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Abstract: The signals in numerous fields usually have scaling behaviors (long-range dependence
and self-similarity) which is characterized by the Hurst parameter H. Fractal Brownian motion
(FBM) plays an important role in modeling signals with self-similarity and long-range dependence.
Wavelet analysis is a common method for signal processing, and has been used for estimation of
Hurst parameter. This paper conducts a detailed numerical simulation study in the case of FBM on
the selection of parameters and the empirical bias in the wavelet-based estimator which have not
been studied comprehensively in previous studies, especially for the empirical bias. The results show
that the empirical bias is due to the initialization errors caused by discrete sampling, and is not related
to simulation methods. When choosing an appropriate orthogonal compact supported wavelet,
the empirical bias is almost not related to the inaccurate bias correction caused by correlations of
wavelet coefficients. The latter two causes are studied via comparison of estimators and comparison
of simulation methods. These results could be a reference for future studies and applications in the
scaling behavior of signals. Some preliminary results of this study have provided a reference for my
previous studies.
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1. Introduction

The signals in numerous fields usually have scaling behavior (long-range dependence and
self-similarity) which has been recognized as a key property for data characterization and decision
making (see e.g., [1–5]). It is usually characterized by the Hurst parameter H [6]. The key point for
detecting the scaling behavior is the estimation of the Hurst parameter H. The Hurst parameter was
first computed via R/S statistic by Hurst [7] for the study of hydrological properties of Nile river.
Hurst found that R/S statistic on the Nile data grew approximately as nH , H = 0.74. n is the number
of observations. This phenomenon is called the Hurst phenomenon. To study the Hurst phenomenon,
Mandelbrot introduced the concept of self-similar and explained the Hurst phenomenon successfully
using self-similar fractional Brownian motion (FBM) [8]. A continuous process X(t) is said to be

self-similar, if for a > 0, X(at)
d
= aHX(t), H is the self-similar parameter. When H > 0.5, the increments

of FBM are long-range dependent, i.e., the summation of their auto-covariances is divergent. Thus,
fractal Brownian motion and its increments (fractional Gaussian noise (FGN)) play important roles in
modeling signals with self-similarity and long-range dependence. Most studies on this issue are based
on FBM.

Wavelet analysis is a common method for signal processing (see e.g., [9,10]) and has been
widely used for the fractal analysis of signals due to its multiresolution. Nicolis et al. [11] defined
three kinds of wavelet-based entropy for studying the two-dimensional fractional Brownian field.
Li et al. [12] used wavelet fractal and twin support vector machine to study the classification of heart
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sound signals. Ramírez-Pacheco et al. [13] studied fractal signal classification using non-extensive
wavelet-based entropy.

The wavelet-based estimator of the Hurst parameter was well-established by Abry et al.
(see [14–21]). Compared with other estimators, such as the R/S method, the periodogram,
the variogram (semi-parametric or nonparametric estimator) and the parametric method,
the wavelet-based estimator performs well in both the statistical and computational sense, and is
superior in robustness (see [18,19] and the references therein). Besides, the wavelet-based method
can also eliminate some trends (linear trends, polynomial trend, or more) by the property of its
vanishing moments [17], which makes the estimator robust to some nonstationarities. More simulation
studies for the estimation of Hurst parameter can be seen in [22]. Based on the standard wavelet-based
estimator, some robust estimators are proposed. Soltani et al. [23] proposed an improved wavelet-based
estimator via the average of two wavelet coefficients of half length apart and taking the logarithm
first. Shen et al. [24] proposed a robust estimator of self-similar parameter using wavelet transform,
which was less sensitive to some non-stationary traffic conditions. Park & Park [25] introduced a
robust wavelet-based estimator which took the logarithm of wavelet coefficients first and averaged
them later. Feng & Vidakovic [26] estimated the Hurst parameter via a general trimean estimator
on nondecimated wavelet coefficients Kang & Vidakovic [27] proposed a robust estimator of Hurst
parameter via medians of log-squared nondecimated wavelet coefficients.

Despite extensive studies of standard wavelet-based estimator proposed by Abry et al., there is
still a lack of comprehensive and detailed numerical simulation study on fractal Brownian motion,
especially for the selection of parameters and the empirical bias. I have not seen studies on the changes
of bias and variance with all different Hs and with different data lengths, which I think is important
for the selection of the lower octave bound j1, especially at small values of H. j1 is selected via the
minimum mean square error. Thus, this paper conducts a detailed numerical simulation study on the
selection of parameters including the following contents.

• The changes of bias and variance with all different Hs, different data lengths, different j1s and
different wavelets;

• The relations of selected j1 with data length and H;

For the causes of the empirical bias which exist in standard wavelet-based estimator, the following
three causes in the case of FBM are concluded.

• The initialization for initial approximation wavelet coefficients which introduces errors in used
detailed wavelet coefficients.

• The inaccurate bias correction caused by correlations of wavelet coefficients.
• The method of simulation for FBM is not enough exact that the empirical bias is caused.

There exist many studies on the reduction of empirical bias caused by the first two reasons,
but lack of study on determining which is the main cause of empirical bias. It is important for reducing
empirical bias via appropriate techniques. Combining with results of parameters selection, this paper
analyzes the above three causes of empirical bias in the case of FBM via comparison of estimators and
comparison of simulation methods. The results obtained from above numerical simulations can be
a reference for future studies and applications in the scaling behavior of signals. Some preliminary
results of this study have provided a reference for my previous studies on wavelet-based estimation of
Hurst parameters [28–30].

This paper is organized as follows. In Section 2, this paper introduces two available estimators for
the Hurst parameter, and the initialization methods for the initial approximation wavelet coefficients.
The simulation methods of FBM are described in Section 3. The main results are reported and discussed
in Section 4 and my works are concluded in Section 5.
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2. Wavelet-Based Estimator

2.1. Definitions and Properties

Fractional Brownian motion {X(t), t ∈ R}with Hurst parameter H > 0 is a real-valued mean-zero
Gaussian process with the following covariance structure:

EX(t)X(s) =
1
2
{|t|2H + |s|2H − |t− s|2H}. (1)

It is a self-similar process with stationary increment. Its wavelet coefficient is defined by

dX(j, k) =
∫
R

ψj,k(t)X(t)dt. (2)

ψ(t) is the mother wavelet, which is defined through a scaling function φ(t). Usually we choose ψ(t)
as a base function, and we can change it to ψj,k(t) = 2−j/2ψ(2−jt− k), j, k ∈ Z. The factors 2j and j are
called the scale and octave respectively.

please note that FBM is usually denoted by BH . this paper uses the symbol X instead of BH since
the methods in this section for FBM can be applicable to a more general process named self-similar
process with stationary increment and finite variance [20].

Some key properties of the wavelet coefficient of X are given in the following lemma. The proof
of this lemma can be found in [19,20,31–33].

Lemma 1. Let {X(t), t ∈ R} be a fractional Brownian motion. ψ(t) ∈ L2(R) is an orthonormal wavelet with
compact support and have N ≥ 1 vanishing moments. The wavelet coefficients of X(t) given in (2) have these
properties below,

(1) EdX(j, k) = 0 and dX(j, k) is Gaussian, for any j, k ∈ Z.
(2) For fixed j ∈ Z,

dX(j, k)
d
= 2j(H+1/2)dX(0, k), ∀k ∈ Z. (3)

(3) For fixed j ∈ Z,

dX(j, k + h)
d
= dX(j, h), ∀k, h ∈ Z. (4)

(4) For j, j′, k, k′ ∈ Z,

EdX(j, k)dX(j′, k′) ≈ |2jk− 2j′k′|2H−2N , |2jk− 2j′k′| → +∞. (5)

In the above,
d
= means equality in distribution.

Remark 1. In view of Equation (5), to avoid long-range dependence for dX(j, k), i.e., to ensure that
∑j,k∈Z E|dX(j, k)dX(0, 0)| < ∞, one needs to choose

N > H + 1/2, i.e., (2H − 2N) < −1, (6)

that is, have at least N = 2. Under this condition, the correlation of dX(j, k) tends rapidly to 0 at large lags.

According to Remark 1 and Equation (5), let the number of vanishing moments N ≥ 2. It is
reasonable to impose the following assumptions.

• For fixed j, the dX(j, ·) are independent and identically distributed;
• The processes dX(j, ·) and dX(j′, ·), j 6= j′, are independent.
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Under these two assumptions, according to Lemma 1, there exist two available least squares
estimators for the Hurst parameter. [19,20,34], one of which is first applied in the case of FBM for the
bias study of common estimator.

2.2. Two Wavelet-Based Estimators

The First Estimator

The first estimator is the standard wavelet-based estimator of Hurst parameter which is proposed
by Abry et al and commonly used in applications of various fields. In view of Equations (3) and (4), I
can check the following formula.

Ed2
X(j, k) = C12j(2H+1), C1 = Ed2

X(0, 0). (7)

Take the logarithm:

log2 Ed2
X(j, k) = j(2H + 1) + log2 C1. (8)

So the estimation of H can be conducted by a linear regression in the left part versus j diagram.
The Ed2

X(j, k) is estimated by

S(j) := 1/nj ∑ d2
X(j, k). (9)

where nj stands for the number of d2
X(j, k) actually available at octave j.

Due to different variances of log2 S(j) at different js, the weighted least squares for this regression
model is needed. The weight is the reciprocal of the variance of log2 S(j).

Please note that

E log2 S(j) 6= log2 ES(j) = log2 Ed2
X(j, k). (10)

This can lead to the bias of estimator.
Define the variables y1(j)s as

y1(j) := log2 S(j)− g(j).

where g(j) is calculated such that Ey1(j) = log2 ES(j). To ensure the unbiasedness of the estimator, I
use y1(j) as the response variable instead of log2 S(j). Moreover, Vary1(j) = Var log2 S(j).

The calculation of g(j) and Vary1(j) are shown in [18–20].

g(j) = Γ′(nj/2)/(Γ(nj/2) ln 2)− log2(nj/2), (11)

Vary1(j) = ς(2, nj/2)/ ln2 2, (12)

where ς(2, z) := ∑∞
x=0 1/(z + x)2 is a generalized Riemann Zeta function. Γ and Γ′ are the gamma

function and its derivative respectively.
The g(j) and Vary1(j) can be also calculated via sample moment estimators [18–20]

g(j) ≈ −
log2 e

2
C(j), (13)

Vary1(j) ≈ (log2 e)2C(j), (14)

where C(j) = Vard2
X(j, ·)/[nj(Ed2

X(j, ·))2]. The C(j) term is estimated using the sample moment
estimators of the fourth and second moments of dX(j, ·) at each octave.
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The Second Estimator

As mentioned above, since E log2 S(j) 6= log2 ES(j), the first estimator needs to correct bias. For
avoiding this case, the second least squares estimator for Hurst parameter is proposed. This estimator
is also originally proposed by Abry et al. [34] and then studied by Park & Park [25] for the purpose of
robustness .

Based on Equations (3) and (4),

d2
X(j, k)

d
= 2j(2H+1)d2

X(0, 0).

Now take the logarithm first and then the expectation, obtain the following new equation.

E log2 d2
X(j, k) = j(2H + 1) + C2, C2 = E log2 d2

X(0, 0). (15)

So the estimation of H can be conducted by a weighted linear regression in the left part versus j
diagram. The E log2 d2

X(j, k) is estimated by

LS(j) := 1/nj ∑ log2 d2
X(j, k). (16)

where nj stands for the number of d2
X(j, k) actually available at octave j.

Compared with the first estimator, the second estimator changes the order of expectation and
logarithmic. The idea of this estimator is first proposed for analyzing the α-stable self-similar processes
with infinite second-order statistics and long-range dependence [34].

Define the variables y2(j) as

y2(j) := LS(j).

We can check that Ey2(j) = ELS(j) = E log2 d2
X(j, k). Let y2(j) be the response variable of weighted

linear regression. The unbiasedness of the estimator follows from the unbiasedness of y2(j).
Similar to the calculation shown in [18–20], the variance of y2(j) can be calculated for the weight

of regression.

Vary2(j) = ς(2, 1/2)/(nj ln2 2), (17)

And by sample moment estimators [18–20]

Vary2(j) = Var log2 d2
X(j, ·)/nj. (18)

The Var log2 d2
X(j, ·) is estimated using its sample variance at each octave.

Explicit Formula of theTwo Estimators

Let j1 denote the lower bound of j, and j2 denote the upper bound of j, i.e., the values of j are
chosen j1 ≤ j ≤ j2. According to the weighted least squares, the explicit formula of estimators can be
obtained as follows,

Ĥ =
∑

j2
j=j1

ω(j)y(j)− 1

2
, (19)

where ω(j) = T0 j−T1
σ2(j)(T0T2−T2

1 )
, T0 = ∑

j2
j=j1

1/σ2(j), T1 = ∑
j2
j=j1

j/σ2(j), T2 = ∑
j2
j=j1

j2/σ2(j).

When using the first method, y(j) = y1(j) and σ2(j) = Vary1(j), let Ĥ1 denote the first estimator.
When using the second method, y(j) = y2(j) and σ2(j) = Vary2(j), let Ĥ2 denote the second estimator.
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Variance Comparison

The variances of Ĥ1 and Ĥ2 can be compared via a simple theoretical analysis. In view of
Equation (19), the variance of Ĥ can be calculated by

VarĤ =
1
4 ∑j2

j=j1
ω2(j)σ2(j). (20)

When nj is large, recall that the asymptotic form of Vary1(j) (see [19]).

Vary1(j) ∼ 2/(nj ln2 2). (21)

Also recall Equation (17),

Vary2(j) = ς(2, 1/2)/(nj ln2 2).

So when nj is large, the asymptotic form of ratio can be obtained,

VarĤ2

VarĤ1
∼ ς(2, 1/2)

2
= 2.47. (22)

The variance of Ĥ1 is smaller than that of Ĥ2.
Please note that the nondecimated wavelet coefficients have been used in wavelet-based estimator

since they can decrease the variance due to their redundancy [26,27]. However, they can also increase
the correlations in wavelet coefficients. Then when using nondecimated wavelet coefficients, we should
take logarithm first. It is suitable to reduce the variance of the second estimator via nondecimated
wavelet coefficients. For further considering the possible outliers caused by logarithmic transform,
Kang & Vidakovic [27] suggest using medians for estimation of Hurst parameter in this case. This
method is denoted by MEDL.

2.3. Calculation of Wavelet Coefficients

According to the multiresolution analysis (MRA), the wavelet coefficients can be calculated by fast
pyramidal algorithm. The scaling function φ and the wavelet ψ satisfy so-called two-scale equation:

φ(t/2) =
√

2 ∑n unφ(t− n), (23)

ψ(t/2) =
√

2 ∑n vnφ(t− n), (24)

where {un} and {vn} are two existing sequences belonging to l2.
Define the approximation coefficients aX(j, k):

aX(j, k) :=
∫
R

φj,k(t)X(t)dt

where φj,k(t) = 2−j/2φ(2−jt− k).
So dX(j, k) can be calculated by fast pyramidal algorithm.

aX(j, k) = ∑n unaX(j− 1, 2k + n), (25)

dX(j, k) = ∑n vnaX(j− 1, 2k + n). (26)

In view of above formulas, the aX(0, ·) are obtained via integral. However, in practice, the data we
obtained are always discrete and finite. The aX(0, ·) cannot be obtained by integral in continuous time.
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When sampling frequency is high and the scale of wavelet transform is small, the typical approach is
to set [35–37]

aX(0, k) = X(k). (27)

where {X(k), k ∈ Z, 1 ≤ k ≤ n} is discrete and finite FBM.
In view of Equations (25) and (26), the number of available wavelet coefficients nj decreases by

half. Then nj ≈ n2−j.

Remark 2. For a wavelet which has time support (finite or decreases very fast as |t| → ∞), an increase in the
number of vanishing moments N comes with an enlargement of the time support [20]. In the case of finite data,
because of the boundary effects of wavelet transform, this will lead to the decrease of the number of available
wavelet coefficients nj at each octave.

2.4. The Initialization Method

The discrete sampling for a continuous process X(t) usually implies an irrevocable loss of
information on X(t) [35]. So the approach shown in Equation (27) introduces errors in dX(j, k)s.
It is known [14,18] that these initialization errors are significant on small octaves but quickly decrease
with increasing j. For large j, the initialization issue can be ignored. Veitch et al. [35] introduce an
initialization method for discrete time series, which has been proved meaningful for correction of the
initialization errors in the case of long-range dependent process.

This initialization method is based on the stochastic version of the Shannon sampling theorem
[35,38]. Consider the bandlimited stationary stochastic process {X(t), t ∈ R}, construct X̃(t) by

X̃(t) =
∞

∑
n=−∞

X(n)sinc(t− n), where sinc(t) =
sin πt

πt
. (28)

The X̃(t) is bandlimited, and has the same spectral density as that of X(t) in the frequency band
[−1/2, 1/2] (otherwise is zero). It is easy to check

{X̃(k), k ∈ Z} = {X(k), k ∈ Z}.

Furthermore,

aX(0, k) =
∫
R

φ(t− k)X̃(t)dt

=
∞

∑
n=−∞

X(n)
∫
R

φ(t− k)sinc(t− n)dt

=
∞

∑
n=−∞

X(n)I(k− n), (29)

where I(m) =
∫
R φ(t)sinc(t + m)dt. The sequence {I(m)} is calculated in [35].

Please note that because of the boundary effects, the initialization will lead to the decrease of the
number of available wavelet coefficients nj.

3. Simulation of FBM

For studying the statistical performance of the two estimators in the case of FBM, the numerical
simulation of FBM is conducted. Here, this section briefly introduces two simulation methods of
FBM [39–42]. Let {X(t), t ∈ [0, 1]} be a mean-zero fractional Brownian motion with Hurst parameter
H ∈ (0, 1).
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The Cholesky Method

The Cholesky method uses the Cholesky decomposition of the covariance matrix. The FBM
generated by this method is exact in the sense of covariance structure, but this method is slow.

Let Σ = (Σi,j) be the covariance matrix of FBM, where Σi,j = Cov(X(ti), X(tj)), ti = i/n, tj =

j/n, i, j = 1, . . . , n. Conduct the Cholesky decomposition Σ = AA′.
At last, X = (X(t1), · · · , X(tn))′ = AZ is the generated FBM, where Z = (Z1, · · · , Zn)′,

Z1, · · · , Zn are independent and identically distributed N(0, 1).

The Circulant Embedding Method

The simulation procedure is based on the method of circulant embedding. The algorithm of
circulant embedding was originally proposed by Davies and Harte [39], and was later simultaneously
generalized by Dietrich and Newsam (see [40–42] and the references therein). It has been regarded
as a fast and exact simulation of stationary Gaussian processes [42]. I use this method to generate
a fractional Gaussian noise, and construct a fractional Brownian motion via the cumulative sum of
generated fractional Gaussian noise [41].

First consider the fractional Gaussian noise, which is a zero-mean stationary Gaussian process
{Zk, k = 1, . . . n} with covariance

Cov(Zk, Zk+∆k) =
|∆k + 1|2H + |∆k− 1|2H − 2|∆k|2H

2
, ∆k = 0, . . . , n. (30)

Such a stationary Gaussian noise can be efficiently and exactly generated by the method of circulant
embedding and fast Fourier transform [41,42]. The fractional Brownian motion {X(t), t ∈ [0, 1]} is
constructed on a uniformly spaced grid via the cumulative sum [41]

X(tk) = n−H
k

∑
i=1

Zi, k = 1, . . . , n. (31)

4. Simulation Results and Discussions

This section focuses on the numerical study of commonly used wavelet-based estimator (the
first estimator) which still lacks of comprehensive and detailed numerical study on estimation of
fractal Brownian motion, especially on its empirical bias and the selection of parameters. The second
estimator was also compared with the commonly used estimator in this section for the purpose of
empirical bias analysis. If not specified, the sample trajectory of FBM used in this section is generated
by the circulant embedding method.

4.1. Selection of Parameters

It is a key step to select octaves js and the number of vanishing moments N (or wavelet) before
estimation. First this subsection studies the selection of these parameters for later estimations. For
octaves js, the lower bound j1 and the upper bound j2 need to be determined. The j2 is chosen as the
largest possible. In practice, it is set equal to

j2 = blog2 n− Cc ,

where n denotes the data length and C is a constant (with value log2(2N + 1) corresponding to the
length of the support of the wavelet [20]). As the discussion in Section 2, the initialization for aX(0, k)
given in (27) introduces errors in the dX(j, k). It is known [14,18] that initialization errors are significant
on small octaves but decrease with increasing j. So small octave cannot be chosen as j1. Based on prior
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studies [18,20], and this paper selects j1 by the minimum mean square error (MSE), where the MSE is
defined as

MSE(Ĥ) := E(Ĥ − H)2 = (EĤ − H)2 + var(Ĥ).

It allows the tradeoff between variance and bias. The results for the selection of j1 are shown in Table 1
and Figure 1.

Figure 1 shows that the increase of j1 causes the decrease of bias and the increase of standard
deviation for all Hs. So it is suitable to choose the j1 by the minimum of MSE. From Table 1, when
H > 0.5, j1 is chosen j1 = 3 by minimum MSE. When 0.4 ≤ H ≤ 0.5, the RMSE of j1 = 3 is close to
that of chosen j1 = 4. So considering most Hs, j1 = 3 should be chosen in the case of FBM.

Please note that the results of Figure 1 and Table 1 are based on long series. In this case,
the variances of all Hs are small. For small values of H, the bias is large, and the MSE is mainly
determined by the bias. So the estimator of small H trends to select large j1 which can lead to small
bias. Now I study the effects of data length and the selection of j1 at different data lengths. The results
of this issue are shown in Figure 2 and Table 2.

Figure 2 shows that the data length has little effect on the bias, but its decrease causes the increase
of standard deviation for all Hs. The increase of standard deviation may affect the selection of j1.
Thus, continue to use the minimum MSE to select j1 at different data lengths for the tradeoff between
variance and bias. The results of selection are shown in Table 2. From Table 2, it can be seen that the
selected j1 increases with the increase of data length, and the smaller the value of H, the faster the
increase. Based on simulation results, the following formula is given for explanation.

minj1 MSE(Ĥ) = minj1

[
Bias2(H, j1) + var(j1, n)

]
,

where Bias(H, j1) denotes the bias of estimator which decreases with the increase of H and the increase
of j1. var(j1, n) denotes the variance which decreases with the decrease of j1 and the increase of n.
When n increases, the variance becomes smaller, the selected j1 trends to increase for the tradeoff
between variance and bias. The smaller the value of H, the larger the bias, and the more the selected
j1 increase.

For the wavelet, this paper chooses the classical Daubechies wavelets, which are orthonormal and
have compact support. According to Remark 1, the number of vanishing moments must be chosen
N ≥ 2. For analyzing the effect of N, I use N = 1 ∼ 8 to estimate the Hurst parameter of FBM. The
results are shown in Figure 3.

From Figure 3, when N ≥ 2, the increase of N makes no improvements to the performance of the
estimator. Besides, according to Remark 2, large N will cause the loss of available wavelet coefficients.
So appropriately we should choose N = 3.

Finally, this subsection studies the performance of this estimator using various wavelets for
further chosen of wavelet. The results are shown in Figure 4. db3 stands for Daubechies wavelet with
three vanishing moments. sym4 stands for Symlets wavelet with four vanishing moments. dmey
stands for discrete Meyer wavelet. bior3.1 stands for biorthogonal spline wavelets with orders Nr = 3
(vanishing moments) and Nd = 1. Since the Symlets wavelet with three vanishing moments has the
same filters as db3, this part uses this kind of wavelet with four vanishing moments. The first three
wavelets are orthogonal and have compact support. The last wavelet is biorthogonal. It can be seen in
Figure 4 that performance using the first three wavelets are almost the same except for the standard
deviation of dmey at H = 0.95. The biorthogonal spline wavelet performs worse than orthogonal
wavelets except at H ≤ 0.1. This is due to the large bias caused by strong correlations of biorthogonal
wavelet coefficients, and is consistent with the conclusion of Lemma 1. We need to use orthogonal
compact supported wavelet to control these correlations via vanishing moments.
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Table 1. Estimation quality for FBM series. On the left, the j1 for minimum MSE and its Bias, Std, RMSE
is given. On the right, the same quantities with j1 = 3 are also given for comparison. RMSE is the square
root of MSE. All the results are the estimated versions of Bias, Std, RMSE for 1000 independent copies of
FBM with length n = 218. The used wavelet is the Daubechies wavelet with N = 3 vanishing moments.

H jMSE
1 Bias Std RMSE j1 Bias Std RMSE

0.05 7 −0.0122 0.0133 0.0180 3 −0.1450 0.0030 0.1451
0.10 6 −0.0087 0.0091 0.0126 3 −0.0801 0.0031 0.0801
0.15 6 −0.0046 0.0090 0.0101 3 −0.0499 0.0030 0.0500
0.20 5 −0.0056 0.0064 0.0085 3 −0.0330 0.0031 0.0331
0.25 5 −0.0032 0.0063 0.0071 3 −0.0226 0.0032 0.0228
0.30 5 −0.0019 0.0063 0.0066 3 −0.0160 0.0032 0.0163
0.35 4 −0.0038 0.0045 0.0059 3 −0.0115 0.0032 0.0119
0.40 4 −0.0023 0.0047 0.0052 3 −0.0081 0.0033 0.0087
0.45 4 −0.0019 0.0048 0.0052 3 −0.0060 0.0033 0.0068
0.50 4 −0.0012 0.0048 0.0049 3 −0.0044 0.0033 0.0056
0.55 3 −0.0030 0.0034 0.0046 3 −0.0030 0.0034 0.0046
0.60 3 −0.0025 0.0036 0.0044 3 −0.0025 0.0036 0.0044
0.65 3 −0.0018 0.0034 0.0038 3 −0.0018 0.0034 0.0038
0.70 3 −0.0014 0.0035 0.0038 3 −0.0014 0.0035 0.0038
0.75 3 −0.0013 0.0037 0.0039 3 −0.0013 0.0037 0.0039
0.80 3 −0.0008 0.0036 0.0037 3 −0.0008 0.0036 0.0037
0.85 3 −0.0006 0.0037 0.0038 3 −0.0006 0.0037 0.0038
0.90 3 −0.0006 0.0037 0.0038 3 −0.0006 0.0037 0.0038
0.95 3 −0.0006 0.0038 0.0038 3 −0.0006 0.0038 0.0038

Table 2. Estimation quality for FBM series. On the left, the j1 for minimum MSE and its Bias, Std, RMSE
is given. On the right, the same quantities with j1 = 3 are also given for comparison. RMSE is the
square root of MSE. All the results are the estimated versions of Bias, Std, RMSE for 1000 independent
copies of FBM. The used wavelet is the Daubechies wavelet with N = 3 vanishing moments.

H n jMSE
1 Bias Std RMSE j1 Bias Std RMSE

210 2 −0.0632 0.0473 0.0789 3 −0.0239 0.0776 0.0811
212 3 −0.0220 0.0305 0.0376 3 −0.0220 0.0305 0.0376

0.3 214 4 −0.0080 0.0202 0.0217 3 −0.0186 0.0136 0.0231
216 4 −0.0063 0.0096 0.0115 3 −0.0167 0.0065 0.0179
218 5 −0.0019 0.0063 0.0066 3 −0.0160 0.0032 0.0163

210 2 −0.0276 0.0479 0.0553 3 −0.0078 0.0779 0.0783
212 2 −0.0231 0.0202 0.0307 3 −0.0073 0.0312 0.0320

0.5 214 3 −0.0048 0.0142 0.0149 3 −0.0048 0.0142 0.0149
216 3 −0.0050 0.0068 0.0085 3 −0.0050 0.0068 0.0085
218 4 −0.0012 0.0048 0.0049 3 −0.0044 0.0033 0.0056

210 2 −0.0109 0.0526 0.0537 3 −0.0056 0.0878 0.0879
212 2 −0.0061 0.0233 0.0241 3 −0.0010 0.0359 0.0359

0.8 214 2 −0.0062 0.0106 0.0123 3 −0.0015 0.0159 0.0160
216 3 −0.0010 0.0074 0.0075 3 −0.0010 0.0074 0.0075
218 3 −0.0008 0.0036 0.0037 3 −0.0008 0.0036 0.0037
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Figure 1. The Bias, Std, RMSE for estimators: j1 is the lower bound of octaves js. Std is the standard
deviation, Bias = EĤ − H, RMSE is the square root of MSE. The values of Std, Bias, and RMSE are the
estimated versions of those for 1000 independent copies of FBM with length n = 218. The used wavelet
is the Daubechies wavelet with N = 3 vanishing moments.
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Figure 2. The Bias, Std, RMSE for estimators: n is the data length. Std is the standard deviation, Bias
= EĤ − H, RMSE is the square root of MSE. The values of Std, Bias, and RMSE are the estimated
versions of those for 1000 independent copies of FBM with length n. The lower bound of octaves js is
chosen j1 = 3. The used wavelet is the Daubechies wavelet with N = 3 vanishing moments.
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Figure 3. The Bias, Std, RMSE for estimators: N is the number of vanishing moments of Daubechies
wavelet. Std is the standard deviation, Bias = EĤ − H, RMSE is the square root of MSE. The values
of Std, Bias and RMSE are the estimated versions of those for 1000 independent copies of FBM with
length n = 218. The lower bound of octaves js is chosen j1 = 3.
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Figure 4. The Bias, Std, RMSE for estimators: db3 stands for Daubechies wavelet with three vanishing
moments, sym4 stands for Symlets wavelet with four vanishing moments, dmey stands for discrete
Meyer wavelet, bior3.1 stands for biorthogonal spline wavelets with orders Nr = 3 (vanishing moments)
and Nd = 1. The values of Std, Bias and RMSE are the estimated versions of those for 1000 independent
copies of FBM with length n = 218. The lower bound of octaves js is chosen j1 = 3.

4.2. Results and Discussions on Empirical Bias

This subsection conducts a detailed numerical analysis on the empirical bias exits in the commonly
used wavelet-based estimator (the first estimator). Based on previous analysis, the following three
possible causes of empirical bias are concluded.

• The initialization for aX(0, k) given in (27) introduces errors in dX(j, k), and the initialization errors
are significant on small octaves but decrease with increasing j.

• The inaccurate bias correction for E log2 S(j) 6= log2 ES(j) (under independent assumptions)
caused by correlations of wavelet coefficients.

• The method of simulation for FBM is not enough exact that the empirical bias is caused.
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From results of Section 4.1, I have the following information on empirical bias

• The increase of N and change of wavelet made no improvements to the empirical bias. The chosen
of biorthogonal wavelet makes the empirical bias worse.

• The increase of j1 leads to the decrease of empirical bias.
• The empirical bias increases with the decrease of H. when choosing j1 = 3 and N = 3,

the empirical bias of estimator Ĥ1 can be ignored for H ≥ 0.4. So the estimator Ĥ1 is suitable to
detect the long-range dependence (can be described by H > 0.5).

The fact that increase of j1 leads to decrease of empirical bias is consistent with the first cause. As
we know, the larger the value of H is, the smoother the sample path of FBM is, and the more exact the
initialization given in (27) is. It is consistent with the fact that the empirical bias increases with the
decrease of H. So I conclude that the initialization errors caused by (27) contribute to the empirical bias.

The first information indicates the empirical bias is related to correlations of wavelet coefficients.
However, this effects can be fixed (maybe eliminated) via the selection of orthogonal compact
supported wavelet.

Next, after choosing the orthogonal compact supported wavelet (db3) and fixing j1 = 3, this study
analyzes the latter two causes via comparing with the second estimator and comparison of simulation
methods respectively.

Comparison of Estimators

Since the unbiasedness of the second estimator Ĥ2 is get naturally without independence
assumptions of wavelet coefficients. This part compares Ĥ2 with Ĥ1 for studying its empirical bias. The
length of simulation data is n = 218. (j1, j2) are chosen (3, 15). The wavelet coefficients are computed
using the classical Daubechies wavelet with N = 3 vanishing moments. The results are shown in
Figure 5 and Table 3.
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Figure 5. The Bias and Std for estimators: M1 denotes the first estimator, M2 denotes the second
estimator. Std is the standard deviation, Bias = EĤ − H. The values of Std and Bias are the estimated
versions of those for 1000 independent copies of FBM with length n = 218.
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Table 3. Estimations of ratio of variance.

H 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

V̂arĤ2/V̂arĤ1 2.41 2.18 2.32 2.27 2.16 2.19 2.27 2.22 2.18 2.13

H 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

V̂arĤ2/V̂arĤ1 1.92 2.08 2.00 1.94 1.76 1.95 1.71 1.89 1.88

Table 3 shows the results for the estimator of ratio given in Equation (22). It indicates that
the variance of Ĥ2 is about twice that of Ĥ1, which roughly satisfy the theoretical results given in
(22). From Figure 5, it can be seen that when H < 0.4, both Ĥ1 and Ĥ2 have the same obvious bias
despite the theoretical unbiasedness of the two estimators under independence assumptions of wavelet
coefficients. Besides, the same as the results shown in Table 3, the standard deviation (Std) of Ĥ2 is
larger than that of Ĥ1.

Because the empirical bias also exists in Ĥ2 whose unbiasedness is get naturally, and is the same
as that of Ĥ2. I conclude that the empirical bias of Ĥ1 is not due to the inaccurate bias correction for
E log2 S(j) 6= log2 ES(j) caused by correlations of wavelet coefficients.

Besides, considering the variances of the two estimators, we should choose the first estimator Ĥ1

for the estimation of Hurst parameter.

Comparison of Simulation Methods

For the third cause, this part applies Ĥ1 to the FBM that is exactly generated by the Cholesky
method for comparison. The results are shown in Figure 6.
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Figure 6. The Bias for estimators: circ denotes the circulant embedding method for simulation of
FBM, chol denotes the Cholesky method for simulation of FBM. Bias = EĤ − H. The values of Bias
are the estimated versions of those for 1000 independent copies of FBM with length n = 212. The
lower bound of octaves js is chosen j1 = 3. The used wavelet is the Daubechies wavelet with N = 3
vanishing moments.

From Figure 6, it can be seen that estimations for the FBM respectively generated by the Cholesky
method and the circulant embedding method has almost the same empirical bias. I conclude that the
method of simulation is not the cause of empirical bias.

4.3. Analysis of the Initialization Method

It has been shown above that the empirical bias of Ĥ1 is due to the initialization errors caused by
(27). The initialization method given in (29) has proved effective for errors in the case of long-range
dependent process [35]. Although FBM is not a bandlimited stationary stochastic process, I tend to
check whether this method is suitable for FBM.
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This subsection applies the estimator Ĥ1 with this initialization to FBM for analysis, and compares
it with the initialization by itself (or by Equation (27)). The length of simulation data is n = 218. (j1, j2)
are chosen (3, 15). The wavelet coefficients are computed using the classical Daubechies wavelet with
N = 3 vanishing moments. The results are shown in Figure 7.
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Figure 7. The Bias and Std for estimators: Init1 denotes the initialization by itself (or by (27) ), Init2
denotes the initialization denoted by (29). Std is the standard deviation, Bias = EĤ − H. The values
of Std and Bias are the estimated versions of those for 1000 independent copies of FBM with length
n = 218.

Figure 7 shows that both Biases and Stds for the two initializations are almost the same. It
indicates that the initialization method given in (29) is inefficient in the case of FBM. Beside, it is known
that the method Init2 will lead to the decrease of the number of available wavelet coefficients nj for the
boundary effects, which may result in the increase of the variance of estimator. So I suggest choosing
the initialization for aX(0, k) given in (27) in the future work.

4.4. Analysis of Noise Effects

At last, this paper adds this subsection for analysis of noise effects on the first estimator, which
possibly happen in the real data. Various independent and identically distributed noises are added to
the generated FBM for this issue. The signal-to-noise ratio (SNR) is defined as follows.

SNR =

√
var X(1)

var ε
,

where ε means noise. Set SNR = 2 in this subsection.
The results are shown in Figure 8. From Figure 8, I found that noises have some effects on the

performance, and can lead to increase of bias. The effects of Gaussian and uniform noises are almost
the same. The Cauchy noise can cause more increase of bias than the other two noises.
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Figure 8. The Bias, Std, RMSE for estimators: orig stands for original series without noise, gau stands
for Gaussian noise, unm stands for uniform noise, cau stands for Cauchy noise. The values of Std, Bias
and RMSE are the estimated versions of those for 1000 independent copies of FBM with noise. The data
length n = 218. The lower bound of octaves js is chosen j1 = 3. The used wavelet is the Daubechies
wavelet with N = 3 vanishing moments

5. Conclusions

This paper focuses on the numerical simulation study of wavelet-based estimators in the case
of FBM concluding the selection of parameters and the analysis of empirical bias which have not
been studied comprehensively in previous studies. This study adds to previous numerical simulation
studies of wavelet-based estimators which are not comprehensive in the case of FBM.

Results of the parameter selection showed that the increase of lower bound j1 causes the decrease
of bias and the increase of standard deviation for all Hs, and suggested j1 = 3 via the minimum
mean square error at a long data length n = 218. In addition, it was also found that the empirical bias
increased with the decrease of H and could be ignored for H ≥ 0.4 when j1 = 3 and N = 3. The effects
of n on performance and relations of selected j1 with n were also concluded via simulation studies.
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It was shown that the data length had little effect on the bias, but its decrease caused the increase
of standard deviation for all Hs. The selected j1 increased with the increase of data length, and the
smaller the value of H, the faster the increase. For the vanishing moments N, when N ≥ 2, the increase
of N made no improvements to the performance of estimator. The change of orthogonal wavelets
made no improvements to the empirical bias. The chosen of biorthogonal wavelet made empirical
bias worse.

The analysis of empirical bias was conducted first via comparison of two available estimators
and comparison of simulation methods. The results showed that the empirical bias was due to the
initialization errors caused by discrete sampling, and was not related to simulation methods. When
choosing an appropriate orthogonal compact supported wavelet, the empirical bias was almost not
related to the inaccurate bias correction caused by correlations of wavelet coefficients. I regret to
note that the initialization method given in (29), which has proved effective in the case of long-range
dependent process, made no improvements to the empirical bias. All these results will be a guide for
my future studies.
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