Src function would result

in widespread wound reporter activation, we simultaneously

wounded and injected one such chemical inhibitor, SU6656

[53], into the body cavity. This treatment induced widespread,

patchy expression of the Ddc .47 and ple-WE1 wound reporters

throughout the embryonic epidermis (Figure S4A, S4B). This

widespread activation of wound reporter genes after inhibition of

Src kinase function was not suppressed by overexpression of Flo-2

using the arm-GAL4 driver (Figure S4A, S4B).

Flo-2 is associated with, and may stabilize the Flotillin-

dependent fraction of lipid rafts in membranes [33]. Therefore,

Figure 3. Flo-2 transcriptional activation at wound site depends on grainy head function. Confocal images of in situ hybridizations with
fluorescently labeled probes made from Flo-2 and Ddc cDNA clones. (A) Flo-2 transcripts accumulate in all epidermal cells of late stage embryos. (B)
30-minutes after puncture wounding, Flo-2 transcripts show increased accumulation in cells around wound sites, in a similar pattern as wound-
induced Ddc transcript activation in the epidermis. (C) 30-minutes after puncture wounding, grainy head (grh) mutant embryos fail to show increased
accumulation of Flo-2 transcripts around epidermal wound sites. Arrows mark the wound site. Dashed lines in the data panels mark the outlines of
embryos. Scale bar = 50 mM.
doi:10.1371/journal.pgen.1002424.g003

Regulation of Epidermal Wound Transcription
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we were prompted to test whether chemicals that disrupt lipid rafts

might influence the spread of wound reporter activation in the

epidermis. One chemical that inhibits lipid raft formation is

methyl-ß-cyclodextrin (MßCD), which depletes cholesterol (and

other similar lipids) from cell membranes, and can influence many

intracellular signaling pathways [54,55,56]. Simultaneous wound-

ing and injection of MßCD into the body cavity of Drosophila

embryos is sufficient to activate the Ddc .47 and ple-WE1 wound

reporters throughout the entire embryonic epidermis (Figure 6A

and data not shown). This result suggests that the effect of

Figure 4. Overexpression of Flo-2 inhibits activation of an epidermal wound reporter. (A) Brightfield and fluorescent confocal images of
late stage embryos with Ddc .47-GFP epidermal wound reporter genes. Wild type (wt) embryos, or embryos with overexpressed Flo-2 (arm.Flo-2)
have similar melanized clots in the cuticle at puncture wound sites. Ddc .47 reporter expression accumulates around punctures to high levels at 4–
6 hours post-wounding. In arm.Flo-2 embryos, Ddc .47 wound reporter expression is not detected around punctures at any time post-wounding. (B)
After wounding with needles loaded with trypsin, wild type (wt) late stage embryos dramatically activate Ddc .47-GFP reporter expression throughout
most or all epidermal cells at 6 hours post-wounding. In late stage embryos overexpressing Flo-2 (arm.Flo-2), the trypsin-induced Ddc .47 wound
reporter activation is completely repressed. (C,D) Embryos with the Ddc .47 epidermal wound reporter that overexpress Flo-2 in stripes using the en-
GAL4 driver (en.Flo-2) show inhibition of both wound-induced (C) and trypsin-induced (D) activation of the Ddc .47 wound reporter in all epidermal
cells, not just the epidermal cells that overexpress Flo-2 (see Figure S2B). Arrows show wound sites. Dashed lines in the data panels mark the outlines
of embryos. Scale bar = 50 mM.
doi:10.1371/journal.pgen.1002424.g004

Regulation of Epidermal Wound Transcription
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Figure 5. Src42A functions to inhibit widespread epidermal wound reporter activity after wounding. (A) Fluorescent confocal image of
ple-WE1-dsRed epidermal wound reporter activity in a late stage Src42A mutant embryo. At 6 hours after wounding, the Src42A mutants show
activation of the ple-WE1 wound reporter in a very broad area of the embryonic epidermis surrounding the wound site (compare with Figure 1B).
(B,C) Confocal images of fluorescent in situ hybridization experiments. (B) 30-minutes after wounding, Src42A mutant embryos show accumulation of
Ddc transcripts in a widespread zone of epidermal cells around the wound site (compare with Ddc expression in wounded wild type (wt) in panel C-
right side). (C) Using double in situ hybridization with probes labeled with different fluorophores [9] (both images in C are taken from the same wild
type (wt) embryo 30 minutes after wounding), we observed that Src42A transcripts are activated to high levels around wound sites (left panel), and in
a slightly smaller zone than Ddc transcripts at the same stage. (D,E) Fluorescent confocal images of ple-WE1-dsRed epidermal wound reporter activity
in late stage embryos (6 hours post-wounding) after body cavity injection of trypsin. (D) Ubiquitous expression with Src42A.CA inhibits the trypsin-
induced ple-WE1 reporter in late stage embryos (compare with Figure S3B). (E) Overexpression of Src42A.CA in stripes with the en-GAL4 driver only
inhibits ple-WE1 reporter expression in the cells where en-GAL4 is activating high levels of Src42A.CA protein expression. The insert provides higher
magnification, and the bracket shows the stripe of cells where Src42A.CA is overexpressed by the en-GAL4 driver. (F,G) Confocal images of Ddc .47
epidermal wound reporter activity in late stage embryos (6 hours post-wounding) after body cavity injection of trypsin. (F) Ubiquitous expression
with Src42A.CA inhibits the trypsin-induced Ddc .47 wound reporter in late stage embryos. (G) Overexpression of Src42A.CA in stripes with the en-
GAL4 driver only inhibits Ddc .47 reporter expression in the cellular stripes where en-GAL4 is activating high levels of Src42A.CA protein expression.
Arrows mark sites of wounds. Dashed lines in the data panels mark the outlines of embryos. Scale bar = 50 mM.
doi:10.1371/journal.pgen.1002424.g005
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reducing functional Flo-2 on the wound response can be mimicked

by more severe disruptions in lipid raft organization and

membrane composition.

One wound-induced signal that can function to attract blood

cells to the site of clean wounds in zebrafish and Drosophila embryos

is Hydrogen Peroxide (H2O2) [57,58,59]. We wished to test

whether injection of H2O2 into the body cavity of Drosophila

embryos was sufficient to activate the Ddc .47 and ple-WE1

epidermal wound reporters in embryos, and found that a wide

range of concentrations of H2O2 could activate the Ddc .47 and ple-

WE1 wound reporters in most or all epidermal cells (Figure 6B,

and data not shown). Interestingly, Flo-2 or Src42A.CA overex-

pression is sufficient to inhibit the both MßCD and H2O2

activation of the Ddc .47 and ple-WE1 epidermal wound reporters

(Figure 6C, 6D; Figure S4C, S4D, and data not shown). These

results suggest that high levels of Flo-2 or Src42A.CA are potent

inhibitors of chemically-induced transcriptional activation of these

epidermal wound reporters. To determine whether H2O2

production was required for the induction of epidermal wound

reporters, we tested a Drosophila mutant in the gene for the Dual

oxidase protein (Duox), the enzyme responsible for the production

of H2O2, [57]. We found that Duox mutant embryos show a

dramatically decreased activation of the ple-WE1 epidermal

wound reporter (Figure 6E). However, in the Duox mutant

background, trypsin injection is still sufficient to activate the ple-

WE1 reporter throughout the epidermis (Figure 6F), suggesting

H2O2-induced wound signaling might be upstream of, or in

parallel to, a serine protease-dependent activation of epidermal

wound reporters.

Discussion

Drosophila melanogaster wound healing is an example of a

regenerative process, which requires localized epidermal cytoskel-

etal changes, and localized wound-induced changes in epidermal

transcriptional activity [60]. Our genetic screen with wound-

dependent reporters has allowed us to identify novel components

that regulate the localized transcriptional response to wounding in

Figure 6. Chemical activation of the epidermal wound reporters by H2O2 and methyl-ß-cyclodextrin (MßCD) is consistent with the
affects of Duox and Flo-2 mutations on wound reporter expression. (A–F) Fluorescent confocal images of Ddc .47 or ple-WE1 epidermal
wound reporters (all embryos shown are 6 hours post-wounding). Body cavity injection of MßCD (A) and H2O2 (B) into wild type (wt) embryos
activates the Ddc .47 wound reporter throughout the entire epidermis. Overexpression of Flo-2 with an arm-GAL4 driver (arm.Flo-2) can inhibit both
MßCD (C) and H2O2-induced (D) activation of the Ddc .47 wound reporter (or the ple-WE1 wound reporter, not shown). (E) In Duox mutant embryos,
wound-induced ple-WE1 reporter expression is not detected (F) However, in Duox mutant embryos treated with trypsin ple-WE1 reporter expression
is detected in all epidermal cells. Scale bar = 50 mM.
doi:10.1371/journal.pgen.1002424.g006
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epidermal cells. This research identifies seven genes that are

required to either activate (Duox and ghost/stenosis) or localize (Flo-2,

Src42A, wurst, varicose, and Drosophila homolog of yeast Mak3) the

expression patterns of epidermal wound reporters. The number of

new functions involved in the delimitation of epidermal wound

response near wound sites was unexpected, but indicates that

considerable genetic effort is devoted to localizing the activity of

transcriptional wound responses during regeneration.

One of the genes that limits the spread of epidermal wound

reporters after clean epidermal punctures is Flo-2, as mutants of

this gene show a broad expansion of epidermal wound gene

activation. Drosophila Flo-2 is itself transcriptionally activated

around epidermal wound sites, consistent with an evolutionarily

conserved role in regeneration after wounding. In vertebrates,

reggie-1/Flo-2 gene expression is activated in wounded fish optic

neurons [30], and reggie-1/Flo-2 and reggie-2/Flo-1 morpholino

knockdowns in wounded zebrafish retinal explants reduced axon

outgrowth compared to controls [61]. Flo-2 transcriptional

activation around Drosophila epidermal wound sites is dependent

on the grh genetic function, which is required to activate at least a

few other epidermal wound response genes [5,25,28]. Flo-2 thus

appears to act in the same pathway as grh, although it may act both

downstream and upstream of grh, since overexpression of Flo-2 can

inhibit the activation of other grh-dependent wound response

genes. In this respect, Flo-2 resembles the stit receptor tyrosine

kinase gene, which is both transcriptionally activated by Grh, as

well as required for grh-dependent activation of other downstream

wound genes [28]. Amazingly, overexpression of Flo-2 can even

inhibit the global activation of the Ddc .47 and ple-WE1 wound

reporters that are induced by the serine protease trypsin, or by

hydrogen peroxide. The inhibitory function of overexpression of

Flo-2 on wound induced transcription is cell non-autonomous, at

least over the range of a few cell diameters, as shown by the ability

of striped overexpression of Flo-2 to silence puncture or trypsin-

induced gene activation throughout the epidermis.

The only animal where Flo-2 null mutants have so far been

characterized is Drosophila, where Flo-2 has been shown to regulate

the spread of Wingless (Wg) and Hedgehog (Hh) signals in the

wing imaginal discs [40,41]. In the wing discs, both the secretion

rate and the diffusion rate of these two lipid-modified morphogens

were increased when Flo-2 was overexpressed, and decreased

when Flo-2 and Flo-1 proteins were not expressed [41]. Despite

the reduced spread of Wg and Hh morphogen proteins in Flo-2

mutant imaginal discs, adult morphology of mutants was normal,

presumably because of compensatory mechanisms that occur later

in development. Whereas a reduced range of activation of wg and

hh long range transcription target genes was observed in Flo-2

mutant imaginal discs, we observe a greatly increased range of

wound-induced gene activation in Flo-2 mutant embryos. This

apparent discrepancy could be explained if one invokes of a long-

range wound-induced inhibitory signal that in wild type embryos

diffuses faster and farther than a wound activating signal, and

thereby functions to limit the wound response to nearby epidermal

cells [62], and that in Flo-2 mutants this potential inhibitory signal

has reduced secretion, concentration, and/or diffusion range. This

notion is consistent with the cell non-autonomous effect of

overexpressed Flo-2 on inhibiting wound- or trypsin-induced gene

activation. A similar scheme of controlling signal spreading has

been seen in the way that Mmp2 acts cell non-autonomously to

limit FGF signaling during Drosophila tracheal development and

branch morphogenesis [63]. It’s also possible that Flo-2 normally is

required to set a global threshold that wound-induced signals must

overcome in order to activate wound transcription, for example

via Flo-2-dependent endocytosis/degradation of a diffusible

wound signal and its receptor (perhaps the Stit RTK [28]), and

that signal strength normally surpasses the Flo-2 threshold only in

the vicinity of a wound. In this model, loss of Flo-2 would result in

all epidermal cells being able to exceed the wound signal

threshold, and overexpression of Flo-2 would prevent any cells

from exceeding the wound signal threshold. The cell non-

autonomous effects of Flo-2 overexpression under this model

might be explained by an increase in Flo-2-dependent endocyto-

sis/degradation that rapidly depletes an activating signal from the

extracellular space.

Many previous studies have documented biochemical, molec-

ular biological, and cell biological interactions between Src family

kinases and Flotillins [33,34,49,64]. In Drosophila, lack of Src42A

and Flo-2 leads to expanded spread of wound gene activation, and

overexpression of Flo-2 or activated Src42A can inhibit wound gene

activation, which is consistent with an interaction between the two

functions during the process of wound gene regulation. In cultured

mammalian cells, Flo-2 can be phosphorylated by Src family

kinases in an extracellular signal-dependent fashion. This

phosphorylation is associated with changes in the normal

intracellular trafficking of Flotillin-containing membrane micro-

domains and vesicles [33,35,49]. Since overexpressed Flo-2 in

Drosophila can act in a cell non-autonomous fashion to inhibit

wound gene activation, and overexpressed Src42A acts in a cell

autonomous fashion to inhibit wound gene activation, one

interpretation is that Flo-2 lies genetically upstream of Src42A in

the epidermal wound response. This hypothesis appears to be

inconsistent with the vertebrate biochemical data indicating that

Src kinases phosphorylate Flotillins to activate their diverse

functions. However, an observation that is consistent with Src42A

activating Flo-2 protein function, is that even when Flo-2 is

overexpressed, addition of chemical inhibitors of Src family kinases

to wounded embryos, results in widespread Ddc .47 or ple-WE1

wound reporter activation. One interpretation of this results Flo-2

protein, no matter the level of expression, is inactive in the absence

of Src42A function. Complex feedback loops involving signaling

proteins being regulated by a transcription factor, while the

activity of the same transcription factors is regulated by the same

signaling pathway, have been observed in the control of Drosophila

epidermal wound gene expression and reepithelialization [22,28],

so there may be similar dynamic cross-regulatory interactions

between Flo-2 and Src42A in the localization of the epidermal

wound response, interactions not easily captured in linear genetic

pathway diagrams [65].

The inhibitory effect of Src42A on wound gene activation

suggests that it might antagonize a signaling cascade that leads to

the epidermal wound response. A good candidate for such a

signaling cascade is the RTK pathway involving the Stit kinase.

Stit is a RET-family RTK that is required for robust activation of

the Ddc and stit wound reporter genes in wounded embryos [28].

Other evidence consistent with RTK pathway importance in

wound gene activation is that phosphotyrosine accumulates

persistently around wound sites [5,28], and that ERK kinase

function is required for robust activation of the Ddc wound

reporter gene [5]. Interestingly, Src42A has been shown to act as an

inhibitor of some Drosophila RTK proteins (those encoded by the

torso, Egfr, and sevenless genes) in a few different tissues during

Drosophila development [66]. The Flo-2 and Src42A functions in

epidermal wound localization after clean wounding are reminis-

cent of the role of Drosophila WntD during infectious wounding.

WntD mutants show higher levels of some antimicrobial peptide

genes after septic injury of adults [67].

Previous evidence suggested that H2O2 and Duox could provide

wound-induced inflammatory signals and antimicrobial activities
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[58,59,68,69,70,71]. Our studies show that Duox is required to

activate wound reporter genes after epidermal wounding, and that

injected exogenous H2O2 is sufficient to activate widespread

epidermal wound gene expression. Overexpression of either Flo-2

or Src42A.CA can inhibit the H2O2 -dependent wound reporter

expression, suggesting that all of these components are in a

common pathway controlling the activation of epidermal wound

reporters. However, the ability of trypsin injection to activate the

Ddc .47 and ple-WE1 wound reporters in Duox mutants suggests

that a serine protease might act downstream of, or in parallel to,

H2O2-dependent wound signals. A recent report showed that in

cultured mammalian cells, a Src kinase phosphorylates and

inhibits a Flo-2-associated enzyme, peroxiredoxin-1, which results

in increased stability of H2O2 [72]. This is consistent with our

results placing Flo-2, Src42A, and H2O2 in a common wound

signaling pathway.

Like H2O2, the injection of methyl-ß-cyclodextrin (MßCD) into

wounded embryos triggers a global wound response in the

epidermis. MßCD strongly depletes cholesterol and other sterols

from membranes and disrupt lipid rafts [73,74], but was also

shown to remove sphingolipid-associated proteins such as Src-

Family Kinases [54]. The effects of MßCD, in combination with

the effects of loss of Flo-2, suggests that the integrity of lipid rafts

and associated proteins are required to inhibit epidermal wound

signals. In cultured cells, MßCD treatments trigger a release of

EGF receptors from membrane microdomains, which increases

EGFR, and perhaps other RTK, signaling in a ligand-independent

manner [75]. Interestingly, in cultured keratinocytes, MßCD

treatment can induce the expression of involucrin [76], which

encodes a protein, analogous to Drosophila Ple/tyrosine hydroxy-

lase, which is required for the formation of an epidermal barrier.

Similarly, MßCD injections into Drosophila embryos might also

cause an increase the levels of a wound signal produced or released

from cells adjacent to the wound site, allowing more widespread

transcriptional activation of wound reporter genes. Our observa-

tions that overexpression of Src42A or Flo-2 can inhibit the MßCD

-triggered activation of epidermal wound reporter genes suggest

that high levels of these proteins might overcome lipid raft-

inhibitory effects on wound signaling pathways.

Other genes (wurst and varicose) identified in the screen have

phenotypes similar to Flo-2 and Src42A mutants (Figure 1). wurst

encodes an evolutionarily conserved trans-membrane protein,

containing a heat shock cognate protein 70 binding domain and a

clathrin binding motif [77]. wurst is ubiquitously expressed in

embryonic epithelial cells, strongly up-regulated during endocyto-

sis-dependent luminal clearance, and mislocalized in mutants with

endocytosis defects [77]. wurst mutant embryos have tortuous

tracheal tubes, due to a failure to properly endocytose matrix

material from the tracheal lumen [77]. varicose encodes an

evolutionarily-conserved septate junction scaffolding protein, in

the Membrane Associated GUanylate Kinase (MAGUK) family

[78,79,80]. varicose is expressed in epidermally-derived cells

(including the hindgut and trachea) and co-localizes with the

septate junction proteins, Coracle and Neurexin4 [80]. varicose

mutant embryos develop permeable tracheal tubes and para-

cellular barrier defects in epithelia [79,80]. Like wurst mutants,

varicose mutants also have abnormal matrix composition in the

tracheal lumen, and may also have abnormal extracellular matrix

composition produced by other epidermal cells.

Another gene (ghost, also known as stenosis) identified in this

screen is required for wound reporter activation like Duox or

grh (Figure 1). ghost encodes the Drosophila Sec24CD homolog, a

coat protein of COPII vesicles in the ER/Golgi trafficking

pathway [81,82]. Transport of cargo from the ER to the

Golgi via COPII vesicles is required to achieve normal amounts

of secretion of extracellular matrix proteins into the developing

Drosophila tracheae and normal apical-basal localization of

membrane proteins [81,82,83]. Presumably, similar secretion

and membrane localization defects occur in non-tracheal

epidermal cells, which account for the severe cuticle deposition

defects in ghost (Sec24CD) mutants. It is fascinating to note that

our finding that ghost (Sec24CD) is required for transcriptional

activation of epidermal wound reporter genes is consistent with

the finding that RNAi knockdowns of Sec24C in a planaria

(Schmidtea mediterranea) interfered with normal regeneration after

amputation wounds [84]. It is possible that the ghost mutants do

not secrete enough wound signals, or the protein matrix necessary

for the propagation of a wound signal.

Another gene required for the activation of wound reporters is

shroud (sro). Based on a previous paper by Giesen et al. (2003) [85],

we believed sro to be an allele in the Drosophila Fos-D isoform [25],

and hypothesized that one of the Drosophila kayak/Fos transcription

factors was required for the activation of some epidermal wound

gene reporters [25]. However, as Niwa et al. (2010) [86] recently

discovered, sro[1] and other sro point mutant alleles do not map in

the kayak/Fos gene, but in an immediately adjacent transcription

unit (Nm-g/sro) that encodes an enzyme in the sterol metabolic

pathway that is necessary for production of ecdysone hormone. At

first glance, the requirement of sro to activate some wound

reporters suggested that these reporters rely on ecdysone signaling.

This is possible, although we have tested deletions that eliminate

zygotic functions of the ecdysone receptor gene, as well as of the

phantom gene (which encodes another enzyme in the ecdysone

synthesis pathway), and embryos that are zygotic mutants in either

gene show normal activation of the ple-WE1 wound reporter after

puncture wounding.

In summary, from our large unbiased screen, we have identified

several genes that add to our understanding of the complex

pathways that control the signals that activate wound response

transcription near puncture wounds. At the cellular level, there

appears to be a correlation between genetic functions required to

localize wound-induced gene activation, and cellular functions

required for endocytosis and/or apical-basal polarity. For

example, one function of Flo-2 is in signal-dependent endocytosis,

although Flo-2 also plays other roles in vesicular trafficking

[32,33,34,35,36]. There have been many studies showing that

endocytosis can regulate extracellular signaling strength and

duration [87]. For example, one study found that tagged-FGF8

showed increased accumulation, spread, and target gene activation

when Rab-5-mediated endocytosis was reduced in zebrafish

embryos [88]. We believe that further studies on wound response

signaling may provide new insights into how membrane micro-

domains, endocytosis of membrane receptors, and the composition

and organization of the extracellular matrix, regulates the

transmission of wound signals.

Materials and Methods

Drosophila Stocks
Fluorescent Balancers, Deficiencies, and Mutant alleles were

obtained from the Bloomington Drosophila Stock Center:

FKG = FM7c, P{GAL4-Kr.C}DC1, P{UAS-GFP.S65T}DC5,

CKG = CyO, P{GAL4-Kr.C}DC3, P{UAS-GFP.S65T}DC7,

Flo-2{KG00210}, Src42A-E1, UAS-Src.CA, arm-GAL4, en-

GAL4, Duox{KG07745}, wurst{G814}, varicose{03953b}, and

ghost{KG029061}. UAS-Flo-2 was provided by Vladimir Katanaev.

Ddc .47 and ple-WE1 were previously described [25].
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Wounding Procedure
Embryos were collected on apple juice agar plates and aged to 15–

17 h at 25uC. Embryos were washed into mesh baskets, dechor-

ionated in bleach for 1 min, then washed copiously with water.

Embryos were then transferred to a clean slab of apple juice agar and

aligned for 30–60 min at 18uC, transferred to slides with double-

sided tape, then covered in a 1:1 ratio of 700:27 weight halocarbon

oil. Embryos were then wounded bilaterally with fresh microinjec-

tion needles made from an automated puller mounted on a

micromanipulator, allowed to recover for 3–8 h at room temper-

ature, and visualized under fluorescent light in a compound

microscope to determine wound reporter activity. At least 3

independent experiments with at least 50 successfully wounded

embryos were performed. Assays involving homozygous deletion or

mutant embryos were performed in parallel to heterozygous-

balancer embryos. A Kr-GFP fluorescent marker on the balancer

chromosome [89], was used to determine the genotype of the

embryos. Assays involving UAS-GAL4 overexpression were per-

formed in parallel to UAS-non-GAL4 controls. All embryos were

impaled using a micromanipulator so that the needle protruded 1

embryo-width from the exit wound. Wound reporter responses were

rated on a scale of ‘‘no activity, localized activity, or global activity.’’

Images were obtained by wounding embryos with microinjection

needles and imaged on a Leica SP2 confocal microscope, selecting

representative embryos to image. Images were resized while

constraining proportions to maintain resolution. Adobe Photoshop

adjustment functions were used equally on images to enhance clarity,

but not to obscure, eliminate, or misrepresent any information.

Original images are available on request.

Body Cavity Injection
Individual embryos were simultaneously wounded and injected

by using a syringe to expel the various solutions into the body cavity

of the embryo. A Pipetman was used to load the solutions to be

injected into the pulled capillary microinjection needles. Needles

were broken on the side of a glass cover slip on a glass slide. Serine

Protease-Trypsin from bovine pancreas was solubilized in 1 mM

HCl pH 3.0 to 2 mg/mL (Sigma). Src Inhibitor-SU6656 was

solubilized in 50% DMSO to 100 mM (Calbiochem). Methyl-ß-

cyclodextrin (MßCD) was solubilized in 1 mM NaOH to 3 mM

(Sigma). Hydrogen Peroxide-H2O2 was diluted in H2O to 0.6 M

(Fisher). Chemical-wounded embryos were simultaneously wound-

ed and injected with a 1:4 ratio of 1% toluidine blue dye and

solubilized compounds. Toluidine blue dye allowed for visual

confirmation of solubilized compounds being injected into the body

cavity. Control embryos were wounded with a broken needle

containing 1:4 ratios of 1% toluidine blue dye and solute without

chemical. A wide range of chemical concentrations was tested to

obtain optimal activation of the epidermal wound reporter and

maintain high levels of embryo survival after body cavity injection.

Multiplex Fluorescent In Situ Hybridization
Probes were generated from partial or full cDNA clones from

the Drosophila Gene Collection [90,91]. anti-Stitcher antibody was

provided by Christos Samakovilis. Probe labeling and hybridiza-

tion protocol was as described in Dave Kosman’s multiplex FISH

protocol [92].

Supporting Information

Figure S1 Flo-2 inhibits the extent of activation of multiple

epidermal wound response genes. Confocal images of in situ

hybridization and immunofluorescence experiments. All stains

were done on Stage 16–17 embryos fixed 30 minutes after

wounding. (A) Flo-2 RNA stains. (B) msn RNA strains. (C) anti-

Stitcher (Stit) antibody stains. Wild type embryos (wt) show

enhanced expression of Flo-2, msn and Stitcher in a zone of about

3–5 cells from the edge of the wound site. Flo-2KG00210 mutant

embryos (Flo-22) show no staining for Flo-2 transcripts, but

compared to wild type embryos Flo-2 mutants have much broader

domains of msn RNA staining and Sticher protein staining around

wound sites. Arrows show wound site. Dashed lines in the data

panels mark the outlines of embryos. Scale bar = 50 mM.

(TIF)

Figure S2 Flo-2 transcript accumulation in arm- and en-GAL4

overexpression domains. Fluorescent confocal images of in situ

hybridizations using a probe for Flo-2 RNA. (A) In late stage

embryos, Flo-2 transcripts accumulate at much higher levels than

wild type in epidermal cells when UAS-Flo-2 expression is driven

by arm-GAL4 (arm.Flo-2). (B) In late stage embryos, Flo-2

transcripts accumulate at high levels in narrow epidermal stripes

UAS-Flo-2 expression is driven by en-GAL4. Dashed lines in the

data panels mark the outlines of embryos. Scale bar = 50 mM.

(TIF)

Figure S3 Overexpression of Flo-2 inhibits activation of the ple-

WE1 epidermal wound reporter. (A) Brightfield and confocal

images of ple-WE1 epidermal wound reporter activity in late stage

embryos. At 6 hours after puncture wounding, wild type (wt)

embryos (left panels) have a melanized clot (black arrow) and ple-

WE1 reporter expression is enhanced around wound sites (white

arrow). In late stage embryos overexpressing Flo-2 (right panels), a

similar-sized melanized clot is formed (black arrow) but enhanced

ple-WE1 reporter expression around wound site (white arrow) is

not detected. (B) Trypsin injection into the body cavity. At 6 hours

after wounding, wild type (wt) late stage embryos activate ple-WE1

reporter expression throughout most epidermal cells. (C) In late

stage embryos overexpressing Flo-2 (arm.Flo-2) at 6 hours after

wounding/trypsin treatment, the trypsin-induced ple-WE1 report-

er activation is completely repressed. (D) Embryos overexpressing

Flo-2 in stripes with the en-GAL4 driver can inhibit wounding/

trypsin-induced activation of the ple-WE1 epidermal wound

reporter in all epidermal cells. Arrows show wound sites. Dashed

lines in the data panels mark the outlines of embryos. Scale

bar = 50 mM.

(TIF)

Figure S4 Src kinase effects on epidermal wound reporter

activity. Fluorescent confocal images of Ddc .47 and ple-WE1

epidermal wound reporter activity in late stage embryos 6 hours

after wounding+chemical injection into the body cavity. (A)

Wounding+injection of a Src-Kinase inhibitor (SU6656) activates

the Ddc .47 wound reporter in a patchy pattern throughout the

epidermis of both wild type (wt) and Flo-2 overexpression

(arm.Flo-2) embryos. (B) Wounding+injection of a Src-Kinase

inhibitor (SU6656) activates the ple-WE1 wound reporter in a

patchy pattern throughout the epidermis of both wild type (wt) and

Flo-2 overexpression (arm.Flo-2) embryos. Overexpression of

Src42A (arm.Src42A) can inhibit both methyl-ß-cyclodextrin

(MßCD) (C) and hydrogen peroxide (H2O2) (D) activation of the

Ddc .47 wound reporter gene expression. Arrows show wound

sites. Dashed lines in the data panels mark the outlines of embryos.

Scale bar = 50 mM.

(TIF)
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