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Abstract

The methods for making statistical inferences in scientific analysis have diversified even within the 

frequentist branch of statistics, but comparison has been elusive. We approximate analytically and 

numerically the performance of Neyman-Pearson hypothesis testing, Fisher significance testing, 

information criteria, and evidential statistics (Royall, 1997). This last approach is implemented in 

the form of evidence functions: statistics for comparing two models by estimating, based on data, 

their relative distance to the generating process (i.e., truth) (Lele, 2004). A consequence of this 

definition is the salient property that the probabilities of misleading or weak evidence, error 

probabilities analogous to Type 1 and Type 2 errors in hypothesis testing, all approach 0 as sample 

size increases. Our comparison of these approaches focuses primarily on the frequency with which 

errors are made, both when models are correctly specified, and when they are misspecified, but 

also considers ease of interpretation. The error rates in evidential analysis all decrease to 0 as 

sample size increases even under model misspecification. Neyman-Pearson testing on the other 

hand, exhibits great difficulties under misspecification. The real Type 1 and Type 2 error rates can 

be less, equal to, or greater than the nominal rates depending on the nature of model 
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misspecification. Under some reasonable circumstances, the probability of Type 1 error is an 

increasing function of sample size that can even approach 1! In contrast, under model 

misspecification an evidential analysis retains the desirable properties of always having a greater 

probability of selecting the best model over an inferior one and of having the probability of 

selecting the best model increase monotonically with sample size. We show that the evidence 

function concept fulfills the seeming objectives of model selection in ecology, both in a statistical 

as well as scientific sense, and that evidence functions are intuitive and easily grasped. We find 

that consistent information criteria are evidence functions but the MSE minimizing (or efficient) 

information criteria (e.g., AIC, AICc, TIC) are not. The error properties of the MSE minimizing 

criteria switch between those of evidence functions and those of Neyman-Pearson tests depending 

on models being compared.

Keywords

model misspecification; evidential statistics; evidence; error rates in model selection; Kullback-
Leibler divergence; hypothesis testing; Akaike’s information criterion; model selection

1. INTRODUCTION

1.1. Background

In the twentieth century, the bulk of scientific statistical inference was conducted with 

Neyman-Pearson hypothesis tests, a term which we broadly take to encompass significance 

testing, P-values, generalized likelihood ratio, and other special cases, adaptations, or 

generalizations. The central difficulty with interpreting NP tests is that the Type 1 error 

probability (usually denoted α) remains fixed regardless of sample size, rendering 

problematic the question of what constitutes evidence for the model serving as the null 

hypothesis (Aho et al., 2014; Murtaugh, 2014; Spanos, 2014). The fixed null error rate of 

hypothesis testing lies at the core of why model selection procedures based on hypothesis 

testing (such as stepwise regression and multiple comparisons) have always had the 

reputation of being jury-rigged contraptions that have never been fully satisfactory (Gelman 

et al., 2012). An additional problem with hypothesis tests arises from the “Type 3” error of 

model misspecification, in which neither the null nor the alternative hypothesis model 

adequately describes the data (Mosteller, 1948). The influence of model misspecification on 

all types of inference is under appreciated.

A substantial advance in late 20th century statistical practice was the development of 

information-theoretic indexes for model selection, namely the Akaike information criterion 

(AIC) and its variants (Akaike, 1973, 1974; Sakamoto et al., 1986; Bozdogan, 1987). The 

model selection criteria were slow in coming to ecology (Kemp and Dennis, 1991; Lebreton 

et al., 1992; Anderson et al., 1994; Strong et al., 1999) but have rapidly proliferated in the 

past 20 years, aided by a popular book (Burnham and Anderson, 2002) and journal reviews 

(Anderson et al., 2000; Johnson and Omland, 2004; Ward, 2008; Grueber et al., 2011; 

Symonds and Moussalli, 2011). Ecological practice has been indelibly shaped by the use of 

AIC and similar indexes (Guthery et al., 2005; Barker and Link, 2015). Notwithstanding, 

ecologists, traditionally introspective about and scrutinizing of statistical practices (Strong, 
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1980; Quinn and Dunham, 1983; Loehle, 1987; Yoccoz, 1991; Johnson, 1999; Hurlbert and 

Lombardi, 2009; Gerrodette, 2011), have generated much critique and discussion of the 

appropriate uses of the information criteria (Guthery et al., 2005; Richards, 2005; Arnold, 

2010; Barker and Link, 2015; Cade, 2015). Topics of discussions have focused on the 

contrast of information-theoretic methods with frequentist hypothesis testing methods 

(Anderson et al., 2000; Stephens et al., 2005; Murtaugh, 2009) and with Bayesian statistical 

approaches (Link and Barker, 2006; Barker and Link, 2015).

In an apparently separate statistical development, the concept of statistical evidence was 

refined in light of the shortcomings of using as evidence quantities such as P-values that 

emerge from frequentist hypothesis testing (Royall, 1997, 2000; Taper and Lele, 2004, 2011; 

Taper and Ponciano, 2016). Crucial to the evidence concept was the idea of an evidence 

function (Lele, 2004). An evidence function is a statistic for comparing two models that has 

a suite of statistical properties, among them two critical properties: (a) both error 

probabilities (analogous to Type 1 and Type 2 error probabilities in hypothesis testing) 

approach zero asymptotically as the sample size increases, and (b) when the models are 

misspecified and the concept of “error” is generalized to be the selection of the model 

“farthest” from the true data-generating process, the two error probabilities still approach 

zero as sample size increases.

Despite widespread current usage of AIC-type indexes in ecology, the inferential basis and 

implications of the use of information criteria are not fully developed, and what is developed 

is commonly misunderstood (see the forum edited by Ellison et al., 2014). AIC-type indexes 

are used for different purposes: in some contexts in place of hypothesis testing, in some as 

evidence for model identification, in some as estimates of pseudo-Bayesian model 

probabilities, and in some purely as criteria for prediction (Anderson et al., 2001). Of 

concern is that few ecologists can explain the inferences they are conducting with AIC, as 

Akaike’s (Akaike, 1973, 1974) mathematical argument is not an easy one, and more recent 

accounts (Bozdogan, 1987; Burnham and Anderson, 2002; Claeskens and Hjort, 2008) are 

heavily mathematical as well. A clear and accessible inferential concept is needed to 

promote confidence in and appropriate uses of the information-theoretic criteria. We believe 

that the concept of statistical evidence can serve well as the inferential basis for the uses of 

and distinctions among the AIC-type indexes.

This paper contrasts the concept of evidence with classical statistical hypothesis testing and 

demonstrates that many information-based indexes for model selection can be recast and 

interpreted as evidence functions. We show that the evidence function concept fulfills many 

seeming objectives of model selection in ecology, both in a statistical as well as scientific 

sense, and that evidence functions are intuitive and easily grasped. Specifically, the 

difference of two values of an information-theoretic index for a pair of models possesses in 

whole or in part the properties of an evidence function and thereby grants to the resulting 

inference a scientific warrant of considerable novelty in ecological practice.

Of particular importance is the desirable behavior of evidence functions under model 

misspecification, behavior which, as we shall show, departs sharply from that of statistical 

hypothesis testing. As ecologists grapple increasingly with issues related to multiple 
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quantitative hypotheses for how data arose, the evidence function concept can serve as a 

scientifically satisfying basis for model comparison in observational and experimental 

studies.

1.2. Method of Analysis and Notation

For convenience we label as Neyman-Pearson (NP) hypothesis tests a broad collection of 

interrelated statistical inference techniques, including P-values for likelihood ratios, 

confidence intervals, and generalized likelihood ratio tests, that are connected to Neyman 

and Pearson’s original work (Neyman and Pearson, 1933) and that form the core of modern 

applied statistics. We distinguish Fisher’s use of P-values as a measure of the adequacy of 

the null hypothesis from the use of P-values in likelihood ratio hypothesis tests.

NP hypothesis tests and evidential comparisons are conducted in very different fashions and 

operate under different warrants. Thus, comparison is difficult. However, they both make 

inferences. One fundamental metric by which they can be compared is the frequency that 

inferences are made in error. In this paper we seek to illuminate how the frequency of errors 

made by these methods is influenced by sample size, the differences among models being 

compared, and also the differences between candidate models and the true data generating 

process. Both of these inferential approaches can be, and generally are, constructed around a 

base of the likelihood ratio (LR). By studying the statistical behavior of the LR, we can 

answer our questions regarding frequency of error in all approaches considered.

Throughout this discussion, one observation (datum) is represented using the random 

variable X with g(x) being the probability density function representing the true, data-

generating process and f (x) being the probability density function of an approximating 

model. If the observed process is discrete, g(x) and f (x) will represent probability mass 

functions. For simplicity we refer to these functions in both the discrete and continuous 

cases as pdf’s, thinking of the abbreviation as “probability distribution function.” The 

likelihood function under the true model, for n independent and identically distributed (iid) 

observations x1, x2, … xn is written as

Lg = g x1 g x2 …g xn , (1)

whereas under the approximating model it is

Lf = f x1 f x2 …f xn . (2)

In cases where there are two candidate models f1(x) and f2(x), we write the respective 

likelihoods as L1 and L2 to avoid double subscript levels.

We make much use of the Kullback-Leibler (KL) divergence, one of the most commonly 

used measures of the difference between two distributions. The KL divergence of f (x) from 

g(x), denoted K(g, f), is defined as the expected value of the log-likelihood ratio of g and f 
(for one observation) given that the observation came from the process represented by g(x):
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K(g, f) ≡ Eg log g(X)
f(X) = ∫ ∑g(x)log g(x)

f(x) . (3)

Here Eg denotes expectation with respect to the distribution represented by g(x). The 

expectation is a sum or integral (or both) over the entire range of the random variable X, 

depending on whether the probability distributions represented by g(x) and f (x) are discrete 

or continuous (or both, such as for a zero-inflated continuous distribution). The functions 

must give positive probability to the same sets (along with other technical mathematical 

requirements which are usually met by the common models of ecological statistics).

The KL divergence is interpreted as the amount of information lost when using model f (x) 

to approximate the data generating process g(x) (Burnham and Anderson, 2001). Its 

publication (Kullback and Leibler, 1951) was a highpoint in the golden age of the study of 

“information theory.” The KL divergence is always positive if g(x) and f (x) represent 

different distributions and is zero if the distributions are identical (“identical” in the 

mathematical sense that the distributions give the same probabilities for all events in the 

sample space). The KL divergence is not a mathematical distance measure in that K(g, f) is 

not in general equal to K(f, g).

The relevant KL divergences under correct model specification are for f1(x) and f2(x) with 

respect to each other:

K12 ≡ K f1, f2 = E1 log f1(X)
f2(X) = ∫ ∑f1(x)log f1(x)

f2(x) , (4)

K21 ≡ K f2, f1 = E2 log f2(X)
f1(X) = ∫ ∑f2(x)log f2(x)

f1(x) . (5)

By reversing numerator and denominator in the log function in Equation (5), one finds that

E2 log f1(X)
f2(X) = ∫ ∑f2(x)log f1(x)

f2(x) = − K21 . (6)

The convention for which subscript is placed first varies among references; we put the 

subscript of the reference distribution first as it is easy to remember.

The likelihood ratio (LR) and its logarithm figure prominently in statistical hypothesis 

testing as well as in evidential statistics. The LR is

L1
L2

= f1 x1 f1 x2 ⋯f1 xn
f2 x1 f2 x2 ⋯f2 xn

, (7)

and the log-LR is

log L1
L2

= ∑
i = 1

n
log f1 xi

f2 xi
. (8)

Dennis et al. Page 5

Front Ecol Evol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In particular, the log-LR considered as a random variable is a sum of iid random variables, 

and its essential statistical properties can be approximated using the central limit theorem 

(CLT). The CLT (Box 1) provides an approximate normal distribution for a sum of iid 

random variables and requires the expected value (mean) and the variance of one of the 

variables. Under correct model specification, the observations came from either f1(x) or 

f2(x), and Equations (4)–(6) above give the expected value of one of the random variables in 

the sum as K12 or −K21, depending on which model generated the data. Let σ1
2 and σ2

2 be the 

variances of log [f1 (X)/f2 (X)] with respect to each model:

σ1
2 = V1 log f1(X)

f2(X) = ∫ ∑f1(x) log f1(x)
f2(x)

2
− K12

2 . (9)

σ2
2 = V2 log f1(X)

f2(X) = ∫ ∑f2(x) log f1(x)
f2(x)

2
− K21

2 . (10)

One can envision cases in which these variances might not exist, but we do not consider such 

cases here. The CLT, which requires that the variances be finite, provides the following 

approximations. If the data arise from f1:

log L1
L2

˙normal nK12, nσ12 , (11)

1
n log L1

L2
˙normal K12, σ12/n , (12)

n
σ1

1
n log L1

L2
− K12 ˙normal(0, 1) . (13)

Here, ⩪ means “is approximately distributed as.” If the data arise from f2:

log L1
L2

˙normal −nK21, nσ22 , (14)

1
n log L1

L2
˙normal −K21, σ22/n , (15)

n
σ2

1
n log L1

L2
+ K21 ˙normal(0, 1) . (16)

The device of using the CLT to study properties of the likelihood ratio is old and venerable 

and figures prominently in the theory of sequential statistical analysis (Wald, 1945).

A model, f, can be said to be misspecified if the distribution of data implied by the model 

(under best possible parameterization) differs in any way from the distribution of data under 
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the true generating process. In the Kullback-Leibler divergence setting within which we are 

working, f is misspecified if K(g, f) > 0. A model set can be said to be misspecified if all of 

its member models are misspecified. Misspecification can have a host of causes, including 

omission of real covariates, inclusion of spurious covariates, incorrect specification of 

functional form, incorrect specification of process error structure, and incorrect specification 

of measurement error structure.

The approximate behavior of the LR under misspecification can also be represented with the 

CLT. To our two model candidates f1 (x) and f2 (x), we add the pdf g (x) defined as the best 

possible mathematical representation of the distribution of data stemming from the actual 

stochastic mechanism generating the data, the unknown “truth” sought by scientists. We 

denote by ΔK the difference of the KL divergences of f1(x) or f2 (x), from g (x):

ΔK = K g, f2 − K g, f1 . (17)

We note that ΔK could be positive, negative, or zero: if ΔK is positive, then f1 is “closer” to 

truth, if ΔK is negative, then f2 is closer to truth, and if ΔK is zero, then both models are 

equally distant from truth. To deploy the CLT, we need the mean and variance of the single-

observation LR under misspecification. For the mean we have

Eg log f1(X)
f2(X) = ∫ ∑g(x)log f1(x)

f2(x) = ΔK (18)

The rightmost equality is established by adding and subtracting Eg [log (g (X)]. We denote 

the variance by σg
2 which becomes

Vg log f1(X)
f2(X) ≡ σg2 = ∫ ∑g(x) log f1(x)

f2(x)
2

− (ΔK)2 . (19)

And now by the CLT, if the data did not arise from f1 (x) or f2 (x), but rather from some 

other pdf g (x), we have:

log L1
L2

˙normal nΔK, nσg2 , (20)

1
n log L1

L2
˙normal ΔK, σg2/n , (21)

n
σg

1
n log L1

L2
− ΔK ˙normal(0, 1) . (22)

Critical to the understanding, both mathematical and intuitive, of inference on models is an 

understanding of the topology of models. Once one has a concept of distances between 

models, a topology is implied. A model with one or more unknown parameters represents a 

whole family or set of models, with each parameter value giving a completely specified 

model. At times we might refer to a model set as a model if there is no risk of confusion. 
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Two model sets can be only be arranged as nested, overlapping, or non-overlapping. A set of 

models can be correctly specified or misspecified depending on whether or not the 

generating process can be exactly represented by a model in the model set. Thus, there are 

only six topologies relating two model sets to the generating process (Figures 1, 2).

2. EVIDENCE, NEYMAN-PEARSON TESTING, AND FISHER SIGNIFICANCE

2.1. Correctly Specified Models

In the canon of traditional statistical practices for comparing two candidate models, f1 (x) 

and f2 (x) say, with or without unknown parameters involved, the assumption that the data 

arose from either f1 (x) or f2 (x) is paramount. In this section we adopt this assumption of 

correctly specified models and compare the properties of statistical hypothesis testing with 

those of the evidence approach. The correct model assumption is the home turf, so to speak, 

of hypothesis testing, and so the comparison should by rights highlight the strengths of 

traditional statistical practice. To focus the issues with clarity we concentrate on the case in 

which f1 (x) and f2 (x) are statistically simple hypotheses (a.k.a. completely specified 

models, not to be confused with correctly specified models). In other words, we assume for 

now there are no unknown parameters in either model, deferring until later in this paper a 

discussion of unknown parameters.

2.1.1. Neyman-Pearson Statistical Hypothesis Tests—Neyman and Pearson 

(1933) proved in a famous theorem (the “Neyman-Pearson Lemma”) that basing a decision 

between two completely specified hypotheses (H1: the data arise from model f1 (x), and H2: 

the data arise from model f2 (x)) on the likelihood ratio had certain optimal properties. 

Neyman and Pearson’s LR decision rule has the following structure:

decideonH1 if L1/L2 > c,
decideonH2 if L1/L2 > c . (23)

Here the cutoff quantity (or critical value) c is determined by setting an error probability 

equal to a known constant (usually small), denoted α. Specifically, the conditional 

probability of wrongly deciding on H2 given that H1 is true is the “Type 1 error probability” 

and is denoted as α.

P L1/L2 ≤ c ∣ H1 = α . (24)

Often for notational convenience in lieu of the statement “Hi is true” we will simply write 

“Hi.” Now, such a data-driven decision with fixed Type 1 error probability is the traditional 

form of a statistical hypothesis test. A test with a Type 1 error probability of α is said to be a 

size α test. The other error probability (“Type 2”), the conditional probability of wrongly 

deciding on H1 given H2, is usually denoted β:

P L1/L2 > c ∣ H2 = β (25)

The power of the test is defined as the quantity 1 − β. Neyman and Pearson’s theorem, 

stating that no other test of size α or less has power that can exceed the power of the 
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likelihood ratio test, is a cornerstone of most contemporary introductions to mathematical 

statistics (Rice, 2007; Samaniego, 2014).

With the central limit theorem results (Equations 11–16), the error properties of the NP test 

can be approximated. To find the critical value c, we have under H1:

L1
L2

≤ c n
σ1

1
n log L1

L2
− K12 ≤ n

σ1
1
n log(c) − K12 , (26)

and so the CLT tells us that

α = P L1
L2

≤ c ∣ H1 ≈ Φ n
σ1

1
n log(c) − K12 , (27)

where Φ (z) is the cumulative distribution function (cdf) of the standard normal distribution. 

The approximate critical value c required for a size α test is then found by solving Equation 

(27) for c:

Φ n
σ1

1
n log(c) − K12 = α

n
σ1

1
n log(c) − K12 = Φ−1(α) = − zα

c = exp n nK12 − σ1zα .

(28)

Here zα = Φ−1 (1 − α) = −Φ−1 (α) is the value of the 1 − α quantile of the standard normal 

distribution. Thus, for error rate α to be fixed, the critical value as a function of n is seen to 

be a rapidly moving target.

The error probability β is approximated in similar fashion. We have, under H2,

L1
L2

> c n
σ2

1
n log L1

L2
+ K21 > n

σ2
1
n log(c) + K21

n
σ2

1
n log L1

L2
+ K21 > n

σ2
1
n log(c) + K21 ,

(29)

so that, after substituting for c,

β = P L1
L2

> c ∣ H2 ≈ 1 − Φ n
σ2

K12 + K21 − σ1
σ2

zα

= Φ σ1
σ2

zα − n
σ2

K12 + K21 .
(30)

It is seen that β → 0 as sample size n becomes large. Here K12 + K21 is an actual distance 

measure between f1 (x) and f2 (x) (Kullback and Leibler (1951); sometimes referred to as the 

“symmetric” KL distance) and can be regarded as the “effect size” as used in statistical 

power calculations.

Five important points about the Neyman-Pearson Lemma are pertinent here. First, the 

theorem itself is just a mathematical result and leaves unclear how it is to be used in 
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scientific applications. The prevailing interpretation that emerged in the course of 20th 

century science was that one of the hypotheses, H1, would be accorded a special status (“the 

null hypothesis”), having its error probability α fixed at a known (usually small) value by 

the investigator. The other hypothesis, H2, would be set up by experiment or survey design 

to be the only reasonable alternative to H1. The other error probability, β, would be managed 

by study design characteristics (especially sample size), but would remain unknown and 

could at best only be estimated when the model contained parameters with unknown values. 

The hypothesis H1 would typically play the role of the skeptic’s hypothesis, as in the 

absence of an effect (absence of a difference in means, absence of influence of a predictor 

variable, absence of dependence of two categorical variables, etc.) under study. The other 

hypothesis, H2, contains the effect under study and serves as the hypothesis of the 

researcher, who has the scientific charge of convincing a reasoned skeptic to abandon H1 in 

favor of H2.

Second, the theorem in its original form does not apply to models with unknown parameters. 

Various extensions were made during the ensuing decades, among them Wilks’ (Wilks, 

1938) and Wald’s (Wald, 1943) theorems. The Wilks-Wald extension allows the test of two 

composite models (models with one or more unknown parameters) in which one model, 

taken as the null hypothesis, is formed from the other model (the alternative) by placing one 

or more constraints on the parameters. An example is a normal (μ, σ2) distribution with both 

mean μ and variance σ2 unknown as the model for the alternative hypothesis H2, within 

which the null hypothesis model f1 constrains the mean to be a fixed known constant: μ = μ1. 

In such scenarios, the null model is “nested” within the alternative model, that is, the null is 

a special version of the alternative in which the parameters are restricted to a subset of the 

parameter space (set of all possible parameter values). Wilks’ (Wilks, 1938) and Wald’s 

(Wald, 1943) theorems together provide the asymptotic distribution of a function of the 

likelihood ratio under both the null and alternative hypotheses, with estimated parameters 

taken into account. The function is the familiar “generalized likelihood ratio statistic,” 

usually denoted G2, given by

G2 = − 2log L1/L2 , (31)

where L1 and L2 are the likelihood functions, respectively for models f1 and f2, with each 

likelihood maximized over all the unrestricted parameters in that model. The resulting 

parameter estimates, known as the maximum likelihood (ML) estimates, form a prominent 

part of frequentist statistics theory (Pawitan, 2001). Let θ be the vector of unknown 

parameters in model f2 formed by stacking subvectors θ21 and θ22. Likewise, let θ under the 

restricted model f1 be formed by stacking the subvectors θ11 and θ12, where θ11 is a vector 

of fixed, known constants (i.e., all values in θ21 are fixed) and θ12 is a vector of unknown 

parameters. Wald’s (1943) theorem (after some mathematical housekeeping: Stroud, 1972) 

gives the asymptotic distribution of G2 as a non-central chisquare(ν, λ) distribution, with 

degrees of freedom ν equal to the difference between the number of estimated parameters in 

f2 and the number of estimated parameters in f1, and non-centrality parameter λ being a 

statistical (Mahalanobis) distance between the true parameter values under H2 and their 

restricted versions under H1:
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λ = n θ21 − θ11 ′Σ−1 θ21 − θ11 . (32)

Here Σ is a matrix of expected log-likelihood derivatives (details in Severini, 2000). 

Technically the true values θ21 must be local to the restricted values θ11; the important 

aspects for the present are that λ increases with n as well as with the effect size represented 

by the distance (θ21 − θ11)′Σ−1 (θ21 − θ11). With the true parameters equal to their restricted 

values, that is with H1 governing the data production, the non-centrality parameter becomes 

zero, and Wald’s theorem collapses to Wilks’ theorem, which gives the asymptotic 

distribution of G2 under H1 to be an ordinary chisquare(ν) distribution. For linear statistical 

models in the normal distribution family (regression, analysis of variance, etc.), G2 boils 

down algebraically into monotone functions of statistics with exact (non-central and central) 

t- or F-distributions, and so the various statistical hypothesis tests can take advantage of 

exact distributions instead of asymptotic approximations.

The concept of a confidence interval or region for one or more unknown parameters follows 

from Neyman-Pearson hypothesis testing in the form of a region of parameter values for 

which hypothesis H1 would not be rejected at fixed error rate α. We remark further that 

although a vast amount of every day science relies on the Wilks-Wald extension of Neyman-

Pearson testing (and confidence intervals), frequentist statistics theory prior to the 1970s had 

not provided much advice on what to do when the two models are not nested.

Certainly nowadays one could setup a model f1(x) as H1 in a hypothesis test against a non-

overlapping model f2(x) taken as H2 and obtain the distributions of the generalized 

likelihood ratio under both models with simulation/bootstrapping.

Third, the Neyman-Pearson Lemma provides no guidance in the event of model 

misspecification. The theorem assumes that the data was generated under either H1 or H2. 

However, the “Type 3” error of basing inferences on an inadequate model family is widely 

acknowledged to be a serious (if not fatal) scientific drawback of the Neyman-Pearson 

framework (and parametric modeling in general, see Chatfield, 1995). Modern applied 

statistics rightly stresses rigorous checking of model adequacy with various diagnostic 

procedures, such as the standard battery of residual analyses in regression models. Deciding 

between two models based on diagnostic qualities has been a standard workaround in the 

situation mentioned above for which the two models are not nested. For instance, one might 

choose the model with the most homoscedastic residuals.

Fourth, the asymmetry of the error structure has led to difficulties in scientific interpretation 

of Neyman-Pearson hypothesis testing results. The difficulties stem from α being a fixed 

constant. A decision to prefer hypothesis H2 over H1 because the LR (Equation 23) is 

smaller than c is not so controversial. The H2 over H1 decision has some intuitively desirable 

statistical properties. For example, the error rate β asymptotically approaches 0 as the 

sample size n grows larger. Further, β asymptotically approaches 0 as model f2 becomes 

“farther” from f1 (in the sense of the symmetric KL distance K12 + K21 as seen in Equation 

30). Mired in controversy and confusion, however, is the decision to prefer H1 over H2 when 

the LR is larger than c. The value of c is set by the chosen value of the error rate α, using the 
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probabilistic properties of model f1. If a larger sample size is used, the LR has more terms, 

and the value of c necessary to attain the desired value of α changes. In other words, c 
depends on sample size n and moves in such a way as to keep α fixed (at 0.05 or whatever 

other value is used; Equation 28). The net effect is to leave the Neyman-Pearson framework 

without a mechanism to assess evidence for H1, for no matter how far apart the models are 

or how large a sample size is collected, the probability of wrongly choosing H2 when H1 is 

true remains stuck at α.

Fifth, scientific practice rarely stops with just two models. In an analysis of variance, after 

an overall test of whether the means are different, one usually needs to sort out just who is 

bigger than whom. In a multiple regression, one is typically interested in which subset of 

predictor variables provide the best model for predicting the response variable. In a 

categorical data analysis of a multiway contingency table, one is often seeking to identify 

which combination of categorical variables and lower and higher order interactions best 

account for the survey counts. For many years (through the 1980s at least), standard 

statistical practice called for multiple models to be sieved through some (often long) 

sequence of Neyman-Pearson tests, through processes such as multiple pairwise 

comparisons, stepwise regression, and so on. It has long been recognized, however, that 

selecting among multiple models with Neyman-Pearson tests plays havoc with error rates, 

and that a pairwise decision tree of “yes-no’s” might not lead to the best model among 

multiple models (Whittingham et al., 2006 and references therein). Using Neyman-Pearson 

tests for selection among multiple models was (admittedly among statisticians) a kludge to 

be used only until something better was developed.

2.1.2. Fisher Significance Analysis—R. A. Fisher never fully bought into the 

Neyman-Pearson framework, although generations of readers have debated about what 

exactly Fisher was arguing for, due to the difficulty of his writing style and opacity of his 

mathematics. Fisher rejected the scientific usefulness of the alternative hypothesis (likely in 

part because of the lurking problem of misspecification) and chose to focus on single-model 

decisions (resulting in lifelong battles with Neyman; see the biography by Box, 1978). Yea 

or nay, is model f1 an adequate representation of the data? As in the Neyman-Pearson 

framework, Fisher typically cast the null hypothesis H1 in the role of a skeptic’s hypothesis 

(the lady cannot tell whether the milk or the tea was poured first). It was scientifically 

sufficient in this approach for the researcher to develop evidence to dissuade the skeptic of 

the adequacy of the null model. The inferential ambitions here are necessarily more limited, 

in that no alternative model is enlisted to contribute more insights for understanding the 

phenomenon under study, such as an estimate of effect size. As well, Fisher’s null 

hypothesis approach preserves the Neyman-Pearson incapacitation when the null model is 

not contradicted by data, in that at best, one will only be able to say that the data are a 

plausible realization of observations that could be generated under H1.

Fisher’s principal tool for the inference was the P-value. For Fisher’s preferred statistical 

distribution models, the data enter into the maximum likelihood estimate of a parameter in 

the form of a statistic, such as the sample mean. The implication is that such a statistic 

carries all the inferential information about the parameter; knowing the statistic’s value is the 

same (for purposes of inference about the parameter) as knowing the values of all the 
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individual observations. Fisher coined the term “sufficient statistic” for such a quantity. The 

null model in Fisher significance analysis is formed by constraining a parameter to a pre-

specified value. In the tea testing example, the probability of correct identification is 

constrained to one half. Fisher’s P-value is the probability that data drawn from the model 

H1 yield a sufficient statistic as extreme or more extreme than the sufficient statistic 

calculated from the real data.

In absence of an alternative model, Fisher’s strict P-value accomplishes an inference similar 

to what is called a goodness of fit test (or model adequacy test) in contemporary practice, as 

the inference seeks to establish whether or not the data plausibly could have arisen from 

model f1. Accordingly, just about any statistic (besides a sufficient statistic) can be used to 

obtain a P-value, provided the distribution of the statistic can be derived or approximated 

under the model f1. Goodness of fit tests therefore tend to multiply, as witnessed by the 

plethora of tests available for the normal distribution. To sort out the qualities of different 

goodness of fit tests, one usually has to revert to a Neyman-Pearson two-model framework 

to establish for what types of alternative models a particular test is powerful.

2.1.3. Neyman-Pearson Testing With P-values—P-values are, of course, routinely 

used in Neyman-Pearson hypothesis testing, but the inference is different from that made 

with Fisher significance. A P-value in the context of the generalized LR test above (Equation 

31) is defined as the probability that, if the data generation process were to be repeated, the 

new value of the LR would exceed the one already observed, provided that the data were 

generated under H1. Hinkley (1987) interprets the P-value as the Type 1 error rate that an 

ensemble of hypothetical experiments would have if their critical level c was set to the 

observation of this experiment. In the generalized LR test, the approximate P-value would 

simply be the area to the right of the observed value of G2 under the chisquare pdf 

applicable for H1-generated data. For Fisher’s preferred statistical distributions (those with 

sufficient statistics, nowadays called exponential family distributions), the generalized LR 

statistic G2 algebraically reduces to a monotone function of one or more sufficient statistics 

for the parameter or parameters under constraint in the model f1. In the generalized 

likelihood ratio framework, the hypothesis test decision between H1 and H2 can be made by 

comparing the P-value to the fixed value of α, rejecting H1 as a plausible origin of the data if 

the P-value is ≤ α.

In both Neyman-Pearson hypothesis testing and Fisher significance analysis, the P-value 

provides no evidence for model H1. The P-value in the two-model framework has been 

thought of as an inverse measure of the “evidence” for H2, as the distribution of the P-value 

under data generated by H2 becomes more and more concentrated near zero as sample size 

becomes large or as model f2 becomes “farther” from f1. In the Fisher one-model framework 

an alternative model is unspecified. Consequently, a low P-value has been interpreted as 

“evidence” against H1. However, the P-value under data generated by H1 has a uniform 

distribution (because a continuous random variable transformed by its own cumulative 

distribution function has a uniform distribution) no matter what the sample size is or how far 

away the true data generating process is. Hence, as with NP tests, Fisher’s P-value has no 

evidential value toward f1, as any P-value is equally likely under H1.
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Ecologists use and discuss hypothesis testing in both the Fisher sense and the Neyman-

Pearson sense, sometimes referring to both enterprises as “null hypothesis testing.” The use 

of P-values, strongly argued for by some (Hurlburt and Lombardi 2009), does not in and of 

itself distinguish the two approaches. Rather, a specific alternative hypothesis, an estimable 

effect size, and (most controversially) a decision rule fixing a Type 1 error rate (i.e., 

comparing a P-value to α) identifies the analysis as more Neyman-Pearsonian than 

Fisherian. While Fisher himself originated the P ≤ 0.05 tradition for judging whether a 

deviation is significant [… “it is convenient to draw the line at about the level at which we 

can say: ‘Either there is something in the treatment, or a coincidence has occurred, such as 

does not occur more than once in twenty trials.’” Fisher (1926)], he was mostly casual about 

the cutoff and viewed P-values more as evidence against the null hypothesis in question. In 

ecology, null hypotheses in the Fisherian sense are seen, for instance, in analyses of species 

assembly patterns in ecological communities, such as in testing whether bird species groups 

on o shore islands could be modeled as randomly drawn from the mainland (Connor and 

Simberlo, 1979). By contrast, a field experiment aimed at demonstrating the existence of 

competition and estimating an effect size (Underwood, 1986) would take on a Neyman-

Pearsonian flavor.

2.1.4. Equivalence Testing and Severity—Attempts have been made to modify the 

Neyman-Pearson framework to accommodate the concept of evidence for H1. In some 

applied scientific fields, for example in pharmacokinetics and environmental science, the 

regulatory practice has created a burden of proof around models normally regarded as null 

hypothesis models: the new drug has an effect equal to the standard drug, the density of a 

native plant has been restored to equal its previous level (Anderson and Hauck, 1983; 

McDonald and Erickson, 1994; Dixon, 1998). Equivalence testing and non-inferiority testing 

(e.g., Wellek, 2010) are statistical methods designed to address the problem that “absence of 

a significant effect” is not the same as “an effect is significantly absent.” In practice, the 

equivalence testing methods reverse the role of null and alternative hypotheses by specifying 

a parameter region that constitutes an acceptably small departure from the parameter’s 

constrained value and then casting the region as the alternative hypothesis. Typically, two 

statistical hypothesis tests are required to conclude that the parameter is within the small 

region containing the constraint, such as two one-sided t-tests (to show that the parameter is 

bounded by each end of the region).

Another proposed solution for the evidence-for-the-null-hypothesis problem is the concept 

of severity (Mayo, 1996, 2018; Mayo and Spanos, 2006) and the closely related method of 

reverse testing (Parkhurst, 2001). Severity is a sort of P-value under a specified (or possibly 

estimated) version of the alternative hypothesis. It is the probability that a test statistic more 

extreme than the one observed would be obtained if the experiment were to be repeated, if 

the data were arising from model f2 (with the particular effect size specified). In the 

generalized likelihood ratio framework, the severity would be calculated as the area to the 

right of the observed value of G2 under the non-central chisquare pdf applicable for data 

generated under model f2, with the non-centrality parameter set at a specified value. Thus, 

severity is a kind of attained power for a particular effect size. Also, severity is mostly 

discussed in connection with one-sided hypotheses, so that its calculation under the two-
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sided generalized likelihood ratio statistic is at best an approximation. However, if the effect 

size is substantial, the probability contribution from the “other side” is low, and the 

approximation is likely to be fine. In general, the severity of the test is related to the size of 

the effect, so care needs to be taken in the interpretation of the test.

For a given value of the LR, if the effect size is high, the probability of obtaining stronger 

evidence against H1 is high, and the severity of the test against H1 is high. “A claim is 

severely tested to the extent that it has been subjected to and passes a test that probably 

would have found flaws, were they present” (Mayo, 2018).

For both equivalence testing and severity, we are given procedures in which consideration of 

evidence requires two statistics and analyses. In the case of equivalence testing, we have a 

statistical test for each side of the statistical model specified by H1, and for severity we have 

a statistic for H2 and a statistic for H1. Indeed, Thompson (2007), section 11.2, considers 

that for P-values to be used as evidence for one model over another, these must be used in 

pairs. There is evidence for H1 relative to H2 if the first P-value, say P1, is large and the 

second P-value, say P2, is small. The requirement for two analyses and two interpretations 

seems a disadvantageous burden for applications. More importantly, the equivalence testing 

and severity concepts do not yet accommodate the problems of multiple models or non-

nested models.

2.1.5. Royall’s Concept of Evidence—The LR statistic (Equation 7), as discussed by 

Hacking (1965) and Edwards (1972), can be regarded as a measure of evidence for H1 and 

against H2 (Edwards 1972 termed it support, but the word has a different technical meaning 

in probability and is better avoided here), or equivalently, an inverse measure of evidence for 

H2 and against H1. The evidence concept here is post-data in that the realized value of the 

LR itself, and not a probability calculated over hypothetical experiment repetitions, conveys 

the magnitude of the empirical scientific case for H1 or H2. However, restricting attention to 

just the LR itself leaves the prospect of committing an error unanalyzed; while scientists 

want to search for truth, they strongly want (for reasons partly sociological) to avoid being 

wrong.

Royall (1997, 2000) argued forcefully for greater use of evidence-based inferences in 

statistics, and to Hacking’s and Edwards’ frameworks he added formal procedures and 

consideration of errors. Royall’s basic setup uses completely specified models as in 

Neyman-Pearson, but the conclusion about which model is favored by the data is based on 

fixed thresholds for the LR value, not thresholds determined by any error rate. The idea is to 

conclude there is strong evidence in favor of model H1 when L1 is k times L2 and strong 

evidence in favor of H2 when L2 is k times L1. Royall’s conclusion structure in terms of the 

LR then has a trichotomy of outcomes:

L1/L2 ≥ k: Strong evidence forH1 .
1/k < L1/L2 < k: Weak or inconclusive evidence .
L1/L2 ≤ 1/k:  Strong evidence for H2 .

(33)

For k, values of 8, 20, or 32 are mentioned. The k value is chosen by the investigator, but 

unlike α in the Neyman-Pearson framework, k is not dependent on sample size. Viewed as 
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evidence, LR is a post-data measure. The inference does not make appeals to hypothetical 

repeated sampling.

Royall (1997, 2000) moreover defines pre-data error rates which are potentially useful in 

experimental design and serve as reassurance that the evidential approach will not lead 

investigators astray too often. Suppose the data were generated by model f1. It is possible 

that the LR could take a wayward value, leading to one of two possible errors in conclusion 

that could occur: (1) the LR could take a value corresponding to weak or inconclusive 

evidence (the error of weak evidence), or (2) the LR could take a value corresponding to 

strong evidence for H2 (the error of misleading evidence). Given the data are generated by 

model f1, the probabilities of the two possible errors are defined as follows:

P  weak evidence  ∣ H1 = P 1/k < L1/L2 < k ∣ H1 = W 1 (34)

P  misleading evidence  ∣ H1 = P L1/L2 ≤ 1/k ∣ H1 = M1 . (35)

Similarly, given the data are generated under H2,

P  weak evidence  ∣ H2 = P 1/k < L1/L2 < k ∣ H2 = W 2, (36)

P  misleading evidence  ∣ H2 = P L1/L2 ≥ k ∣ H2 = M2 . (37)

The error probabilities M1, M2, W1, and W2 can be approximated with the CLT results for 

L1/L2 (Equations 11–16). Proceeding as before with the Neyman-Pearson error rates, we 

find that

M1 ≈ Φ − n
σ1

1
n log(k) + K12 , (38)

M2 ≈ Φ − n
σ2

1
n log(k) + K21 , (39)

W 1 ≈ Φ n
σ1

1
n log(k) − K12

−Φ − n
σ1

1
n log(k) + K12 ,

(40)

W 2 ≈ Φ n
σ2

1
n log(k) − K21

−Φ − n
σ2

1
n log(k) + K21 .

(41)

The error probabilities M1, M2, W1, and W2 depend on the models being compared, but it is 

easy to show that all four probabilities, as approximated by Equations (38–41), converge to 
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zero as sample size n becomes large. For either hypothesis Hi (i = 1, 2), the total error 

probability given by Mi + Wi is additionally a monotone decreasing function of n, as for 

instance

M1 + W 1 = Φ n
σ1

1
n log(k) − K12 , (42)

in which the argument of the cdf Φ (■) is seen (by ordinary differentiation, assuming k > 1) 

to be monotone decreasing in n (the expression for M2 + W2 would have σ2 and K21 in place 

of σ1 and K12).

The probability V1 of strong evidence for model f1 (x), given the data are indeed generated 

by model f1 (x), becomes

V1 = 1 − M1 − W 1, (43)

with V2 = 1 − M2 − W2 defined in kind. Here V stands for veracity or veridicality (because 

of context, there should be no confusion with the variance operator). It follows from the 

monotone property of Mi + Wi that Vi is a monotone increasing function of n. Furthermore, 

it is straightforward to show that Vi > Mi, i = 1, 2.

Note that V1, M1, and W1 are not in general equal to their counterparts V2, M2, and W2, nor 

should we expect them to be; frequencies of errors will depend on the details of the model 

generating the data. One model distribution with, say, a heavy tail could produce errors at a 

greater rate than a light-tailed model. The asymmetry of errors suggests possibilities of pre-

data design to control errors. For instance, instead of LR cutoff points 1/k and k, one could 

find and use cutoff values k1 and k2 that render M1 and M2 nearly equal for a particular 

sample size and particular values of σ1, K12, σ2, and K21. Such design, however, will induce 

an asymmetry in the error rates (defined below) for misspecified models.

Interestingly, as a function of n, Mi (i = 1, 2) increases at first, rising to a maximum value 

before decreasing asymptotically to zero. The value ñ1 at which M1 is maximized is found 

by maximizing the argument of the normal cdf in Equation (38):

n1 = log(k)
K12

, (44)

with the corresponding maximum value of M1 being

M1 = Φ − 2 K12log(k)
σ1

. (45)

Expressions for ñ2 and M2 are similar and substitute K21 and σ2 in place of the H1 

quantities. That the Mi functions would increase with n initially is counterintuitive at first 

glance. With just a few observations, the variability of the likelihood ratio is not big enough 

to provide much chance of misleading evidence, although the chance of weak evidence is 

high. As the sample size increases, the chance of misleading evidence grows at first, 

replacing some of the chance of weak evidence, before decreasing. It is the overall 
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probability of either weak or misleading evidence, Wi + Mi, that decreases monotonically 

with sample size.

2.1.6. Illustration of the Concept of Evidence—We illustrate the error properties of 

evidence under correct model specification with an example. Suppose the values x1, x2, … , 

xn are zeros and ones that arose as iid observations from a Bernoulli distribution with P(X = 

1) = p. The pdf is f (x) = px(1 − p)1−x, where x is 0 or= 1. The sum of the observations of 

course has a binomial distribution. We wish to compare hypothesis H1: p = p1 with H2: p = 

p2, where p1 and p2 are specified values. The log-likelihood ratio is

log L1
L2

= ∑
i = 1

n
xi log p1

p2
+ n − ∑

i = 1

n
xi log 1 − p1

1 − p2
(46)

From Equations (4) and (9) we find that

K12 = p1log p1
p2

+ 1 − p1 log 1 − p1
1 − p2

, (47)

σ12 = p1 log p1
p2

2
+ 1 − p1 log 1 − p1

1 − p2

2
− K12

2 . (48)

In the top panel of Figure 3, simulated values of the probability of strong evidence for model 

H1, given by V1 = 1 − M1 − W1, are compared with the values as approximated with the 

CLT (Equations 38, 40). The simulated values create a jagged curve due to the discrete 

nature of the Bernoulli distribution but are well-characterized by the CLT approximation. 

The lower panel of Figure 3 portrays the probability of misleading evidence given by M1 as 

a function of n. The discrete serrations are even more pronounced in the simulated values of 

M1, and the CLT approximation (Equation 38) follows only the lower edges; the 

approximation could likely be improved (i.e., set toward the middle of the serrated highs and 

lows) with a continuity correction. The CLT nonetheless picks up the qualitative behavior of 

the functional form of M1.

2.1.7. P-values, Severity, and Evidence—The concept of evidence allows re-

interpretation of P-values in a clarifying manner. Suppose we denote by l1/l2 the realized 

(i.e., post-data) value of the LR, the lower case signaling the actual outcome rather than the 

random variable (pre-data) version of the LR denoted by L1/L2. The classical P-value is the 

probability, given the data arise from model H1, that a repeat of the experiment would yield 

a LR value more extreme than the value l1/l2 that was observed. In our CLT setup, we can 

write

P = P L1
L2

≤ l1
l2

∣ H1 ≈ Φ − n
σ1

1
n log l2

l1
+ K12 . (49)

Comparing P with the expression for M1 (Equation 38), we find that P is the probability of 

misleading evidence under model f1 if the experiment were repeated and the value of k were 

taken as l2/l1.
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If the value of l1/l2 is considered to be the evidence provided by the experiment, the value of 

P is a monotone function of l1/l2 and thereby might be considered to be an evidence measure 

on another scale. P however is seen to depend on other quantities as well: for a given value 

of l1/l2, P could be greater or less depending on the quantities n, K12, and σ1. Furthermore, 

K21 and σ2 are left out of the value of P, giving undue influence to model f1 in the 

determination of amount of evidence, a finger on the scale so to speak. The evidential 

framework therefore argues for the following distinction in the interpretation of P: the 

evidence is l1/l2, while P, like M1, is a probability of misleading evidence, except that P is 

defined post-data.

In fairness to both models, we can define two P-values based on the extremeness of evidence 

under model f1 and under model f2:

P1 = P L1
L2

≤ l1
l2

∣ H1 ≈ Φ − n
σ1

1
n log l2

l1
+ K12 , (50)

P2 = P L1
L2

≤ l2
l1

∣ H2 ≈ Φ − n
σ2

1
n log l2

l1
+ K21 . (51)

These are interpreted as the probabilities of misleading evidence under models 1 and 2, 

respectively if the value of k were taken to be l2/l1. The quantity 1 − P2 in this context is the 

severity as defined by Mayo (1996, 2018) and Mayo and Spanos (2006). Taper and Lele 

(2011) termed P1 or P2 as a local probability of misleading evidence (ML in their notation), 

as opposed to a global, pre-data probability of misleading evidence (MG in their notation; 

M1 and M2 here) characterizing the long-range reliability of the design of the data-

generating process.

2.2. Misspecified Models

George Box’s (Box, 1979) oft-quoted aphorism that “all models are wrong, but some are 

useful” becomes pressing in ecology, a science in which daily work and journal articles are 

filled with statistical and mathematical representations. Ecologists must assume in 

abundance that Type 3 errors are prevalent, even routine, in their work. Here we compare 

Neyman-Pearson hypothesis testing with evidential statistics to try to understand how 

analyses can go wrong, and how analyses can be made better, in ecological statistics. For a 

statistical method of choosing between f1 (x) or f2 (x), we now ask how well the method 

performs toward choosing the model closest to the true model g (x) when both candidate 

models are misspecified.

2.2.1. Neyman-Pearson Hypothesis Testing Under Misspecification—
Statisticians have long cautioned about the prospect that both models f1 and f2 in the 

Neyman-Pearson framework, broadly interpreted to include testing composite models with 

generalized likelihood ratio and other approaches, could be misspecified, and as a result that 

the advertised error rates (or by extension the coverage rates for confidence intervals) would 

become distorted in unknown ways (for instance, Chatfield, 1995). The approximate 

behavior of the LR under the CLT under misspecification (Equations 20–22) allows us to 

Dennis et al. Page 19

Front Ecol Evol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



view directly how the error probabilities α and β can be a ected in Neyman-Pearson testing 

when the models are misspecified.

The critical value c (Equation 28) is chosen as before, under the assumption that the 

observations are generated from model f1. We ask the following question: “Suppose the real 

Type 1 error is defined as picking model f2 when the model f1 is actually closest to the true 

pdf g (x) (that is, when ΔK > 0). What is the probability, let us say α′, of this Type 1 error, 

given that f1 is the better model?” We now have

L1
L2

≤ c n
σg

1
n log L1

L2
− ΔK ≤ n

σg
1
n log(c) − ΔK

= n
σg

K12 − ΔK − σ1
σg

zα
(52)

after substituting for c (Equation 28), and so the CLT (Equation 22) tells us that

α′ = P L1
L2

≤ c ∣ ΔK > 0 ≈ Φ n
σg

K12 − ΔK − σ1
σg

zα

≠ Φ −zα = α .
(53)

In words, the Type 1 error realized under model misspecification is generally not equal to 

the specified test size. Note that Equation (53) collapses to Equation (28), as desired, if f1 = 

g.

Whether the actual Type 1 error probability α′ is greater than, equal to, or less than the 

advertised level α depends on the various quantities arising from the configuration of f1 (x), 

f2 (x), and g (x) in model space. Because the standard normal cdf Φ (■) is a monotone 

increasing function, we have

α′ > α n
σg

K12 − ΔK − σ1
σg

zα > − zα . (54)

The inequality reduces to three cases, depending on whether σ1 − σg is positive, zero, or 

negative:

α′ > α
n K12 − ΔK

σ1 − σg
> zα,  if σ1 − σg > 0, (55)

K12 − ΔK > 0,  if σ1 − σg = 0, (56)

n K12 − ΔK
σ1 − σg

< zα,  if σ1 − σg < 0. (57)

The ratio (K12 − ΔK) / (σ1 − σg) compares the difference between what we assumed about 

the LR mean (K12) and what is the actual mean (ΔK) with the difference between what we 
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assumed about the LR variability (σ1) with what is the actual variability (σg). The left-hand 

inequalities for each case are reversed if α′ < α.

The persuasive strength of Neyman-Pearson testing always revolved around the error rate α 
being known and small, and the P-value, if used, being an accurate reflection of the 

probability of more extreme data under H1. When L1/L2 ≤ c in the Neyman-Pearson 

framework with correctly specified models, the reasoned observer is forced to abandon H1 

as untenable. However, in the presence of misspecification, the real error rate α′ is 

unknown, as is a real P-value for a generalized likelihood ratio test. Furthermore, α′ is seen 

in Equation (53) to be an increasing function of n if K12 > ΔK (remember that for a 

generalized LR test the Type 1 error is predicated on ΔK > 0), with 1 as an upper asymptote. 

If model f2 is very different from model f1 (K12 large) but is almost as close to truth as f1 

(ΔK small), then Type 1 errors will be rampant, more so with increasing sample size.

That greater sample size would make error more likely seems counterintuitive, but it can be 

understood from the CLT results for the average log-LR given by (1/n) log (L1/L2) 

(Equations 12, 21). If the observations arise from f1 (x) (correct specification), the average 

log-LR has a mean of K12 and its distribution becomes more and more concentrated around 

K12 as n becomes large. If however the observations arise from g (x) (misspecification), the 

average log-LR has a mean of ΔK and its distribution becomes more and more concentrated 

around ΔK as n becomes large. A Neyman-Pearson test based on a statistic that has a null 

hypothesis mean of K12 will become more and more certain to reject the null hypothesis 

when the true mean is ΔK. Thus, the Neyman-Pearson framework can be a highly unreliable 

approach for picking the best model in the presence of misspecification.

The error probability β′ is defined and approximated in similar fashion. If model f2 is closer 

to truth, we have ΔK < 0, and from Equations (28–30) we now have

L1
L2

> c n
σg

1
n log L1

L2
− ΔK > n

σg
K12 − ΔK − σ1

σg
zα . (58)

The CLT then gives

β′ = P L1
L2

> c ∣ ΔK < 0

≈ 1 − Φ n
σg

K12 − ΔK − σ1
σg

zα

≠ 1 − Φ n
σ2

K12 + K21 − σ1
σ2

zα = β .

(59)

As a function of n, β′ goes to zero as n becomes large, preserving that desirable property of 

β from Neyman-Pearson testing under correct specification. However, if the experiment or 

survey is being planned around the value of β, under misspecification the actual value as 

defined by β′ could be quite different. In particular, if β′ > β, we must have

n
σg

K12 − ΔK − σ1
σg

zα < n
σ2

K12 + K21 − σ1
σ2

zα . (60)

Dennis et al. Page 21

Front Ecol Evol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The inequality reduces to three cases depending on whether σ2 − σg is positive, zero, or 

negative:

β′ > β
n

σ1

σ2 K12 − ΔK − σg K12 + K21
σ2 − σg

< zα,  if σ2 − σg > 0, (61)

( − ΔK) − K21 < 0,  if σ2 − σg = 0, (62)

n
σ1

σ2 K12 − ΔK − σg K12 + K21
σ2 − σg

> zα,  if σ2 − σg < 0. (63)

The left inequalities for the three cases are reversed for β′ < β. The degree to which β′ 
departs from β is seen to depend on a tangled bank of quantities arising from the 

configuration of f1 (x), f2 (x), and g (x) in model space.

2.2.2. P-values, Equivalence Testing, and Severity Under Misspecification—
The problems with α and β, and with P-values as defined for the generalized LR setting in 

Equations (50) and (51), under misspecification highlight problems that might arise in 

significance testing, equivalence testing or severity analysis. With misspecification, the true 

P-value (P′ say) can differ greatly from the P-value (Equation 49) calculated under H1 and 

thereby could promote misleading conclusions (P′ is formed from Equation (49) by 

substituting σg for σ1 and −ΔK for K12). Equivalence testing, being retargeted hypothesis 

testing, will take on all the problems of hypothesis testing under misspecification. Severity is 

1 − P2 as defined by Equation (51), but with misspecification the true value of P2 is Equation 

(51) with σg substituted for σ2 and −ΔK substituted for K21. With misspecification, the true 

severity could differ greatly from the severity calculated under H2. One might reject H1 

falsely, or one might fail to reject H1 falsely, or one might fail to reject H1 and falsely deem 

it to be severely tested. Certainly, in equivalence testing and severity analysis, the problem of 

model misspecification is acknowledged as important (for instance, Mayo and Spanos, 2006; 

Spanos, 2010) and is addressed with model evaluation techniques, such as residual analysis 

and goodness of fit testing.

2.2.3. Evidence Under Misspecification—To study the properties of evidence 

statistics under model misspecification, we redefine the probabilities of weak evidence and 

misleading evidence in a manner similar to how the error probabilities were handled above 

in the Neyman-Pearson formulation. We take W1′ and M1′ to be the probabilities of weak 

and misleading evidence, given that model f1 is closer to truth, that is, given that Δ K > 0:

P( weak evidence  ∣ ΔK > 0) = P 1/k < L1/L2 < k ∣ ΔK > 0 = W 1′, (64)

P( misleading evidence  ∣ ΔK > 0) = P L1/L2 ≤ 1/k ∣ ΔK > 0 = M1′ . (65)

Similarly, given model f2 is closer to truth,
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P( weak evidence  ∣ ΔK < 0) = P 1/k < L1/L2 < k ∣ ΔK < 0 = W 1′, (66)

P( misleading evidence  ∣ ΔK < 0) = P L1/L2 ≥ k ∣ ΔK < 0 = M1′ . (67)

The error probabilities M1′, M2′, W1′, and W2′ can be approximated with the CLT results 

for L1/L2 (Equations 20–22) under misspecification. For example, to approximate M1′ we 

note that

L1
L2

≤ 1
k

n
σg

1
n log L1

L2
− ΔK ≤ n

σg
1
n log 1

k − ΔK

= − n
σg

1
n log(k) + ΔK .

(68)

We thus obtain

M1′ ≈ Φ − n
σg

1
n log(k) + ΔK . (69)

The other error probability under misspecification, with ΔK < 0, likewise becomes

M2′ ≈ Φ − n
σg

1
n log(k) + ΔK . (70)

The expression is identical to Equation (69) where ΔK > 0 and so we may write

Mi′ ≈ Φ − n
σg

1
n log(k) + ΔK , i = 1, 2. (71)

In words, for models with no unknown parameters under misspecification, the error 

probabilities M1′ and M2′ are identical. Using different LR cutoff points k1 and k2 to 

control error probabilities M1 and M2 under correct specification would break the symmetry 

of errors under misspecification. The consideration of evidential error probabilities in study 

design forces the investigator to focus on what types of errors and possible model 

misspecifications are most important to the study.

The symmetry of error rates is preserved for weak evidence, for which we obtain

W i′ ≈ Φ n
σg

1
n log(k) − ΔK

−Φ − n
σg

1
n log(k) + ΔK , i = 1, 2.

(72)

The formulae for α′ (Equation 53), β′ (Equation 59), and Mi′, W i′, i = 1, 2 (Equations 71, 72) 

allow the investigation of how these error rates change as a function of the sample size n. 

However, given that these formulae also involve ΔK, K12, and K21, multiple configurations 

should be explored in model space. Figure 4 illustrates how changing parameters can change 

KL divergences. For instance, the generating process and the approximating models could be 
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aligned in space (see Figure 4A) or not (Figure 4B). Other configurations are explored in 

Figures 4C,D. The error rates for each one of these configurations are shown in Figure 5.

Four properties of the error probabilities under misspecification are noteworthy. First, M1′, 

M2′, W1′, and W2′ all asymptotically approach zero as n becomes large provided ΔK ≠ 0 

(that is, provided one of the models is measurably better than the other), consistent with their 

behavior under correct specification. Second, for a given value of |ΔK|, that is, for a given 

difference in the qualities of models H1 and H2 in representing truth, M1′ is equal to M2′, 

and W1′ is equal to W2′. Thus, neither model has special standing. Third, M1′ and W1′ 
asymptotically approach M1 and W1 as model f1 becomes better at representing truth (i.e., as 

K (g, f1) → 0), and likewise M2′ and W2′ approach M2 and W2 as f2 becomes better. 

Fourth, if ΔK = 0, that is, if both models are equal in quality, then M1′ and M2′ each 

approach 1/2, and W1′ and W2′ each approach zero, as n becomes large. The above four 

properties are intuitive and sensible.

The total error probability under misspecification given by Mi′ + Wi′ (i = 1, 2) is identical 

for both models and remains a monotone decreasing function of n:

Mi′ + W i′ ≈ Φ n
σg

1
n log(k) − ΔK . (73)

The probability of strong evidence for model fi if fi is closer to g is given by Vi′ = 1–Mi′
−Wi′ thus remains a monotone increasing function of n with an asymptote of 1. As was the 

case for correctly specified models, Vi′ > Mi′. Also, Mi′ increases at first as a function of n, 

rising to a maximum value before decreasing asymptotically to zero. The value ni′ at which 

Mi′ is maximized is given by

ni′ = log(k)
ΔK , (74)

with the corresponding maximum value of Mi′ being

Mi′ = Φ − 2 ΔK ⋅ log(k)
σg

. (75)

The expressions for ni′ and Mi′ revert to their counterparts ñi and Mi when one of the models 

is correctly specified. If both models are of equal quality, that is, ΔK = 0, then the 

probabilities Mi′ can be considered as probabilities of evidence favoring (wrongly, as the 

models are a tossup in quality) one or the other models. When ΔK = 0, Mi′ as a function of n 
has no local maximum and asymptotically approaches 1/2 as sample size increases. The 

possibility that Mi′ might be as great as 1/2 seems distressing, but this only occurs when the 

two models become equally good (not necessarily identical) approximations of the 

generating process.

2.2.4. Illustration of Neyman-Pearson Testing and Evidence Under 
Misspecification—An extension of the Bernoulli example from Figure 3 serves to sharply 

contrast the error properties of NP testing and evidence analysis. We construct as before two 
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candidate Bernoulli models with respective success probabilities p1 and p2. Suppose 

however that the data actually arise from a Bernoulli distribution with success probability pg. 

From Equation (17), the value of ΔK becomes

ΔK = pglog pg
p2

+ 1 − pg log 1 − pg
1 − p2

− pglog pg
p1

− 1 − pg log 1 − pg
1 − p1

= log 1 − p1
1 − p2

+ pglog p1 1 − p2
1 − p1 p2

(76)

Note that ΔK is here a simple linear function of pg. In the Figure 3 example, p1 = 0.75 and 

p2 = 0.50. If we take pg = 0.65, we have a situation in which model 1 is slightly closer to the 

true model than model 2. As well, we readily calculate that K12 = 0.130812 and ΔK = 

0.02095081, so that K12 > ΔK, a situation in which we expect α′ to be an increasing 

function of n (as dictated by Equation 53).

The top panel of Figure 6 should give pause to all science. Shown is the probability (α′) of 

wrongly rejecting the null hypothesis of model 1 in favor of the alternative hypothesis of 

model 2 with Neyman-Pearson testing, under the example scenario of model 

misspecification in which model 1 is closer to truth. Both simulated values and the CLT 

approximation (Equation 53) are plotted as a function of sample size. The nominal value of 

α for setting the critical value (c) was taken to be 0.05. The curves rapidly approach an 

asymptote of 1 as sample size increases. With NP testing under model misspecification, 

picking the wrong model can become a near certainty.

In the bottom panel of Figure 6, the probability of misleading evidence for model 2 (M2′ ), 
that is, of picking the model farther from truth, increases at first but eventually decreases to 

zero (Figure 6, bottom panel shows simulated values as well as CLT approximation given by 

Equation 70). Under evidence analysis, the probability of wrongly picking the model farthest 

from truth converges to 0 as sample size increases.

The example illustrates directly the potential effect of misspecification on the results of the 

Neyman-Pearson Lemma. The lemma is of course limited in scope, and we should in all 

fairness note that a classical extension of the lemma to one-sided hypotheses seemingly 

ameliorates the problem in this particular example. Suppose the two models are expanded: 

model 1 is the Bernoulli distribution with p ≥ 0.75, with model 2 becoming the Bernoulli 

with p < .75. Then, the “Karlin-Rubin Theorem” (Karlin and Rubin, 1956) finds the LR test 

to be uniformly most powerful size α (or less) test of model 1 vs. model 2. Three key ideas 

enter the proof of the theorem. First, for any particular value p2 such that p2 < p1, the 

Neyman-Pearson Lemma gives the LR test as most powerful. Second, the cutoff point c for 

the Neyman-Pearson LR test does not depend on the value of p2. Third, the LR is a 

monotone function of a sufficient test statistic given by (x1+x2+…+xn)/n. The upshot is that 

α would remain constant in the expanded scenario, and β would decrease toward zero as 

advertised.
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However, the one-sided extension of our Bernoulli example expands the model space to 

eliminate the model misspecification problem. We regard the hypotheses H1: p ≥ 0.75 and 

H2: p < 0.75 to be a case of two non-overlapping models (Figures 1, 2, bottom) which may 

or may not be correctly specified. The Karlin-Rubin Theorem would govern if the models 

are correctly specified. Misspecification in this one-sided context would be exemplified, for 

instance, by data arising from some other distribution family besides the Bernoulli(p), such 

as an overdispersed family like a beta-Bernoulli (Johnson et al., 2005). Under 

misspecification, Karlin-Rubin lacks jurisdiction.

2.2.5. Evidence Functions—Lele (2004) took Royall’s (Royall, 1997) approach to 

using the LR for model comparison and generalized it into the concept of evidence 

functions. Evidence functions are developed mathematically from a set of desiderata that 

effective measures of evidence intuitively should satisfy (see Taper and Ponciano, 2016).

The basic insight is that the log-LR emerges as the function to use for model comparison 

when the discrepancy between models is measured by the KL divergence (Equation 3). The 

reason is that (1/n) log (L1/L2) is a natural estimate of ΔK, the difference of divergences of 
f1 (x) and f2 (x) from truth g (x). However, numerous other measures of divergence or 

distance between statistical distributions have been proposed (see Lindsay, 2004; Pardo, 

2005; Basu et al., 2011), the KL divergence merely being the most well-known. Each 

measure of divergence or distance would give rise to its own evidence function. Lele (2004) 

defines an evidence function for a given divergence measure as a data-based estimate of the 

difference of divergences of two approximating models from the underlying process that 

generated the data. The motivating idea is to use the data to estimate which of two models is 

“closer” in some sense to the data generating process. The evidence function concept 

requires a measure of divergence of a model f (x) from the true data generating process g (x) 

and a statistic, the evidence function, for estimating the difference of divergences from truth 

of two models f1 (x) and f2 (x). Important among the desiderata for evidence functions 

(Taper and Ponciano, 2016) is that the probabilities of strong evidence as defined under 
misspecification should asymptotically approach 1 as sample size increases (and so the error 

probabilities as embodied in M1′, M2′, W1′, and W2′ would approach zero). It is 

noteworthy that the prospect of model misspecification is baked into the very definition of 

an evidence function.

Lele (2004) further proved an optimality property of the LR as evidence function similar to 

the optimality of the LR in the Neyman-Pearson Lemma. Lele’s Lemma states that, out of 

all evidence functions, asymptotically, that is for large sample sizes, the probability of strong 

evidence is maximized by the LR. The result combines the Neyman-Pearson Lemma of 

hypothesis tests with Fisher’s lower bound for the variance of estimators (see Rice, 2007), 

extending both. Thus, the information in the data toward quantifying evidence is captured 

the most by the LR statistic or, equivalently, KL divergence. Other divergence measures, 

however, have desirable properties, such as robustness against outliers. Modified profile 

likelihood and conditional likelihood also lead to desirable evidence functions that can 

account for nuisance parameters, although these modifications to the original LR statistics 

still are unexplored in terms of their optimality.

Dennis et al. Page 26

Front Ecol Evol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. EVIDENCE FUNCTIONS FOR MODELS WITH UNKNOWN PARAMETERS

3.1. Information-Theoretic Model Selection Criteria

The latter part of the 20th Century saw some statistical developments that made inroads into 

the problems of models with unknown parameters (composite models), multiple models, 

model misspecification and non-nested models, among the more widely adapted of which 

were the model selection indexes based on information criteria. The work of Akaike 

(Akaike, 1973, 1974, Figure 7) revealed a novel way of formulating the model selection 

problem and ignited a new statistics research area. Akaike’s ideas found immediate use in 

the time series models of econometrics (Judge et al., 1985), were studied and disseminated 

for statistics in general by Sakamoto et al. (1986) and Bozdogan (1987) and popularized, 

especially in biology, by Burnham and Anderson (2002).

The information criteria are model selection indexes, the most widely used of which is the 

AIC (originally, “an information criterion,” Akaike, 1981; now universally “Akaike 

information criterion”). The AIC is minus two times the maximized log-likelihood for a 

model, the maximization taken across unknown parameters, with a penalty for the number of 

unknown parameters added in: AICi = − 2log Li + 2ri, where Li is the maximized likelihood 

for model Hi, and ri is the number of unknown parameters in model Hi that were estimated 

through the maximization of Li. We are now explicitly considering the prospect of more than 

two candidate models, although each evidential comparison will be for a pair of models.

Akaike’s fundamental intuition was that it would be desirable to select models with the 

smallest “distance” to the generating process. The distance measure he adopted is the KL 

divergence. The log-likelihood is an estimate of this distance (up to a constant that is 

identical for all candidate models). Unfortunately, when parameters are estimated, the 

maximized log-likelihood as an estimate of the KL divergence is biased low. The AIC is an 

approximate bias-corrected estimate of an expected value related to the distance to the 

generating process. The AIC is an index where goodness of fit as represented by maximized 

log-likelihood is penalized by the number of parameters estimated. Penalizing likelihood for 

parameters is a natural idea for attempting to balance goodness of fit with usefulness of a 

model for statistical prediction (which starts to break down when estimating superfluous 

parameters). To practitioners, AIC is attractive in that one calculates the index for every 

model under consideration and selects the model with the lowest AIC value, putting all 

models on a level playing field so to speak.

Akaike’s inferential concept underlying the AIC represented a breakthrough in statistical 

thinking. The idea is that in comparing model Hi with model Hj using an information 

criterion, both models are assumed to be misspecified to some degree. The actual data 

generating mechanism cannot be represented exactly by any statistical model or even family 

of statistical models. Rather, the modeling process seeks to build approximations useful for 

the purpose at hand, with the left-out details deemed negligible by scientific argument and 

empirical testing.

Although AIC is used widely, the exact statistical inference presently embodied by AIC is 

not widely understood by practitioners. What Akaike showed is that under certain conditions 
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−AICi/(2n) is (up to an unknown constant) an approximately unbiased estimator of 

Eg K g(x), fi x, θ i , where θi is a vector of unknown parameters and θ i is its ML estimate, 

the parameter penalty in AIC being the approximate bias correction. The expectation has 

two variability components, (1) the distribution of fi X, θ i  given the ML estimate value, and 

(2) the distribution of the ML estimate, both expectations with respect to truth g (x) (In 

Akaike’s formulation, truth was a model f(■) with some high-dimensional unknown 

parameter, while all the candidate models are also in the same form f(■) except with the 

parameter vector constrained to a lower-dimensional subset of parameter space. Truth in 

Akaike’s approach is as unattainable as g (x)). The double expectation is termed the “mean 

expected log-likelihood.” The difference AICi − AICj then is a point estimate of which 

model is closer on average to truth, in the sense estimating (−2n) times the difference of 

mean expected log-likelihoods. The approximate bias correction incorporated in AIC is 

technically correct only if fi x, θ i  is rather “close” to g (x); Takeuchi (1976) subsequently 

provided a mathematically improved (but statistically more difficult to estimate) 

approximation. “Information theoretic” indexes for model selection have proliferated since, 

with different indexes refined to perform well for different sub-purposes (Claeskens and 

Hjort, 2008).

In practice, the AIC-type inference represents a relative comparison of two models, not 

necessarily nested or even in the same model family, requiring only the same data and the 

same response variable to implement. The inference is post-data, in that there are (as yet) no 

appeals to hypothetical repeated sampling and error rates. All candidate models, or rather, all 

pairs of models, can be inspected simultaneously simply by obtaining the AIC value for each 

model. But, as is the case with all point estimates, without some knowledge of sampling 

variability and error rates we lack assurance that the comparisons are informative.

3.2. Differences of Model Selection Indexes as Evidence Functions

We propose that information-based model selection indexes can be considered as 

generalizations of LR evidence to models with unknown parameters, for model families 

obeying the usual regularity conditions for ML estimation. The evidence function concept 

clarifies and makes accessible the nature of the statistical inference involved in model 

selection. Like LR evidence, one would use information indexes to select from a pair of 

models, say f1 (x, θ1) and f2 (x, θ2), where θ1 and θ2 are vectors of unknown parameters. 

Like LR evidence, the selection is a post-data inference. Like LR evidence, the prospect of 

model misspecification is an important component of the inference. And critically, like LR 

evidence, the error probabilities Wi and Mi (i = 1, 2) can be defined for the information 

indexes and can in principal be calculated (or simulated) as discussed below. Additionally, as 

discussed below, many of the existing information indexes retain the desirable error 

properties of evidence functions. Oddly, the AIC itself does not.

3.3. Nested Models, Correctly Specified

As noted earlier, the generalized LR framework of two nested models under correct model 

specification is a workhorse of scientific practice and a prominent part of applied statistics 

texts. It is worthwhile then in studying evidence functions to start with the generalized LR 
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framework, in that the model selection indexes are intended in part to replace the 

hierarchical sequences of generalized LR hypothesis testing (stepwise regression, multiple 

comparisons, etc.) for finding the best submodel within a large model family.

The model relationships diagrammed in the top portion of Figure 1 depict the two cases. In 

case 1 (top left), a parameter vector in model f1 identifies the true model giving rise to the 

data. Technically the parameter vector is contained in model f2 as well, but the scientific 

interest focuses on whether the additional parameters in the unconstrained parameter space 

of f2 can be usefully ignored. Case 2 (top right) portrays the situation in which the true 

parameter vector is in the unconstrained parameter space of model f2; model f1 is too simple 

to be useful.

Suppose we decide to use ΔAIC12 = AIC1 − AIC2 as an evidence function. For convenience, 

we have defined this AIC-based evidence function to vary in the same direction as G2 

(Equation 31) in NP hypothesis testing, so that large values of ΔAIC correspond to large 

evidence for f2 (opposite to the direction for the ordinary LR-evidence function given by 

Equation 33). For instance, the early rule of thumb in the AIC literature was to favor model 

f1 when ΔAIC12 ≤ −2 and to favor model f2 when ΔAIC12 ≥ 2. Note that

ΔAIC12 = G2 − 2v, (77)

where ν = r2 − r1, the difference of the numbers of unknown parameters in the two models. 

The behavior of our candidate evidence function ΔAIC12 can be studied using the Wilks/

Wald results for the asymptotic distribution of G2. Under case 1, ΔAIC12 has 

(approximately) a chisquare(ν) distribution that has been location-shifted to begin at −2ν 
instead of at 0 (top of Figure 8). Under case 2, ΔAIC12 has (approximately) a non-central 

chisquare(ν, λ) distribution with the same −2ν location shift (bottom of Figure 8). The areas 

under the shifted chisquare pdf in the intervals (−2, + 2) and (+2, ∞) are respectively the 

generalized error probabilities W1 and M1 (Figure 8, top). Likewise, the areas under the 

shifted non-central pdf in the intervals (−2ν,−2) and (−2,+2) are respectively the generalized 

error probabilities M2 and W2 (Figure 8, bottom).

As sample size increases, the error probabilities W1 and M1 for the AIC-based evidence 

function do not go to zero but rather remain positive (Figure 8, top). The value of n appears 

nowhere in the location-shifted chisquare pdf for ΔAIC12, and so the error probabilities W1 

and M1 remain static. Thus, for the AIC, the probabilities of weak and misleading evidence 

given model f1 generates the data both behave like the Type 1 error probability α in 

Neyman-Pearson testing. The simulation results of Aho et al. (2014) showing a Type-1-like 

behavior of the AIC with increasing sample size for particular statistical models are thereby 

explained (see also Taper and Ponciano, 2016).

As sample size increases, the error probabilities W2 and M2 for the AIC-based evidence 

function do go to zero (Figure 8, bottom). The non-centrality parameter λ in the location-

shifted non-central chisquare pdf for ΔAIC12 is proportional to the value of n, and the mean 

(ν + λ) of the non-central distribution increases faster than the standard deviation ([2 (ν + 

2λ)]1/2), driving the error probabilities W2 and M2 to zero. Thus, for the AIC, the 
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probabilities of weak and misleading evidence given model f2 generates the data both 

behave like the Type 2 error probability β in Neyman-Pearson testing.

Thus, within the generalized likelihood ratio framework, the AIC appears to bring no 

particular improvement in the sense of evidence to ordinary Neyman-Pearson testing using 

G2. Indeed, at least in the Neyman-Pearson approach, the value of α is fixed by the 

investigator and is therefore known if the models are correctly specified. The error 

probabilities attending the use of AIC however are unknown, as they generally are in 

evidence functions, although they in principle can be estimated with simulation. AIC-based 

model selection does not have the error properties of an evidence function within the 

classical milieu of nested statistical models.

Other information-theoretic indexes used for model selection, however, do have performance 

characteristics of evidence functions. Consider the Schwarz information criterion (SIC; also 

known as Bayesian information criterion or BIC) given by

SICi = − 2log Li + rilog(n) .

The index originally had a Bayesian-based derivation (Schwarz, 1978), but its frequentist 

error properties when employed as an evidence function become apparent with the methods 

used above for the AIC. As with the AIC, the evidence function version of the SIC would 

use the difference of SIC values:

ΔSIC12 = SIC1 − SIC2 = G2 − vlog(n) .

As with the AIC also, the asymptotic distributions of the SIC evidence function under model 

f1 and model f2 are respectively, location-shifted chisquare and non-central chisquare 

distributions. For the SIC though, the location of the lower bound of the two distributions at 

−νlog (n) decreases as sample size increases (Figure 9, top). If the data arise from model f1, 

the chisquare distribution is pulled to the left, and the areas under the pdf corresponding to 

and eventually decrease asymptotically to zero. If the data arise from model f2, although the 

non-central chisquare distribution is also pulled to the left at a rate proportional to log (n), 

the mean is pulled to the right at a rate proportional to n, and the coefficient of variation 

around the mean goes to zero at a rate 1/ n. The areas under the pdf corresponding to W2 

and M2 eventually decrease asymptotically to zero (Figure 9, bottom). Thus, unlike the AIC, 

for nested, correctly specified models the SIC possesses a key quality of an evidence 

function: all the probabilities of weak and misleading evidence eventually decrease 

asymptotically to zero.

3.4. Misspecified Models

To be fair, AIC as well as evidence functions were forged in the fiery world of misspecified 

models. Does the AIC difference gain the properties of an evidence function when neither f1 

nor f2 give rise to the data?
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If the models are nested or overlapping, the answer is no. To understand this, we must appeal 

to modern statistical advances in the theory of maximum likelihood estimation and 

generalized likelihood ratio testing when models are misspecified. The relevant and general 

theory can be found in White (1982), Nishii (1988), Vuong (1989), and references therein.

Suppose a model with pdf f (x, θ) is fitted using ML estimation to observations that came 

from a distribution with pdf g (x). Under a variety of regularity conditions on the pdfs, the 

ML estimate has an asymptotic multivariate normal distribution centered on a value θ*, 

where θ* is the value of θ that minimizes K (g (x), f (x, θ)) (White, 1982). The multivariate 

normal distribution furthermore concentrates around θ* as n becomes large, reflecting the 

fact that the ML estimate under misspecification is a statistically consistent estimate of 

(converges in probability to) θ*.

Now, any two models f1 (x, θ1) and f2 (x, θ2) being compared will be in one of nested, 

overlapping, or non-overlapping configurations (see Figure 2). Under misspecification in 

each case, the truth g (x) is out there, somewhere. We now ask of an evidence function: 

“Which model contains a parameter set that brings it closer to truth? Is K (g (x), f1 (x, θ1*)) 

smaller than K (g (x), f2 (x, θ2*)) or vice versa?”

The question needs modification in the nested and overlapping cases. If f1 is nested within 

f2, K (g (x), f1 (x, θ1*)) cannot be smaller than K (g (x), f2 (x, θ2*)). The modified question 

becomes “Is f1 (x, θ1*) as close to truth as f2 (x, θ2*)?” The question in the nested case is a 

natural extension of the question asked under correct specification. In the nested case, K (g 
(x), f1 (x, θ1*)) being the same as K (g (x), f2 (x, θ2*)) signifies that f1 (x, θ1*) and f2 (x, 

θ2*) are the same model. If f1 overlaps f2, the model closest to truth could be the 

overlapping region, K (g (x), f1 (x, θ1*)) would be the same as K (g (x), f2 (x, θ2*)), and f1 

(x, θ1*) and f2 (x, θ2*) would be the same model. However, in the overlapping case, K (g 
(x), f1 (x, θ1*)) being the same as K (g (x), f2 (x, θ2*)) does not necessarily signify that f1 

(x, θ1*) and f2 (x, θ2*) are the same model. The question in the overlapping case becomes 

“Is the best model in the overlapping region?”

Vuong (1989) derived the asymptotic distributions of G2 under the nested, overlapping, and 

non-overlapping cases in the presence of misspecification. His main results relevant here are 

the following, presented in our notation:

A. When f1 (x, θ1*) and f2 (x, θ2*) are the same model (either f1 is nested within f2, 

or f1 overlaps f2, and the best model is in the nested or overlapping region), then 

the asymptotic distribution of G2 is a “weighted sum of chisquares” in the form 

2ajZj
2, in which the Zj are independent, standard normal random variables (each 

Zj
2 being chisquare with 1 df) and the aj values are eigenvalues of a square 

matrix (r1 × r2 rows) of expected values of various derivatives of the two log-pdfs 

with respect to the parameters (generalization of the Fisher information matrix). 

The point is, the asymptotic distribution of G2 does not depend on n. ΔAIC12 and 

ΔSIC12, along with evidence functions formed from other information indexes, 

then have location-shifted versions of the weighted sum of chisquares 

distribution. The error probabilities M1′ and W1′ defined for AIC become static 

Dennis et al. Page 31

Front Ecol Evol. Author manuscript; available in PMC 2021 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and do not decrease to zero as n becomes large. The error probabilities M1′ and 

W1′ defined for SIC do decrease to zero, because the location quantity decreases 

as becomes large, pulling the weighted sum of chisquares pdf to the left (similar 

to the chisquare distribution in Figure 9). This scenario is simulated and then 

plotted in Figure 10A.

B. Suppose the models are nested, overlapping, or non-overlapping, but a non-

overlapping part of f1 or f2 is closer to truth, that is, when f1 (x, θ1*) and f2 (x, 

θ2*) are not the same model as in Figure 2. Then G2 has an asymptotic normal 

distribution with mean 2nΔK* and variance 4nσg
2*, where

ΔK* = K g(x), f2 x, θ2* − K g(x), f1 x, θ1* , (78)

and

σg2 * = V g log f1 X, θ1*
f2 X, θ2* . (79)

The result parallels the CLT results (Equations 20–22) for completely specified 

models, with the added condition that each candidate model is evaluated at its 

“best” set of parameters. In this situation, the mean of G2 increases or decreases 

in proportion to n, while the standard deviation increases only in proportion to 

n. All of the error probabilities, M1′, M2′, W1′ and W2′ defined for ΔAIC12 as 

well as for ΔSIC12 do decrease to zero as n becomes large. This scenario is 

simulated and plotted in Figure 10B.

We must point out that a generalized Neyman-Pearson test (via simulation/bootstrap) of two 

non-overlapping models with misspecification can suffer the same fate as the completely 

specified models in the Neyman-Pearson Lemma. The large sample distribution of G2, 

assuming model 1 generates the data, would have a mean involving K12 (evaluated at true 

parameter value in model 1 and best parameter value in model 2); the cutoff point c and 

other test characteristics would be obtained from this distribution. Under misspecification, 

the true asymptotic distribution of G2 has a mean involving ΔK* (Equation 78). As was the 

case for the two models in the Neyman-Pearson Lemma (Figure 6), discrepancy between 

K12 and ΔK* can cause the generalized Neyman-Pearson test to pick the wrong model with 

Type 1 error probability approaching 1. The Karlin-Rubin Theorem and the forceful 

language of uniformly most powerful tests does not rescue Neyman-Pearson testing from 

derailment when inadequate models are deployed.

Error probabilities going to zero can alternatively be derived as a consequence of the (weak 

or strong) “consistency” of the model selection index. Consistency here means that the index 

asymptotically picks the model closest to truth as sample size becomes large. Nishii (1988) 

studied information indexes in the form −2log Li − cnri, where the parameter penalty 

coefficient cn is a possible function of n. The parameter penalty determines whether an 

information-theoretic index behaves like an evidence function. If cn grows at a rate < n but > 

log log (n) then an information-theoretic index will asymptotically pick the model closest to 

truth Nishii (1988). The difference of such indexes will therefore behave as an evidence 
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function, as the probabilities of picking any of the contending models go to zero. If, 

however, the penalty term is constant or asymptotically constant, and the model closest to 

truth is in a parameter region common to two or more models, then the probabilities of weak 

and misleading evidence are or become constant. The problematic error properties of 

Neyman-Pearson testing from the standpoint of evidence are thereby preserved in such 

model selection indexes. For instance, the AIC-corrected index is (Hurvich and Tsai, 1989).

AICci = AICi + 2ri ri + 1 / n − ri − 1,

in which the correction term is designed to improve the behavior of the index under small 

sample sizes. However, the correction term asymptotically approaches zero as n becomes 

large, and so AICc reverts to AIC, with all its asymptotic error properties, for large samples.

Thus, for either correctly specified or misspecified models in which the best model is in a 

region of model space that does not overlap any other model under consideration, ΔAIC12 

indeed behaves like an evidence function. However, many model selection problems, such as 

in multiple regression, involve collections of models in which model pairs can be nested or 

overlapping as well as non-overlapping. ΔAIC12 will behave more like Neyman-Pearson 

hypothesis testing for models within overlapping regions and therefore will not possess 

evidence function properties. differences of information indexes that adjust G2 with a 

constant or asymptotically constant location shift, such as the TIC and AICc will share the 

Neyman-Pearson properties of ΔAIC12 and cannot be regarded as evidence functions. 

differences of those information indexes, such as SIC that produce a location shift that 

decreases to −∞ as n increases (provided that rate is within the Nishii (1988) bounds) will 

have the error properties of evidence functions.

4. DISCUSSION

4.1. Comparing Approaches to Statistical Inference

We have shown that key inferential characteristics for Fisher significance analysis, Neyman-

Pearson hypothesis testing, and evidential comparison differ substantially. Evidence has 

inferential qualities that match or surpass Fisher significance and Neyman-Pearson tests (see 

Table 1):

• Equal status for both models. In Fisher significance analysis, there is only one 

model under consideration. Neyman-Pearson testing compares two models but 

one of them is accorded special status as the null model and endowed with a 

fixed error rate (α). Evidence analysis compares two models without giving 

either model special status.

• Evidence for the null. Neither Fisher significance analysis nor the conventional 

form of Neyman-Pearson testing provides evidence for the null hypothesis. Extra 

analyses (equivalence testing, severity) have been proposed to quantify evidence 

for the null hypothesis, but such approaches reverse model roles and give special 

status to the alternative hypothesis. In evidence analysis, one statistic called an 
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evidence function quantifies the evidence for one model and against each of the 

models in the model set.

• Accommodates multiple models. Under Fisher significance analysis, the P-

values for different models are based on different sufficient statistics and are not 

strictly comparable. One could compare multiple P-values using a shared 

goodness of fit statistic (not necessarily sufficient), such as the Kolmogorov-

Smirnoff. However, pure goodness of fit favors overparameterization 

(overfitting). Neyman-Pearson testing has been jury-rigged in various forms 

(stepwise regression, multiple comparisons) to sort through multiple models, but 

the results at best have only had fair statistical properties. With evidence 

analysis, all pairs of candidate models can be compared, and thereby all 

candidate models can be ranked.

• All error rates go to zero. Neyman-Pearson testing fixes the Type 1 error 

probability to be constant, thereby structuring the error rate to be constant 

regardless of sample size. Fisher significance analysis acquires such a constant 

error rate when the decision to reject a model is based on a threshold for the P-

value. Under evidence analysis all error rates approach zero asymptotically with 

increasing sample size.

• Total error monotonically decreasing. In evidence analysis, the total error under 

each model (1 minus the probability of strong evidence under the model) 

decreases monotonically and asymptotically to zero with increasing sample size. 

Because of the special status of the null hypothesis in Neyman-Pearson testing, 

the total error rate is the Type 1 error rate which remains constant. Fisher 

significance analysis dons the Type 1 error properties of Neyman-Pearson testing 

if the decision to reject the model is based on a P-value threshold.

• Non-nested models. Fisher significance analysis deals with one model at a time, 

so the idea of comparing two non-nested models is not applicable. The standard 

extensions (such as generalized likelihood ratio) of the original Neyman-Pearson 

framework to models with unknown parameters assume that one of the models is 

nested within the other. Evidence analysis compares two models regardless of 

their nested or non-nested configuration.

• Evidence and errors rates distinguished. The interpretation of a P-value has long 

been a source of confusion among scientists. Because the P-value is calculated 

under the properties of just one model, it is not satisfactory as a measure of 

evidence for one model over another (Royall, 1986, 1997). Evidence analysis 

regards error rates and evidence as separate concepts. The evidence approach 

clarifies P-values as error rates defined post-data (see section 2.1.7).

• Robustness to model misspecification. Evidence functions are defined in terms of 

the misspecification of two candidate models. Evidence functions are statistical 

estimates of which of two models is closer to the true data-generating process. 

The error rates of evidence analysis, defined robustly as the probabilities of 

wrong conclusions about which model is closer, go to zero as sample size 
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increases, even under model misspecification. Under model misspecification, 

Neyman-Pearson testing can fail spectacularly: the Type 1 error rate, defined as 

the probability of wrongly picking the alternative hypothesis model when the 

null hypothesis model is just as close to truth, can approach 1 asymptotically as 

sample size increases. Fisher significance analysis, being in essence a test of 

whether a given model is misspecified, can be considered to be defined under a 

presumption of misspecification.

• Promotes exploration of new models. Perhaps the most important property of 

evidence analysis in scientific endeavors is that it explicitly encourages discovery 

of new models that are closer to truth than models already analyzed. An evidence 

analysis leaves “room at the top,” or the possibility that a new approach could 

yield a much better model for the data. In the scientific world, the daily t-tests 

and regressions under Neyman-Pearson testing produces an inertia, a perfunctory 

routine in statistical analysis often characterized by working scientists as 

“cookbook” in nature. Barnard’s (1949) observation had Bayesian statistics as its 

target, but his excruciating words apply to any kind of modeling: “To speak of 

the probability of a hypothesis implies the possibility of an exhaustive 

enumeration of all possible hypotheses, which implies a degree of rigidity 

foreign to the true scientific spirit. We should always admit the possibility that 

our experimental results may be best accounted for by a hypothesis which never 

entered our own heads.”

4.2. Prediction-Efficient vs. Consistent Criteria

4.2.1. Prediction-Efficiency—AIC and its asymptotic relatives like AICc are built 

around statistical prediction. The difference of mean expected log-likelihoods is different 

from what we have defined above as ΔK*. The mean expected log-likelihood has a second, 

predictive layer of expectation in its definition, the idea being to identify the model that 

could best predict a new observation from g (x), taking into account the uncertainty in the 

estimation of unknown parameters. For this reason these criteria have been termed the 

efficient, asymptotically efficient, or prediction-efficient criteria (Shibata, 1980; Hurvich and 

Tsai, 1990).

The tendency for AIC related criteria to over fit is a natural consequence of their design goal 

of prediction mean square error (MSE) minimization. When parameters are estimated, the 

increase in prediction MSE due to adding a spurious covariate is generally less than the 

reduction in prediction MSE caused by including a relevant covariate.

The tendency of stepwise regression to overfit using Neyman-Pearson testing has long been 

noted (Wilkinson and Dallal, 1981; Hurvich and Tsai, 1990; Harrell, 2001; Rao et al., 2001; 

Blanchet et al., 2008; Mundry and Nunn, 2008). The fixed Type 1 error rate as a criterion for 

entry (or exit) of a variable is at the heart of the overfitting problem, and methods for 

altering the Type 1 error rate based on the number of model parameters have been proposed 

(e.g., Foster and George, 1994). Such interventions without sample size in the recipe do not 

produce error rates that universally converge to zero as sample size becomes large.
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Model selection with AIC or AICc improves somewhat on the Neyman-Pearson overfitting 

problem in that the misleading error probabilities both go to zero as sample size increases 

when two non-overlapping models are being compared. However, overlapping models, in 

which AIC and AICc are prone to overfit, are typically a substantial subset of the models in 

contention in multiple regression. The AIC and AICc indexes will tend to include spurious 

variables too often and thus represent only a partial improvement over stepwise regression.

4.2.2. Identifying Causal Structure—Scientific prediction, however, can be broader 

than pure statistical prediction. The scientist often desires to predict the outcome of a system 

manipulation: what will happen if harvest rate is increased, or if habitat extent is halved? 

Modeling such manipulation might translate as a structural change in a statistical model of 

the system. The predictive quality of the model then lies more in getting mechanisms in the 

model as right as possible.

The consistent criteria will asymptotically select the generating process if it is in the model 

set. If the generating process is not in the model set, the consistent criteria will 

asymptotically select the model in the set that under best possible parameterization is closest 

(in the KL sense) to the generating process. The estimation of ΔK* by the difference of SIC 

values represents a quest for a different kind of prediction that might come from a structural 

understanding of the major forces influencing the system under study. The tendency of the 

prediction efficient criteria to include spurious covariates promotes a mis-understanding of 

the generating mechanism (Taper, 2004).

Certainly, the finite-sample properties of SIC and other consistent indexes require substantial 

further study, but the property that more data should be able to distinguish among candidate 

models with fewer errors seems an important property to preserve.

The scientific allure of information-theoretic indexes resided in the idea that all models were 

evaluated on a level playing field. One would calculate the index for each model and select 

the model with the best index, a procedure which promised considerably more clarity over 

hierarchical sequences of Neyman-Pearson tests, such as stepwise regression.

4.3. Uncertainty in Evidence

AIC and its descendants were originally built around concepts of statistical point estimation. 

The statistical inference represented by AIC is that of an approximately unbiased point 

estimate of the mean expected log-likelihood. The statistical concepts of errors and 

variability in information indexes have by contrast not often been emphasized. Partly as a 

result, model selection with information indexes has been somewhat of a black box for 

investigators, as achieving a good understanding of the inferences represented by model 

selection analyses is a mathematical challenge (see Taper and Ponciano, 2016).

4.3.1. Evaluating Model Adequacy—We have illustrated that, unlike the error rates in 

Neyman-Pearson hypothesis testing, all of the error rates of evidence analysis converge to 

zero as sample size increases. However, the errors we have discussed deal only with the 

determination which of two models is closer to truth; the error rates do not shed light on 
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whether either model is close enough to truth to be scientifically or managerially valuable. 

This question is the realm of model adequacy analysis.

Whether the statistical inference is a hypothesis test, equivalence analysis, severity analysis, 

or evidence analysis, whether for a pair of models or multiple pairs of models, a follow-up 

evaluation of model adequacy looms ever more important as a crucial step (Mayo and 

Spanos, 2004; Spanos, 2010). Lindsay (2004) and Markatou and Sofikitou (in review) 

discuss ideas about the statistical evaluation of model adequacy. Mac Nally et al. (2018) give 

an impassioned editorial plea for routine model adequacy evaluation in scientific model 

selection. Ponciano and Taper (2019) show how to directly incorporate model adequacy 

evaluation into information criterion based model selection.

Considering the likely prevalence of model misspecification in ecological statistics, analysts 

will need to consider how a candidate model could be misspecified as well as the effects of 

such misspecification on the intended uses of the model. Practically, the analyst can 

introduce models formulated in diverse fashions and let the model identification process 

itself reduce model misspecification. Further experimental or observational tests of model 

predictions (e.g., Costantino et al., 2005) and their associated error rates are necessary to 

map the conditions under which a given model is reliable.

The error properties of evidence analysis are more difficult to calculate than classical NP 

tests because model misspecification is involved. But once calculated, the rates are likely to 

be more accurate than classical tests that pretend misspecification does not exist.

4.3.2. Approaches to Estimating Post-data Error Rates—Error rates are different 

pre and post-data. W, M and α are pre-data error rates calculated under a model that is 

assumed to be true. The P-value is a post-data error rate. The pre-data error rates are useful 

for experimental design, but should be viewed with suspicion as a post-data inference tool 

because as we have shown these error rates are only accurate if the generating process is the 

assumed model. Little work has been performed on evidential error rates under the realistic 

assumption of model misspecification (but see Royall and Tsou, 2003). This area is an 

important field for future work.

Non-parametric bootstrapping shows great promise for calculating evidential error rates, for 

data structures that allow bootstrapping. In work in preparation, we (Taper, Lele, Ponciano, 

and Dennis) show that bootstrapping greatly aids in the interpretation of evidential results. 

Figures 4, 5 indicate that evidential error rates depend on the structure of the model space. 

Taper and Ponciano (2016) and Ponciano and Taper (2019) show that given data and a set of 

models, estimation of the model space structure including the location of the unknown 

generating process is feasible. This gives a direct measure of model adequacy. Future 

extensions of this work may allow for the direct estimation of realistic error rates as well.

4.4. How Should One Use Evidential Statistics in Practice?

A basic recommendation is to stop using NP tests for inference and be cautious about using 

the AIC family of information criteria for model selection. These are known as the 

“efficient” or “MSE minimizing” criteria and include the AIC, the AICc, the TIC, many 
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forms of ICOMP and the EIC. These criteria are recognized by a complexity penalty whose 

expectation is asymptotically constant. Asymptotically equivalent to the AIC is the use of 

leave-one-out cross-validation (Stone, 1977); cross-validation will have model selection 

properties similar to AIC but has the advantage that it can be calculated in the absence of a 

likelihood function.

There is no reason that the multiple comparisons inference from traditional ANOVAs cannot 

be made using information criteria (e.g., Kemp et al., 2004; Jerde et al., 2019).

Classical methods will work well for state description and less well for process 

identification. Unbiased scientific inferences of process are better made using consistent 

information criteria (see Jerde et al., 2019; Lorah and Womack, 2019 for examples). 

Analysts have a convenient spectrum of choices for many standard modeling situations in a 

suite of consistent information criteria: The HQIC (also known as the HQC, Hannan and 

Quinn, 1979), the HIC (aka BIC* and HBIC, Haughton, 1988), the SIC (aka BIC and SBC, 

Schwarz, 1978), and the CAIC (Bozdogan, 1987). The analyst can opt for a criterion that 

matches her goals. The sample size multiplier in the HQIC grows at the minimal rate to 

generate a consistent form. As a consequence the HQIC will behave very much like the AIC, 

selecting models with low MSE of prediction by capturing real but small effects at the cost 

of including spurious covariates. The HIC tends to balance underfitting and overfitting 

errors. The SIC and CAIC both favor compact models, with all the included components 

well-supported, and both tend to underfit. The CAIC has the strongest complexity penalty 

and thus makes the most underfitting errors and the fewest overfitting errors.

Besides being influenced by inferential goals, the choice of evidence function should depend 

on the modeling framework. Information criteria had their beginnings as a tool for variable 

selection in linear regression with independent observations. In such situations, as derived by 

Akaike, the number of parameters is a good first order bias correction to the observed 

likelihood. But, statistics is a world of special cases. The dizzying diversity of information 

criteria in the literature produces the desire to optimize the bias correction under different 

modeling frameworks. For instance, in mixed models, even the meaning of the number of 

parameters or the number of observations becomes ambiguous due to the dependence 

structure of mixed models. Information criteria have been developed using estimates of the 

effective number of parameters (e.g., Vaida and Blanchard, 2005; You et al., 2016). 

Similarly, information criteria have been constructed using estimates of the effective number 

of observations (e.g., Jones, 2011; Berger et al., 2014).

If the generating process is in the model set, or in flat model spaces, such as those in linear 

regression, the ΔAIC is an unbiased estimate of 2nΔK regardless of how near or far each of 

the approximating models is to the generating process (Burnham and Anderson, 2002; Choi 

and Kiefer, 2011). In curved model spaces (as in Efron, 1975), ΔAIC is not unbiased, and 

the estimation is only good if both approximating models are close to the generating process. 

The Takeuchi’s information criterion, the TIC (Takeuchi, 1976; Shibata, 1989), is nearly 

unbiased even for curved models at great distances from the generating process (Burnham 

and Anderson, 2002; Choi and Kiefer, 2011). Optimal multiplicative coefficients of bias 

adjustment for the AIC and TIC have been given (Ogasawara, 2016). Also, Ogasawara 
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showed that when the penalty term in TIC (a random variable, not a constant) is negatively 

correlated with the main term, the higher-order asymptotic variance of the TIC becomes 

smaller than that common to the AIC and BIC. Unfortunately, the complexity penalty for the 

TIC must be estimated from data and cannot be specified a priori, as with the other criteria 

mentioned. The uncertainty in penalty estimation makes the use of the TIC impractical 

unless sample size is large. A second problem with the TIC is that like the AIC, it is not 

consistent, but any efficient information criterion can be made consistent either by 

multiplying the complexity penalty by a consistent multiplier (Nishii, 1988) or by averaging 

the penalty with a consistent penalty (Lorah and Womack, 2019). Lorah and Womack (2019) 

also report on testing a list of various model selection criteria. In a nutshell, model selection 

criteria made into evidence functions as a whole give reasonable and responsible results, 

with none of the criteria being universally best. Which evidence function is better depends 

on the nature of the problem at hand, that is, the characteristics of the model space being 

investigated. The technical difficulties of criterion selection aside, the most important aspect 

of applying evidential statistics is approaching problems evidentially.

5. CONCLUSION

Evidence is not so much a new statistical method for model selection as it is a new way of 

thinking about the inference involved with existing model selection methods. The evidential 

way of thinking has two main components: (1) A post-data trichotomy of outcomes (strong 

evidence for model fi, weak or inconclusive evidence, strong evidence for model fj). (2) A 

framework of pre-data error probabilities, which are assured to go to zero as sample size 

increases. The evidential approach invites exploration of the error probabilities, usually via 

simulation, to aid in study design, the selection of evidence thresholds, the effects of 

different types of misspecification, and the interpretation of study results.

We have proposed here a different way of thinking about statistical analyses and model 

selection, based on the concept of evidence functions. Evidence is an intuitive way to decide 

between two models that avoids the famously upside-down logic that accompanies Neyman-

Pearson testing. Evidential thinking has helped us reveal the shortcomings of Fisher 

significance analysis and Neyman-Pearson testing. The errors that can arise in evidence 

analysis are straightforward to explain, and the frequentist properties of such errors as 

functions of sample size and effect size are easy to understand and highly compelling in a 

scientific chain of argument. The information indexes, when differenced, represent a 

collection of potential evidence functions that extend the evidence ideas to models with 

unknown parameters. The desirable error properties are preserved in the presence of model 

misspecification, when the model choice is generalized to be an inference about which 

model is closer to the stochastic process that generated the data. The error properties of AIC 

and AICc are similar to those of Neyman-Pearson testing when the candidate models are 

nested or overlapping and so the AIC-type indexes are not satisfactory evidence functions in 

those common circumstances. The indexes like SIC in which the parameter penalty is an 

increasing function of sample size retain the frequentist error properties of evidence 

functions for all model pairs.
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Evidence works well for science in part because its explicit conditioning on the model set 

invites thinking about new models. Evidence has inferential qualities that match or surpass 

Fisher significance analysis and Neyman-Pearson tests. Evidence represents a compelling 

scientific warrant for formulating statistical analyses as model selection problems.
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BOX 1 |

The Central Limit Theorem (CLT)

Suppose that X1, X2, … , Xn are independent and identically distributed random variables 

with common finite mean denoted μ = E(Xi), and finite variance denoted σ2 = E[(Xi − 

μ)2]. Let

Sn = X1 + X2 + … + Xn

be the sum of the Xis. Let P
Sn − nμ

nσ2 ≤ s = Fn s  be the cumulative distribution function 

(CDF) for Sn standardized with its mean nμ and its variance nσ2, equivalently written as 

n Xn − μ /σ, where Xn = 1
nSn. Then as n → ∞, Fn (s) converges to the cdf of a normal 

distribution with mean of 0 and variance of 1. We say that 
Sn − nμ

nσ2  converges in 

distribution to a random variable with a normal (0, 1) distribution, and we write

Sn − nμ

nσ2 = n
σ Xn − μ d  normal (0, 1) .

From the CLT one can obtain normally distributed approximations for various quantities 

of interest:

Sn ˙  normal  nμ, nσ2 ,

Xn = 1
nSn ˙  normal  μ, σ2

n .

Here, ⩪ means “approximately distributed as.” A general proof of the CLT as presented 

in advanced mathematical statistics texts typically uses the theory of characteristic 

functions (Rao, 1973).
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FIGURE 1 |. 
Model topologies when models are correctly specified. Regions represent parameter spaces. 

Star represents the true parameter value corresponding to the model that generated the data. 

Top: a nested configuration would occur, for example, in the case of two regression models 

if the first model had predictor variables R1 and R2 while the second had predictor variables 

R1, R2, and R3. Middle: an overlapping configuration would occur if the first model had 

predictor variables R1 and R2 while the second had predictor variables R2 and R3. Three 

locations of truth are possible: truth in model 1, truth in model 2, and truth in both models 1 

and 2. Bottom: an example of a non-overlapping configuration is when the first model has 

predictor variables R1 and R2 while the second model has predictor variables R3 and R4.
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FIGURE 2 |. 
Model topologies when models are misspecified. Regions represent parameter spaces. Star 

represents the true model that generated the data. Exes represent the point in the parameter 

space covered by the model set closest to the true generating process.
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FIGURE 3 |. 
Evidence error probabilities for comparing two Bernoulli(p) distributions, with p1 = 0.75 

and p2 = 0.50. (A) Simulated values (jagged curve) and values approximated under the 

Central Limit Theorem of the probability of strong evidence for model H1, V1 = 1 − M1 − 

W1. (B) Simulated values (jagged curve) and approximated values for the probability of 

misleading evidence M1. Note that the scale of the bottom graph is one fifth of that of the 

top graph.
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FIGURE 4 |. 
Four model configurations involving a bivariate generating process g(x1, x2) (in black), and 

two approximating models f1(x1, x2) (in blue) and f2(x1, x2) (in red). In all cases the 

approximating models are bivariate normal distributions whereas the generating process is a 

bivariate Laplace distribution. These model configurations are useful to explore changes in α
′ (Equation 53), β′ (Equation 59) and Mi′, W i′, i = 1, 2 (Equations 71, 72) as a function of 

sample size, as plotted in Figure 6. (A) g(x1, x2) is a bivariate Laplace distribution centered 

at 0 with high variance. All three models have means aligned along the 1: 1 line and marked 

with a black, blue, and red filled circle, respectively. Model f1(x1, x2) is closest to the 

generating process. (B) Model f1(x1, x2) is still the model closest to the generating process, 

at exactly the same distance as in (A) but misaligned from the 1: 1 line. (C) Here all three 

models are again aligned, but the generating process g(x1, x2) is an asymmetric bivariate 

Laplace that has a large mode at 0, 0 and smaller mode around the mean, marked with a 

black dot. In this case, the generating model is closer to model f2(x1, x2) (in red). (D) Same 

as in (C), except model f2(x1, x2) (in blue) is now misaligned, but still the closest model to 

the generating process.
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FIGURE 5 |. 
Changes in α′ (Equation 53), β′ (Equation 59) and Mi′, W i′, i = 1, 2 (Equations 71, 72) as a 

function of sample size. The plot in (A–D) were computed under each of the geometries 

plotted in Figures 4A–D. (A) α′, M1′ , and W 1′  for the models geometry in Figure 4A, where 

all models are aligned and model f1 is closest to the generating process. (B) Same as in (A) 
but model f1 is misaligned. C β′, M2′ , and W 2′  for model geometry in Figure 4C, where 

model f2 is closer to the generating process and all models are aligned. D: β′, M2′ , and W 2′

for model geometry in Figure 4D, where model f2 is closer to the generating process but 

model f2 is misaligned.
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FIGURE 6 |. 
Evidence error probabilities for comparing two Bernoulli(p) distributions, with p1 = 0.75 

and p2 = 0.50, when the true data-generating model is Bernoulli with p = 0.65. (A) 
Simulated values (jagged curve) and values approximated under the Central Limit Theorem 

of the probability (α′) of rejecting model H1 when it is closer than H2 to the true model. (B) 
Simulated values (jagged curve) and approximated values for the probability (M1′ ) of 

misleading evidence for model H2 when model H1 is closer to the true data-generating 

process.
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FIGURE 7 |. 
Moment of discovery: page from Professor H. Akaike’s research notebook, written while he 

was commuting on the train in March 1971. Photocopy kindly provided by the Institute for 

Statistical Mathematics, Tachikawa, Japan.
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FIGURE 8 |. 
(A) Location-shifted chisquare distribution of the difference of AIC values, when data arise 

from model 1 nested within model 2. In this plot, the degrees of freedom for this distribution 

are equal to ν = 3, and the shift to the left of 0 is equal 2ν = 6 (see Equation 77 and text 

below it). This chisquare distribution is invariant to sample size. As a result, the areas under 

this distribution in the intervals (−2, +2) and (+2, ∞) corresponding to W1 and M1, 

respectively, are invariant to sample size. (B) Non-central chisquare distribution of the 

difference of AIC values, when data arise from model 2 (but not model 1), plotted for 

different sample sizes. This distribution is also location-shifted but its non-centrality 

parameter λ, which determines both its mean and variance, is proportional to sample size. In 

this illustration, λ = n(1/4). As a result, the areas under the intervals (−2ν, −2) and (−2, +2) 

corresponding to the error probabilities M2 and W2 decrease as the sample size increases.
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FIGURE 9 |. 
(A) Chisquare distribution of the difference of SIC values, when data arise from model 1 

nested within model 2. The chisquare distribution is shifted left as sample size increases. (B) 
Non-central chisquare distribution of the difference of SIC values, when data arise from 

model 2 (but not model 1), plotted for increasing sample sizes.
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FIGURE 10 |. 
Simulation of Vuong (1989) results for misspecified models. (A) When f1 (x, θ1*) and f2 (x, 

θ2*) are the same model (either f1 is nested within f2, or f1 overlaps f2, and the best model is 

in the nested or overlapping region), then the asymptotic distribution of G2 is a “weighted 

sum of chisquares” that does not depend on n. The error probabilities M1 and W1 do not 

decrease to 0 for ΔAIC12 but do decrease for ΔSIC12. (B) When the models are nested, 

overlapping, or non-overlapping, but a non-overlapping part of f1 or f2 is closer to truth, then 

G2 has an asymptotic normal distribution with mean and variance that depend on the sample 

size, and the error probabilities M1 and W1 decrease to 0 for both ΔAIC12 and ΔSIC12. 

Details of these two settings in (A,B) are found in a fully commented R code.
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TABLE 1 |

A comparison of inferential characteristics between Fisherian significance testing (P-values sensu stricto), 

Neyman-Pearson hypothesis tests (including P-values for likelihood ratios) and evidential statistics.

Inferential characteristic P-value NP-test Evidence

Equal status for null and alternatives NA No Yes

Allows evidence for Null No No Yes

Accommodates multiple models No Awkward Yes

All error rates go to zero as sample size increases No No Yes

Total error rate always decreases with increasing sample size No No Yes

Can be used with non-nested models NA Not Standard Yes

Evidence and error rates distinguished No No Yes

Robust to model misspecification Yes No Yes

Promotes exploration of new models Yes No Yes
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