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A B S T R A C T   

the automatic segmentation of lung infections in CT slices provides a rapid and effective strategy for diagnosing, 
treating, and assessing COVID-19 cases. However, the segmentation of the infected areas presents several dif
ficulties, including high intraclass variability and interclass similarity among infected areas, as well as blurred 
edges and low contrast. Therefore, we propose HADCNet, a deep learning framework that segments lung in
fections based on a dual hybrid attention strategy. HADCNet uses an encoder hybrid attention module to inte
grate feature information at different scales across the peer hierarchy to refine the feature map. Furthermore, a 
decoder hybrid attention module uses an improved skip connection to embed the semantic information of higher- 
level features into lower-level features by integrating multi-scale contextual structures and assigning the spatial 
information of lower-level features to higher-level features, thereby capturing the contextual dependencies of 
lesion features across levels and refining the semantic structure, which reduces the semantic gap between feature 
maps at different levels and improves the model segmentation performance. We conducted fivefold cross- 
validations of our model on four publicly available datasets, with final mean Dice scores of 0.792, 0.796, 
0.785, and 0.723. These results show that the proposed model outperforms popular state-of-the-art semantic 
segmentation methods and indicate its potential use in the diagnosis and treatment of COVID-19.   

1. Introduction 

Coronavirus disease 2019 (COVID-19), which has high rates of 
infectivity and lethality, has spread worldwide, resulting in an urgent 
health crisis across the world and necessitating the development of a 
rapid, robust and effective detection method to slow or halt the spread of 
the virus. In clinical practice, the reverse transcription-polymerase chain 
reaction (RT–PCR) test is considered the gold standard for detecting 
COVID-19 due to its high specificity [1]; however, the assessment of 
RT–PCR assays is time-consuming, insensitive and nondynamic, and 
more efficient alternatives are needed [2]. Computed tomography (CT) 
imaging is one of the most commonly used methods for detecting lung 
infections due to its high spatial resolution and the unique relationship 

between CT images and the air content in the lungs. Several studies have 
demonstrated the high sensitivity and rapid response of CT scans for 
detecting COVID-19 infections [3,4], with CT scans having the ability to 
accurately locate and dynamically reflect changes in the infected area of 
the lungs during treatment; thus, CT imaging is an effective alternative 
method for diagnosing COVID-19. As the manual examination of a large 
number of CT scans is time-consuming and yields subjective and biased 
results, this paper primarily focuses on the automatic segmentation of 
COVID-19 infections to assist physicians in rapid diagnosis and treat
ment assessment. However, due to differences in the location and extent 
of viral invasion, COVID-19 infections exhibit more complex features 
than common pneumonia, necessitating the development of segmenta
tion networks with strong image semantic feature understanding and the 
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ability to respond to various lesions to preserve fine-grained feature 
details and handle the complex diversity of lesion structures at the pixel 
level. The green, blue and red areas in Fig. 1 are characteristic repre
sentations of solid lung lesions, bilateral patchy shadows, and asym
metric gross glassy opacities (GGOs), respectively, with GGOs and solid 
lung lesions showing peripheral distributions. In addition, the low 
contrast and blurred boundaries increase the segmentation difficulty, 
with high interclass similarity and high intraclass variability being the 
main factors affecting the segmentation accuracy of COVID-19 
infections. 

To address the above issues, this paper proposes HADCNet, a novel 
automatic segmentation network for COVID-19 lesions that aggregates 
the contextual semantic information from images at the peer and cross 
levels to refine image features and enrich feature representations. The 
encoder hybrid attention module efficiently assembles semantic feature 
information from different scales at the peer level, while the decoder 
hybrid attention module integrates feature contextual dependencies 
across levels through improved skip connections, effectively balancing 
feature differences between the encoder and the decoder. The boundary 
details and refined structural information are preserved, resulting in 
richer fine-grained feature representations, and the sensitivity of the 
network is significantly improved, leading to an improved segmentation 
performance. The proposed method was tested on four public COVID-19 
infection datasets and outperformed state-of-the-art segmentation net
works in terms of the segmentation performance. 

In summary, the main contributions of this study can be summarized 
as follows:  

● This paper presents a COVID-19 lesion automatic segmentation 
network (HADCNet) based on the dual hybrid attention strategy.  

● HADCNet uses the encoder hybrid attention module and the decoder 
hybrid attention module to capture context dependencies in images 
at the peer and across levels, reducing the semantic gap between 
feature maps from different levels and improving the segmentation 
performance of the model.  

● To validate the segmentation performance of the proposed model, 
HADCNet was compared with popular state-of-the-art methods on 
four publicly available datasets.  

● the effectiveness of the dual hybrid attention strategy was verified 
through extensive ablation experiments. 

The remainder of this paper is structured as follows: Section 2 in
troduces related work on COVID-19 infection segmentation. Section 3 
describes the proposed network in detail. The experimental results, 
analyses, conclusions, and a discussion of future work are presented in 

Sections 4-5. 

2. Related work 

2.1. Segmentation in medical images 

The segmentation of lesions from medical images can provide doc
tors with critical information for diagnosing and quantifying diseases. 
Traditional medical image segmentation algorithms typically extract 
features manually using physical information such as the texture, 
structure and location of the image, with a reliance on extensive pre- 
processing operations and an experienced manual design process [5]. 
Segmentation methods based on machine learning achieve the seg
mentation goal by focusing on algorithms and predicting personalized 
features. Recent studies on the automatic segmentation of medical im
ages have concentrated on the combined use of traditional and machine 
learning to achieve this goal. Su et al. [6] efficiently improved the seg
mentation performance of COVID-19 lesions through a multilevel 
thresholding image segmentation method. Liu et al. [7] applied a 
multilevel segmentation model based on modified differential evolution 
to segment breast cancer images. References [8–11] implemented seg
mentation of lesion images based on swarm intelligence optimization 
algorithms. 

With the development of computer hardware and technology, con
volutional neural networks (CNNs) have achieved great success in 
various fields in image classification tasks, and some excellent CNN- 
based networks have been developed, including fully connected net
works (FCNs) [12], U-Net [13], AlexNet [14], VGGNet [15], ResNet 
[16], DenseNet [17], and generative adversarial networks (GANs) [18]. 
These networks have also been applied in the field of medical image 
segmentation. For example, Guan et al. [19] proposed a multichannel 
progressive generative adversarial network based on texture constraints. 
The CNN-based FCN achieved the first end-to-end segmentation and 
performed better than traditional manual feature segmentation 
methods. Based on the FCN implementation, U-Net introduces a skip 
connection between the encoder and the decoder at the peer level to fuse 
high-level and low-level image features, effectively solving the problem 
of information loss during the decoding process. However, U-Net has 
several limitations; skip connections do not fully utilize encoder fea
tures, and feature information can be lost due to up-sampling (such as 
bilinear interpolation). In response to the shortcomings of U-Net, several 
studies have attempted to improve this network, for example, by 
improving the skip connections [20–22], introducing cascade structures 
[23,24], and modifying the U-Net encoder layer structure [25,26]. Zhou 
et al. [22] proposed the U-Net++ network, which uses a nested skip 
connection structure to integrate features across different semantic 
levels and thus enables highly flexible feature fusion by fully exploiting 
image features at different scales. In addition, the introduction of 
structures such as conditional random fields [27], Markov random fields 
[28], and spatial pyramid pools [29] enriches contextual feature rep
resentations while preserving image details. Nevertheless, the perfor
mance of many encoder-decoder-based segmentation algorithms 
remains limited because of problems such as restricted local acceptance 
domains, significant differences between encoder and decoder feature 
maps, and the inadequate use of contextual information. 

2.2. Computer-aided COVID-19 image analysis 

The automatic segmentation of infected regions or lesions in the 
lungs can assist physicians in evaluating and quantifying lung disease, 
which is crucial for the diagnosis of COVID-19 and follow-up treatments. 
Xie et al. [30] applied a relational approach with nonlocal neural 
network coding blocks (RTSU-Net) to capture structured information 
between convolutional features. Chen et al. [31] built an interactive 
attentional refinement network (RefNet) that enhances the discrimina
tion of complex features by combining residual learning and attention. Fig. 1. Example images of different features of COVID-19 infections.  
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Although the target lesion segmentation accuracy of the above methods 
is better than that of traditional FCNs or U-shaped networks, several 
unresolved issues remain. First, lesion segmentation relies on local 
fine-grained texture information; however, an encoder with only a 
single-scale receptive domain cannot fully capture the overall texture 
representation of the lesion and is prone to losing structural differences 
in the contextual feature information at the peer level. Second, due to 
the short-term context dependency of U-Net and its variants, only 
encoded features at the same level are integrated into the decoder, 
resulting in large feature differences between the encoder and the 
decoder and increasing the difficulty of accurately capturing detailed 
feature representations of lesion boundaries. Finally, due to the struc
ture of the encoder in conventional pixel-level supervision, some 
detailed texture information is lost, and the refinement of complex and 
diverse lesion feature representations is intractable. 

2.3. Attention mechanism 

Attention, which uses top-level information to guide a bottom-up 
feedforward procedure for cyclically processing visual information, 
plays an essential role in human visual cognition [32,33]. Xiaohang 
et al. [34] deployed a deep learning framework that includes a multi
modal spatial attention module to automatically learn the spatial re
gions of features and segment lung tumours using the generated spatial 
attention maps. As application scenarios become more diverse and 
robustness requirements increase, hybrid attention mechanisms have 
become more widely used. Zhao et al. [35] presented an integrated 
spatial and channel attention semantic segmentation network (SCAU-
Net) that enhances locally relevant features at the spatial and channel 
levels while suppressing irrelevant features. Fu et al. [36] developed a 
dual-attention network that combines channel attention and positional 
attention to capture rich contextual dependencies for segmentation by 
integrating local features with global dependencies through a 
self-attention mechanism. These algorithms typically produce refined 
feature representations in the channel dimension, spatial dimension, or 
a combination of the two, enhancing the information region represen
tation of the target structure while suppressing irrelevant features; thus, 
the network can learn more general visual structures. 

2.3.1. Squeeze-and-excitation block 
The squeeze-and-excitation (SE) module [37] is a typical channel 

attention mechanism that uses two operations, squeezing and excitation, 
to learn the importance of different channel features, thereby improving 
the classification accuracy of feature maps. Specifically, the squeezing 
operation is implemented through global average pooling (GAP), which 
ignores the spatial information of the feature map to ensure that more 
channel information and the global perceptual field of the feature map 
are obtained. The excitation operation captures the weight relationship 
between channels through two fully connected operations; these re
lationships are weighted in the feature maps as the channel attention, 
allowing the network to focus on more important feature information in 
the channel dimension. 

2.3.2. Spatial attention module 
The spatial attention module (SA) [38] is commonly used to focus on 

the spatial location information of feature maps. First, two feature maps 
with the same resolution and number of channels are obtained through 
maximum pooling and average pooling, thus emphasizing the spatial 
information of the features. Then, the feature maps of the two channel 

dimensions are concatenated and used as the input for the 7 × 7 
convolution. Finally, a spatial weight value between 0 and 1 is obtained 
with the sigmoid function; this value is weighted in the original feature 
map as the spatial attention, which enables the network to learn more 
important feature information in the spatial dimension. 

2.4. Dilated convolution 

The main idea of dilation convolution is to insert "holes" (zeros) 
between pixels in the convolution kernel to prevent the loss of contex
tual information during down-sampling, resulting in a larger-scale 
receptive field with richer, denser feature representations. Yu et al. 
[39] introduced dilation convolution into dense prediction and sys
tematically aggregated multiscale contextual information without a 
decrease in the resolution, demonstrating that dilation convolution can 
play an active role in semantic segmentation. Nonetheless, simply 
overlaying dilation convolution in a network can lead to grid effects and 
the loss of a significant number of feature representations, thereby 
severely degrading the performance. To alleviate the grid problem, 
Wang et al. [40] developed a hybrid dilation convolution framework 
that effectively increases the perceptual field size and improves the 
segmentation performance for objects of different sizes. 

3. Proposed methods 

3.1. HADCNet architecture 

Although the proposed network is based on the U-Net architecture, in 
contrast to the original U-Net, HADCNet uses hybrid attention modules 
in the encoder and decoder to refine the feature information while 
effectively balancing the semantic differences between different levels 
of features to obtain fine-grained feature representations. First, we 
introduce the encoder hybrid attention module, which uses densely 
connected features to capture rich contextual information and expands 
the receptive domain through hybrid dilated convolutions without 
reducing the resolution. Furthermore, the SE operation effectively in
tegrates different scale feature representations at the peer level and re
fines the complex structural information of the features. Second, a 
hybrid attention module is introduced in the decoding stage to embed 
the spatial information of the underlying features in high-level features 
through an improved skip connection. In addition, the semantic infor
mation of the higher-level features in the channel dimension is assigned 
to the underlying features, and the effective fusion of these two 
embedded features enables the segmentation target to be accurately 
located, with the boundary details and refined structural information 
preserved. The decoder hybrid attention module integrates feature 
representations from different hierarchies across various levels in the 
decoder, refining the structural information of the features during up- 
sampling while reducing the semantic gap between the encoder and 
the decoder to generate improved dense predictions that effectively 
represent the high interclass similarity and intraclass variability of the 
lesion features. The overall structure of HADCNet is shown in Fig. 2, 
with the dashed lines indicating improved skip connections, the 
different coloured rectangles representing different network operations, 
and the number at the bottom of each rectangle indicating the number of 
channels after that operation. 

The pseudocode of HADCNet is described below.   
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3.2. Encoder stage of the proposed method 

This stage consists of 1 pre-processing block, 6 encoder hybrid 
attention blocks (HADC_encoder module), 6 transition layers, 2 con
volutional (Conv) layers, and 1 scoring layer. The pre-processing block is 
composed of a Conv layer, a batch normalization (BN) layer, and the 
rectified linear unit (ReLU) function. This combination forms the Conv3 
× 3-BN-ReLU structure, which coarsely extracts the features of the input 

image, with the ReLU function suppressing the output of some neurons, 
effectively alleviating the overfitting problem, and the BN layer adjusts 
the semantic data distribution in the feature map in real time to enhance 
the robustness of the network. Each HADC_encoder module captures 
rich contextual semantic information by fusing semantic representations 
between feature maps through dense connections. Furthermore, the 
multiscale patterns in the encoder feature maps are obtained using 
hybrid dilation convolution, and the SE operation integrates the feature 

Fig. 2. The overall network structure of HADCNet.  

Fig. 3. The structure of the HADC_encoder module.  
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information across different scales at the peer level. The detailed 
structure of the HADC_encoder module is shown in Fig. 3, where Dil 
Conv 3 × 3(d = 2) and Dil Conv3 × 3(d = 5) represent the dilation 
convolution with expansion rates of 2 and 5, respectively, and the dense 
connection consists of the middle three Conv3 × 3-BN-ReLU structures. 
The transition layer has a Conv1 × 1-BN-ReLU structure, an average 
pooling layer, and a spatial attention (SA) layer, where the Conv1 × 1 
layer is used to increase the nonlinearity of the network and the spatial 
attention value is calculated and saved before each pooling operation in 
the transition layer as one of the input values for the skip connection. 
The last transition layer passes through 2 convolutional layers and the 
scoring layer. The convolutional layers have convolutional kernel sizes 
of 7 × 7 and 3 × 3, while the output of the scoring layer has a channel 
dimension of 2. 

The HADC_encoder module combines spatial attention and channel 
attention and uses the output of the pre-processing block or the previous 
transition layer as its input value. We use F ∈ RC×H×W to denote the 
input feature map, Ms(F) ∈ R1×H×W to denote the spatial attention, 
Mc(F) ∈ RC×1×1 to denote the channel attention, and M(F) ∈ RC×H×W to 
denote the final fused attention. The HADC_encoder function is thus 
computed as follows: 

Ms(F) = f d=5
3×3 (Hl([xl− 1, xl− 2, ..., x0])),

(
x0 = f d=2

3×3 (F), l = 4
)

(1) 

We design the spatial attention Ms(F) with dilated convolution, 
combining the 3 × 3 convolution kernel and dilated convolutions with 
expansion rates of [1,2,5], replacing the dilated convolution with an 
expansion rate of 1 with a densely connected block, as shown in Equa
tion (1), where fd=2

3×3 and fd=5
3×3 represent dilated convolutions with 

expansion rates of 2 and 5, respectively. Hl(.) is a densely connected 
block, which includes 3 × 3 three convolution layers, Hl represents the 
Conv3 × 3-BN-ReLU structure, and the value after combining the three 
convolution layers is the final output of the dense connection. The 
equivalent kernel sizes for the dilated convolution with a convolution 
kernel size of 3 × 3 and dilation rates of [1,2,5] are 3, 5, and 11, 
respectively. According to the definition of the receptive domain, a 
dilated convolution with this stacked structure has a 17 × 17 receptive 
domain and can thus capture the global information. Furthermore, the 
combined hybrid dilation convolution and dense connection captures 
rich multiscale semantic information, which solves the problem of 
fixed-size convolutional layers having a local field of perception with 
only a single-grain size that responds to diverse feature maps. 

Mc(F)= σ
(
MLP

(
Pavg(F)

))
= σ
(
W1
(
δ
(
W0
(
Pavg(F)

))))
(2)  

where σ, Pavg and δ represent the sigmoid function, global average 
pooling, and the ReLU operation, respectively, and W1 ∈ RC×C/r and 
W0 ∈ RC/r×C represent the incremental and decremental weight pa
rameters in the multilayer perceptron (MLP), respectively, with the 
weight decay rate r taken as 16. 

M(F) = Ms(F)∘Mc(F) + F (3)  

where ∘ and + represent elementwise multiplication and elementwise 
addition, respectively, and Ms(F)∘Mc(F) is equivalent to integrating 
multiscale contextual semantic information at the peer level in the 
channel dimension to refine the encoder feature information by 
supressing irrelevant feature representations. In addition, the fused 
attention feature map is subjected to an elementwise addition operation 
with the initial input feature map to prevent gradient disappearance. 

3.3. Decoder stage of the proposed method 

This stage includes 5 decoder hybrid attention blocks (HADC_de
coder module) and 1 prediction layer. Three feature maps are fed into 
the HADC_decoder module, and the source of the guiding information is 
the output of the scoring layer in the encoder or the previous 

HADC_decoder module. Feature 1 is the output of the corresponding 
HADC_encoder module in the encoder, and feature 2 is the spatial 
attention value corresponding to the transition layer, which is calculated 
and saved in the encoder. In the HADC_decoder module, the guiding 
information first passes through the Conv1 × 1-BN-ReLU-Conv3 × 3-BN- 
ReLU structure to introduce more nonlinearity; then, the two steps of the 
improved skip connection are performed. The first step is to obtain the 
channel semantic information of the guiding signal using the SE oper
ation; however, in this case, the value is not multiplied by the original 
input feature map. Instead, only a weight between 0 and 1 is retained 
and multiplied with feature 1, which is equivalent to embedding the 
channel position information with rich high-level features into low-level 
features to integrate multiscale contextual information. Then, feature 2, 
which is the spatial attention value that preserves the low-level features, 
is multiplied by the guiding information after the Conv3 × 3-BN-ReLU- 
Conv1 × 1-BN-ReLU and up-sampling operations. This step corresponds 
to assigning the spatial semantic information of the low-level features to 
the high-level features. Finally, the low-level features containing the 
semantic information of the high-level features obtained during the first 
step are fused with the high-level features containing the spatial infor
mation of the low-level features obtained during the second step in the 
channel dimension, which is equivalent to integrating semantic infor
mation of different scales across levels to generate effective fused fea
tures. The fused feature representations are then elementwise added 
with the guiding information after up-sampling. The concrete structure 
of the HADC_decoder module is illustrated in Fig. 4, where input 1, input 
2, input 3 and output represent the guiding signal, feature 1, feature 2 
and final fused feature, respectively. The prediction layer samples the 
output of the final HADC_decoder module into a feature map with the 
same resolution as the original image with 2 channels (indicating the 
two categories, namely, infected and noninfected) and obtains the final 
segmentation result by classifying all pixel positions in the feature map. 

The HADC_decoder module merges the high-level and low-level 
features in the channel and spatial dimensions, thus capturing multi
scale contextual information across levels and refining the feature map 
during up-sampling. We represent the guiding information in the 
HADC_decoder module as G ∈ RCg×Hg×Wg , feature 1 as F1 ∈ RCf1×Hf1×Wf1 , 
feature 2 as F2 ∈ RCf2 ×Hf2×Wf2 , the low-level features with rich high-level 
semantic information obtained in the first step as Zc ∈ RC×H×W, the high- 
level features with low-level feature spatial information obtained in the 
second step as Zs ∈ RC×H×W, and the fused features as Z ∈ RC×H×W. The 
entire calculation process of the HADC_decoder block is as follows: 

Fig. 4. The structure of the HADC_decoder module.  
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Zc = σ
(
MLP

(
Pavg(H(G))

))
∘F1

= σ
(

WCf1

(
δ
(
WCg/r

(
Pavg(H(G))

))))
∘F1

(4)  

where H(.), ∘, σ, Pavg, and δ represent the Conv1 × 1-BN-ReLU-Conv3 ×
3-BN-ReLU structure, elementwise multiplication operation, sigmoid 
function, global average pooling, and ReLU operation, respectively, and 
and are the weight parameters, with r taken as 16. In contrast to the 
channel attention in the HADC_encoder module, the input size of the 
multilayer perceptron (MLP) is larger than the output size, which further 
suppresses irrelevant feature representations. The final operation is 
equivalent to adding the semantic information encoded by G at a deep 
level in the channel dimension to. 

Zs = Pup(H2(H1(G)))∘F2 (5)  

where H1 and H2 denote the Conv1 × 1-BN-ReLU-Conv3 × 3-BN-ReLU 
and Conv3 × 3-BN-ReLU-Conv1 × 1-BN-ReLU operations, respectively, 
resulting in a bottleneck-like structure that extracts the feature map 
semantic information while introducing additional nonlinearity and 
reducing the number of parameters. Pup denotes the use of transposed 
convolution for up-sampling, while the ∘ operation embeds the spatial 
attention values saved in F2 into the feature representation guided by G. 

Z = [Zc,Zs] + αF (6)  

where α is a trainable parameter that begins at 0 and assigns greater 
weights, [ ⋅] denotes the concatenation operation, + represents ele
mentwise addition, F denotes G after up-sampling, and Z is the effective 
fusion feature map at different levels. In addition, the combination of 
long-short residual connections in the HADC_decoder module prevents 
performance degradation caused by long residual connections, effec
tively solving the problem of gradient disappearance. 

4. Experimental description, results and discussion 

4.1. Dataset description and hardware environment 

In this study, we conducted experiments with four datasets, which 
are described as follows.  

1) Dataset-I: This dataset is a publicly available COVID-19 CT dataset 
[41] that includes 100 axial lung CT slices, each with detailed mul
ticlass annotations by radiologists, including GGOs, consolidation 

lesions, and pleural effusions, and a slice resolution of 512 × 512 
pixels.  

2) Dataset-II: This dataset contains 829 CT slices [42], with 373 
COVID-19-positive slices segmented by radiologists using two labels, 
GGOs and consolidation lesions, and a raw image resolution of 630 
× 630 pixels. 

3) Dataset-III: This dataset is derived from a database with 4695 pneu
monia CT images [43], of which 752 annotated CT slices from 150 
COVID-19 patients were used as the third COVID-19 lesion seg
mentation dataset.  

4) Dataset IV: Ma et al. [44] published 20 COVID-19 CT scans from the 
Coronacases Initiative and Radiopaedia. This dataset contains a total 
of 1844 annotated COVID-19 infection axial images with a resolution 
of 512 × 512 pixels. 

Dataset-I contains the largest proportion of COVID-19 infected areas 
per image, but the background of the images is cluttered, and the 
contrast in the images varies significantly; thus, the image quality is the 
worst among the four datasets. Dataset-II has the best image quality but a 
smaller proportion of COVID-19-infected areas. Dataset-III has a poorer 
image quality than Dataset-II and a smaller proportion of COVID-19 
infected areas than Dataset-II. Dataset-Ⅳ has a better image quality 
than Dataset-I but the smallest proportion of COVID-19 infected areas. 
These results are illustrated in Fig. 5, which shows example images from 
the four datasets. 

For the four COVID-19 segmentation datasets, we chose to discard all 
slices that did not contain infections and kept only the annotated images; 
however, we did not differentiate the type of lesion and processed the 
slices as binary type images. The data expansion operation was not 
performed on the datasets, as this operation may cause the experimental 
data to leak during training and testing, resulting in an inflated model 
segmentation performance. Additionally, we refrained from using pre
trained models during our experiments and trained the proposed model 
from scratch using the experimental datasets. The relatively small size of 
the segmentation datasets and the extremely unbalanced distribution of 
COVID-19 infections had a significant impact on the smaller datasets, 
leading to a lack of robustness in the model training results. To obtain 
the most accurate and objective assessment results, we performed 5-fold 
cross-validations on each of the four datasets, with 80% training and 
20% testing (unseen) sets, and 20% of the training data were used for 
validation. 

We used PyTorch 3.6.8 with the following specific parameters as our 
deep learning framework: 

CPU: Intel (R) Core (TM) i9-7900X CPU @ 3.30 GHz 3.31 GHz. 
GPU: NVIDIA GTX 1080ti GPU. 
Memory: 64.0 GB. 

4.2. Loss function 

During the training process of the model, the cross-entropy function 
and Dice score are combined as the loss function, and the specific pro
cess for calculating the cross-entropy function is shown in Equation (7). 

Lc(u, û)= −
1
N

(
∑N

i=1
(1 − wi)ui log ui +wi(1 − ûlog(1 − û))

)

(7)  

where ui denotes the ground truth of voxel i, wi is the weight, and ûi and 
1 − ûi represent the probability that voxel i belongs to the background 
or the target, respectively. 

The Dice score is a commonly used metric for medical segmentation 
that is calculated as follows: 

Ld(u, û) = 1 −
2
∑N

i=1
ui ûi + θ

∑N

i=1
(ui + ûi) + θ

(8)  

Fig. 5. Example images from four COVID-19 infection benchmark datasets.  
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where θ, which ensures a nonnegative value and smooths the loss as well 
as gradient, was set to 1e-4. 

The final weighted loss function is calculated as follows: 

loss = (1 − w) × Ld + w × Lc (9)  

where w is a trainable parameter that is learned from 0 to the best- 
assigned weight, and the weighted loss function becomes the Dice 
score when w = 0. Because the gradient of the cross-entropy loss func
tion for weights of the last layer is only proportional to the difference 
between the predicted and true values, and the convergence rate is faster 
at this time due to the back propagation, the rate of updating the entire 
weight matrix is improved, which improves the training efficiency of the 
network. However, as the region of lesions in the datasets used in this 
study is much smaller than the background region, the cross-entropy loss 
function at this point will cause the model to be heavily biased towards 
the background region, leading to a decrease in the segmentation per
formance. To alleviate this problem, we introduced the dice loss func
tion to balance the problem of positive and negative sample 
disequilibrium. The combination of the cross-entropy loss and the dice 
loss function can exploit the advantages of both, effectively equalizing 
the sample imbalance problem while accelerating the training speed of 
the model. Further, the use of the parameter w enables the network to 
iterate towards the optimal weight ratio of the two. 

4.3. Evaluation metrics 

We used five metrics to evaluate the segmentation results, including 
the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JS), 
accuracy (Acc), sensitivity (Sen), and specificity (Spec). Acc indicates 
the proportion of correctly segmented samples to the total number of 
samples and is used to assess the pixel-level classification accuracy. DSC 
and JS represent the overlap ratio between the segmentation results and 
the ground truth, reflecting the variability between the segmentation 
results and the marker values; these metrics are used to estimate the 
overall performance of the segmentation task. Sen and Spec are used to 
measure the ability of the algorithm to segment regions of interest and 
background regions. These evaluation metrics all have values in the 
range of 0–1, with larger values indicating more desirable segmentation 
results. 

4.4. Experimental settings 

During the experiments, no image pre-processing was performed, 
and the original lung CT images were used as the input to train the 
HADCNet model. For the model to fully learn the features of COVID-19 
infection, we performed a total of 100 epochs of training on Dataset-I and 

Dataset-II in the experiments; the initial learning rate was set to 0.0001, 
and the learning rate decreased by 1/10 every 20 epochs. Due to the 
larger volume of data in Dataset-III and Dataset-Ⅳ, we terminated the 
training early in the training phase to prevent overfitting; thus, we 
conducted a total of 40 and 60 epochs of training on Dataset-III and 
Dataset-Ⅳ, respectively, which allowed the model to better learn the 
feature information. The mini-batch size was set to 6 for each iteration, 
and the combined loss function was used to train the network by 
calculating the error between the predicted and labelled classifications 
for all pixels in the input image within the mini-batch size, with a loss 
value closer to 0 indicating better training results. 

To demonstrate the effectiveness of the proposed structure, we 
conducted ablation experiments on the four datasets using the following 
methods: IAEUnet (improved 2D U-Net with an HADC_encoder module), 
IDDUnet (improved DenseUnet with an HADC_decoder module), 
IADUnet (improved DenseUnet, in which the encoder includes the 
HADC_encoder module without dilated convolution), IDCUnet 
(improved U-Net, in which the encoder contains the HADC_encoder 
module with the dense connection replaced with a normal convolutional 
layer), and DenseUnet (improved 2-D UNet) [17]. In the experiments, 
IAEUnet, IDDUnet, IADUnet, IDCUnet, DenseUnet, and HADCNet were 
trained in the same experimental environment, and the segmentation 
results of each network were analysed and compared. Table 1 summa
rizes the details of each method and the use of the three hyper
parameters in the proposed model for each method. Among them, the 
hyperparameter r is the weight parameter used in the HADC_encoder 
module and HADC_decoder module to suppress irrelevant feature rep
resentations. During the experiments, an r value between 8 and 24 had 
little effect on the results, with the best results obtained with a value of 
16, while the segmentation performance decreased significantly outside 
this range, and adjusting the r value had only a slightly positive impact 
on the experimental results, so the default value of 16 was used for r. The 
hyperparameters α and w, which are trainable parameters in the model 
and the combined loss function, respectively, were both initialized to 
0 during the experiments, with the optimal value sought by iteration of 
the relevant model. 

4.5. Experimental results 

The Dataset-I section in Fig. 6 shows sample segmentation images of 
the HADCNet model on Dataset-I in the fivefold cross-validation, where 
Fold1 to Fold5 represent the results of five fivefold cross-validation 
experiments, and columns a, b, c, and d represent the original image, 
the corresponding ground truth (GT) image, the mask image for 
HADCNet segmentation, and the resultant HADCNet segmentation 
image, respectively. The difference in the position between the mask 
image after HADCNet segmentation and the corresponding GT image is 
marked in green and red. The green areas indicate false positive pixels, 
which are over-segmented areas, while the red areas represent false 
negative pixels, which are under-segmented areas. The Dataset-II, 
Dataset-III, and Dataset-Ⅳ sections in Fig. 6 show example images of the 
HADCNet segmentation results for the fivefold cross-validation on 
Dataset-II, Dataset-III, and Dataset-Ⅳ, respectively, with the same 
meaning as the Dataset-I section in Fig. 6. We found that HADCNet could 
segment the entire lesion target, generate clear boundaries, and effec
tively handle complex lesion regions, especially for small- and medium- 
sized lesions. In addition, the segmentation results highlight the main 
locations and detailed information about the lesions, indicating the 
ability of HADCNet to competently identify diverse lesions in a balanced 
manner. 

Table 2 summarizes the values of each evaluation metric for five 
fivefold cross-validation experiments on the four benchmark datasets. 
Although Dataset-I had the smallest amount of data and the worst image 
quality, this dataset had the largest and most balanced distribution of 
infected regions and achieved the second-highest DSC value (0.792). 
Although Dataset-II had more data than Dataset-I, the distribution of 

Table 1 
Comparison of the details of each method and the initial values of the hyper
parameters – indicates that the method has no relevant structure compared to 
the proposed model and therefore the corresponding hyperparameters are 
absent.  

Model Detail Initial 
value(r) 

Initial 
value(α) 

Initial 
value(w) 

IAEUnet improved U-Net with 
HADC_encoder module 

16 0 0 

IDDUnet improved DenseUnet with 
HADC_decoder module 

16 0 0 

IADUnet improved DenseUnet with 
HADC_encoder module lacking 
dilated convolution 

16 0 0 

IDCUnet improved U-Net with normal 
convolutional layer instead of 
dense connection in 
HADC_encoder module 

16 0 0 

DenseUnet improved 2-D UNet – – 0 
HADCNet proposed model 16 0 0  
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infected regions in the lung was more complex, and the segmentation 
results were not significantly different from those of Dataset-I. Except for 
a significant drop in the Sen value, the segmentation results of Dataset-III 
were similar to those of Dataset-I and Dataset-II. Although the data vol
ume of Dataset-III was larger than that of the other two datasets, this 
dataset contained fewer COVID-19 infection features, resulting in diffi
culties for the model in learning more lung infection features and 
thereby limiting the segmentation performance of the model. The 
overall assessment on Dataset-Ⅳ was worse than that of the other three 
datasets. Although Dataset-Ⅳ had the largest amount of data among the 
four datasets, the quality of the images was poor, and the dataset con
tained the most unbalanced and smallest distribution of lung infections, 
which limited the model segmentation performance. In addition, the 
values of the evaluation metrics for all five fivefold cross-validation 
experiments fluctuated within a small range for each of the four data
sets, indicating that the robustness of the model was good on these four 
datasets. 

An analysis of the results shown in Fig. 6 and Table 2 demonstrates 
that the proposed HADCNet model is robust on the four benchmark 
datasets. To further evaluate the COVID-19 infection segmentation 
performance of HADCNet, we compared the HADCNet segmentation 
results on the four COVID-19 infection datasets with the results of 
several state-of-the-art segmentation algorithms. The findings are sum
marized in Table 3, which includes the evaluation results from previous 

studies and those of HADCNet on the four benchmark datasets. On 
Dataset I, HADCNet obtained the highest values for each evaluation 
metric, with DSC values that were 1.9% and 1.3% better than those of 
the MiniSeg [46] and Wang et al. [52] models, respectively, while the 
Sen value was nearly 3% higher than that of Zhang et al. [50]. Similarly, 
HADCNet achieved the highest values for each evaluation metric on 
Dataset-II; the DSC value was almost 3.2% higher than that of SD-UNet 
[54], and the Sen value was significantly higher by almost 14% 
compared to that of U-Net [13], which had the second-best performance 
and a Sen value of 0.772. Although the highest JS value (0.652) was 
obtained by the Wang et al. [52] model on Dataset-III and the 
second-highest value (0.646) was obtained by HADCNet, HADCNet 
achieved the highest values for the other evaluation metrics, with a 2.7% 
improvement in the DSC value compared to the model of Wang et al. 
[52]. On Dataset-Ⅳ, the HADCNet model achieved the highest values for 
each evaluation metric. The experimental results show that the 
COVID-19 infection segmentation performance of HADCNet was 
generally better than that of the other segmentation algorithms. 
Furthermore, we found that most of the segmentation algorithms used 
for comparison were based on the conventional encoder-decoder 
structure, while HADCNet, which depends on a dual hybrid attention 
strategy to efficiently extract fine-grained details and semantic features 
at both the peer and cross levels, achieved a considerably better seg
mentation performance, demonstrating the improved segmentation 

Fig. 6. Example images of the fivefold cross-validation segmentation results on the four benchmark datasets.  
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performance of the proposed model. Due to the limitations of the 
hardware environment, the training data in our experiments could not 
be extended in the same way as in other experiments. 

To further confirm the performance and effectiveness of the pro
posed network, we compared the number of parameters and the 
computational cost of HADCNet on Dataset-I with those of the other 
state-of-the-art network models. Dataset-I contains the largest propor
tion of COVID-19-infected regions, but the image background is clut
tered, and the contrast varies significantly. Thus, although the image 
quality of this dataset is the worst, it is the most representative among 
the four datasets given the possible duplicate comparison issues; 
therefore, only Dataset-I is discussed here. We selected DSC, JS, and Sen 
as the main segmentation effectiveness evaluation metrics, and the 
comparison results are shown in Table 4. The HADCNet model had the 
second smallest number of parameters (20.7 M), with the smallest 
number of parameters (8.95 M) obtained by the D2A U-Net + VGG [49] 
model; however, the DSC value of HADCNet was significantly improved 
by 8.7% compared to the DSC value of the D2A U-Net + VGG model. 
Compared with the model proposed by Wang et al. [52], which achieved 
the best segmentation performance among the other networks, HADC
Net had a lower number of parameters and a lower computational cost. 
Despite the relative complexity of the proposed network structure, the 
number of parameters and the computational cost are smaller than those 
of many state-of-the-art methods, mainly due to the use of 1 × 1 con
volutions to extract and integrate the features, as well as the use of 
hybrid dilated convolution in the proposed encoder hybrid attention 
module, which expands the perceptual field without increasing the 
number of parameters. Thus, the experimental results demonstrate the 
effectiveness of the proposed structure. 

4.6. Ablation experiment results 

A series of ablation experiments were conducted with the four 
benchmark datasets to verify the validity of the HADCNet structure. We 
analysed the segmentation results of the other networks (IAEUnet, 
IDDUnet, IADUnet, IDCUnet, and DenseUnet, as specified in Section 4.4) 
and of HADCNet in detail. 

Fig. 7 shows example images of the segmentation results of each 
network on the four benchmark datasets in the ablation experiments, 
with columns 1 and 2 representing the original image and the corre
sponding GT image, respectively, while columns 2–7 indicate the seg
mentation results of the corresponding network. Each row shows the 
segmentation results of the network on the corresponding dataset. The 
difference in the position between the masked image after correlation 

Table 2 
Evaluation results of the fivefold cross-validation on the four benchmark 
datasets.  

Dataset Model DSC JS Acc Sen Spec 

Dataset-I Fold1 0.789 0.650 0.970 0.849 0.987  

Fold2 0.795 0.659 0.969 0.878 0.982 
Fold3 0.792 0.655 0.970 0.883 0.986 
Fold4 0.789 0.650 0.970 0.865 0.988 
Fold5 0.792 0.656 0.969 0.881 0.981 
Avg 0.792 ±

0.03 
0.654 ±
0.04 

0.970 ±
0.01 

0.871 ±
0.03 

0.985 ±
0.03 

Dataset- 
II 

Fold1 0.790 0.654 0.991 0.904 0.993  

Fold2 0.791 0.653 0.991 0.914 0.992 
Fold3 0.793 0.674 0.994 0.909 0.995 
Fold4 0.809 0.669 0.990 0.916 0.996 
Fold5 0.799 0.671 0.993 0.918 0.995 
Avg 0.796 ±

0.03 
0.664 ±
0.05 

0.991 ±
0.03 

0.912 ±
0.06 

0.994 ±
0.02 

Dataset- 
III 

Fold1 0.782 0.642 0.994 0.745 0.997  

Fold2 
Fold3 
Fold4 
Fold5 
Avg 

0.777 0.636 0.993 0.725 0.998 
0.791 0.655 0.993 0.791 0.997 
0.786 0.648 0.994 0.760 0.997 
0.785 0.646 0.994 0.732 0.998 
0.785 ±
0.02 

0.646 ±
0.02 

0.993 ±
0.01 

0.751 ±
0.31 

0.997 ±
0.01 

Dataset- 
Ⅳ 

Fold1 0.740 0.588 0.988 0.681 0.997  

Fold2 
Fold3 
Fold4 
Fold5 
Avg 

0.716 0.558 0.987 0.679 0.997 
0.736 0.582 0.987 0.710 0.995 
0.720 0.562 0.987 0.694 0.997 
0.702 0.541 0.986 0.708 0.997 
0.723 ±
0.18 

0.566 ±
0.14 

0.987 ±
0.01 

0.694 ±
0.21 

0.997 ±
0.02  

Table 3 
Comparison results on the four benchmark datasets, – indicates that the data 
were not provided by the author of the corresponding paper.  

Dataset Model DSC JS Acc Sen Spec 

Dataset-I Semi-Inf-Net [45] 0.739 – – 0.725 0.960  

MiniSeg [46] 0.773 – – 0.836 0.974 
0.920 
0.983 
– 
– 
0.955 
– 
– 
0.985 

CB-PL [47] 0.730 – – 0.820 
Yu et al. [48] 0.779 – – 0.791 
D2A U-Net + VGG 
[49] 

0.705 – 0.968 0.663 

D2A U-Net + ResNet 
[49] 

0.730 – 0.969 0.707 

Zhang et al. [50] 0.765 – – 0.839 
CE-Net [51] 0.742 0.605 0.941 – 
Wang et al. [52] 0.779 0.648 0.944 – 
Proposed HADCNet 0.792 0.654 0.970 0.871 

Dataset-II U-Net [13] 0.737 0.617 0.978 0.773 0.992  

Gated-UNet [53] 0.738 0.615 0.982 0.693 0.994 
UNet++ [22] 0.759 0.634 0.981 0.739 0.993 
SD-UNet [54] 0.764 0.643 0.981 0.772 0.991 
Proposed HADCNet 0.796 0.664 0.991 0.912 0.994 

Dataset- 
III 

U-Net [13] 0.431 0.312 0.988 – –  

U-Net++ [22] 0.579 0.459 0.991 – – 
MR-UNET [55] 0.703 0.586 0.993 – – 
Gated-UNet [53] 0.616 0.498 0.993 – – 
CE-Net [51] 0.706 0.595 0.994 – – 
Inf-Net [41] 0.650 0.520 0.992 – – 
Wang et al. [52] 0.758 0.652 0.993 – – 
Proposed HADCNet 0.785 0.646 0.993 0.751 0.997 

Dataset- 
Ⅳ 

Zhang et al. [50] 0.703 – – – –  

3D nnUNet [56] 0.673 – – – – 
Gated-UNet [53] 0.623 – – 0.658 0.926 
Inf-Net [41] 0.682 – – 0.692 0.943 
U-Net++ [22] 0.581 – – 0.672 0.902 
Proposed HADCNet 0.723 0.566 0.987 0.694 0.997  

Table 4 
Comparison results on Dataset-I, – indicates that the data were not provided by 
the author of the corresponding paper.  

Dataset Model Param. FLOPs DSC JS Sen 

Dataset- 
I 

Semi-Inf-Net [45] 33.12 M 13.92 G 0.739 – 0.725  

D2A U-Net +
VGG [49] 

8.95 M 53.19 G 0.705 – 0.663 

D2A U-Net +
ResNet [49] 

90.05 M 149.97 
G 

0.730 – 0.707 

CE-Net [51] 146.35 
M 

35.71 G 0.742 0.605 – 

Wang et al. [52] 39.75 M 46.71 G 0.779 0.648 – 
Proposed 
HADCNet 

20.7 M 13.2 G 0.792 0.654 0.871  
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network segmentation and the corresponding GT image is marked in 
green and red, with the green region indicating the over-segmented 
region and the red region indicating the under-segmented region. The 
HADCNet segmentation result is significantly better than that of the 

other networks. HADCNet segmented complex and diverse lung infec
tion regions more effectively than the other networks, with more 
sensitivity to the segmentation of ambiguous or microscopic lesions than 
the other models. This result is due to the dual mixed attention module, 
which enabled the model to detect infected lungs more accurately while 
reducing false positives. The IADUnet and IDCUnet segmentation results 
are better than those of the other three comparison networks but worse 
than those of the HADCNet model, suggesting that the introduction of 
dense connections and hybrid dilated convolution can help to segment 
infected lesions of different sizes. We also note that the improvement in 
the segmentation effectiveness of IAEUnet and IDDUnet over DenseUnet 
is greater on Dataset-I and Dataset-II than on Dataset-III and Dataset-IV, 
suggesting that when a single hybrid attention module is applied, the 
results of some lung infection images are improved when more data are 
used. 

Table 5 summarizes the evaluation results of the five comparison 
networks and HADCNet on the four benchmark datasets. HADCNet 
achieved the best values for each evaluation metric on the four bench
mark datasets; IADUnet and IDCUnet obtained the second-best evalua
tion results; IAEUnet and IDDUnet, which have only one hybrid 
attention module, obtained the second-worst evaluation results; and 
DenseUnet, which does not employ a hybrid attention strategy, obtained 
the worst evaluation results. The experimental results show that the 
proposed dual hybrid attention module can effectively highlight 
potentially infected regions and improve the segmentation performance, 
resulting in better evaluation metric values. In HADCNet, the encoder 
hybrid attention module integrates feature information across different 
scales at the peer level to refine the feature map in the encoding stage, 
while the decoder hybrid attention module embeds high-level feature 
information into low-level features that integrate multi-scale contexts 
through an improved skip connection and assigns the spatial informa
tion of low-level features to high-level features, reducing the semantic 

Fig. 7. Example images of the segmentation results of each network on the four benchmark datasets.  

Table 5 
Evaluation of the segmentation results of each network on the four benchmark 
datasets.  

Dataset Model DSC JS Acc Sen Spec 

Dataset-I IAEUnet 0.728 0.572 0.963 0.654 0.980  

IDDUnet 0.741 0.589 0.962 0.719 0.982 
IADUnet 0.768 0.624 0.967 0.731 0.976 
IDCUnet 0.767 0.622 0.967 0.732 0.981 
DenseUnet 0.682 0.518 0.960 0.574 0.991 
HADCNet 0.792 0.654 0.970 0.871 0.985 

Dataset-II IAEUnet 0.739 0.586 0.979 0.655 0.991  

IDDUnet 0.718 0.560 0.984 0.595 0.991 
IADUnet 0.769 0.625 0.988 0.714 0.985 
IDCUnet 0.763 0.617 0.987 0.679 0.984 
DenseUnet 0.604 0.433 0.990 0.478 0.945 
HADCNet 0.796 0.664 0.991 0.912 0.994 

Dataset-III IAEUnet 0.730 0.575 0.990 0.735 0.994  

IDDUnet 0.740 0.594 0.989 0.739 0.991 
IADUnet 0.768 0.623 0.990 0.746 0.993 
IDCUnet 0.755 0.606 0.989 0.689 0.990 
DenseUnet 0.672 0.506 0.983 0.964 0.983 
HADCNet 0.785 0.646 0.993 0.751 0.997 

Dataset-Ⅳ IAEUnet 0.646 0.477 0.984 0.525 0.993  

IDDUnet 0.670 0.504 
0.536 
0.487 
0.463 
0.566 

0.984 0.594 0.995 
IADUnet 0.698 0.986 0.579 0.991 
IDCUnet 0.655 0.984 0.532 0.997 
DenseUnet 0.533 0.980 0.409 0.932 
HADCNet 0.723 0.987 0.694 0.997  
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gap between feature maps at different levels in the encoding-decoding 
stage and producing a richer feature representation to effectively 
segment lesion regions. In addition, the use of the dual hybrid attention 
module improved the segmentation performance of the network more 
than the use of either the encoder attention module or the decoder 
attention module alone. 

4.7. Discussion 

CT screening is an important tool for diagnosing COVID-19 in the 
face of large-scale COVID-19 infections and possible viral variants. The 
proposed method can effectively locate the position and structural in
formation of a lesion to assist clinicians in dynamically assessing the 
severity of an infection based on inflammatory changes due to targeted 
therapeutic measures. Thus, the proposed method could play an 
important role in the diagnosis, treatment, and prognostic assessment of 
COVID-19 cases. Despite the excellent performance of the HADCNet 
model on several public datasets, some issues arose. First, based on an 
analysis of the experimental results, the edge segmentation of the more 
complicated lesion regions in the four public datasets was relatively 
poor, with more serious over-segmentation or under-segmentation 
problems occurring to varying degrees, indicating that capability of 
the proposed model to segment complex edges is still lacking, and an 
edge focus-based mechanism needs to be introduced to improve the 
segmentation of edge regions. In addition, when the encoder hybrid 
attention module or decoder hybrid attention module was used alone, 
the effectiveness was only enhanced when the amount of data was 
larger, so the use of the hybrid attention module alone to effectively 
enhance the segmentation performance in a small amount of data is an 
that needs to be investigated. Second, due to the lack of finely labelled 
datasets, extending the proposed segmentation model to other finer- 
scale lesions that have been observed in COVID-19 infections, such as 
fine reticular opacities, subpleural parenchymal bands, fibrous streaks, 
and diffuse distributions, is difficult. To account for dataset limitations, 
we can introduce unsupervised or semi-supervised techniques, which 
use a large amount of unlabelled data to train the network, into the 
proposed model to improve the dense prediction performance. 
Furthermore, because non-COVID-19 infected lesions have features and 
textures that are similar to COVID-19 infected lesions, we can perform 
migration learning by combining the multi-lesion manifestations of non- 
COVID-19 infection features with COVID-19 infection features to further 
enhance the generalizability and robustness of the network. Then, 
because we did not differentiate between COVID-19 lesion types when 
segmenting inflammatory lung regions and performed only single-class 
segmentation, which may limit the potential application of the model 
in clinical diagnosis and treatment processes, multiclass segmentation 
should be implemented to enhance the performance of the model. 
Finally, to reduce the training time and computational cost of the model, 
we used a 2D network and 2D images for training in our experiments; 
however, because the training time and the number of parameters are 
still large, a lightweight COVID-19 lesion segmentation algorithm 
should be designed to ensure that the proposed model is useful in clinical 
practice in the future. 

5. Conclusion 

This paper presents a deep learning-based COVID-19 infection seg
mentation algorithm (HADCNet) with an encoder-decoder architecture. 
HADCNet refines the feature map and improves the segmentation per
formance through a dual hybrid attention strategy with encoder and 
decoder hybrid attention modules. The encoder hybrid attention module 
captures the rich semantic information of lesion features by using hybrid 
dilated convolutions, dense connections, and the SE operation to inte
grate multiscale contextual dependencies at the peer level. The decoder 
hybrid attention module introduces an improved skip connection to 
embed the semantic information of the high-level features in the low- 

level features, while the spatial information of the low-level features is 
embedded in the high-level features, thus refining the feature map 
during up-sampling. Finally, the two embedded features are combined 
in the channel dimension to form an effective fused feature that in
tegrates the contextual semantic information of the feature map across 
levels to accurately obtain the location and structural information of the 
lesion, enhancing the ability of the HADCNet model to discriminate 
COVID-19 lesions. Extensive experiments on four public COVID-19 
benchmark datasets demonstrated the generalizability and robustness 
of the HADCNet model. In future work, we will aim to further improve 
the framework by addressing existing issues and improving the flexi
bility of the model in segmenting COVID-19 infections. 
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