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Abstract

Background: Infections caused by multidrug-resistant gram-negative bacilli (MDR

GNB), in particular extended-spectrum β-lactamase-producing (ESBL-E) and

carbapenem-resistant Enterobacterales (CRE), pose a major threat in solid organ

transplantation (SOT). Outcome prediction and therapy are challenging due to the

scarcity of randomized clinical trials (RCTs) or well-designed observational studies

focused on this population.

Methods:Narrative review with a focus on the contributions provided by the ongoing

multinational INCREMENT-SOT consortium (ClinicalTrials identifier NCT02852902)

in the fields of epidemiology and clinical management.

Results: The Spanish Society of Transplantation (SET), theGroup for Study of Infection

in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbi-

ology (GESITRA-SEIMC), and the SpanishNetwork for Research in InfectiousDiseases

(REIPI) recently published their recommendations for the management of MDR GNB
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infections in SOT recipients.We revisit the SET/GESITRA-SEIMC/REIPI document tak-

ing into consideration new evidence that emerged on the molecular epidemiology,

prognostic stratification, and treatment of post-transplant ESBL-E and CRE infections.

Results derived from the INCREMENT-SOT consortium may support the therapeu-

tic approach to post-transplant bloodstream infection (BSI). The initiatives devoted

to sparing the use of carbapenems in low-risk ESBL-E BSI or to repurposing existing

non-β-lactam antibiotics for CRE in both non-transplant and transplant patients are

reviewed, as well as the eventual positioning in the specific SOT setting of recently

approved antibiotics.

Conclusion:Due to the clinical complexity and relative rarity of ESBL-E and CRE infec-

tions in SOT recipients, multinational cooperative efforts such as the INCREMENT-

SOT Project should be encouraged. In addition, RCTs focused on post-transplant

serious infection remain urgently needed.

KEYWORDS

antibiotics, carbapenem-resistant Enterobacterales, extended-spectrum β-lactamase-producing
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1 INTRODUCTION

Multidrug-resistant gram-negative bacilli (MDR GNB), including

extended-spectrum β-lactamase-producing (ESBL-E) and carbapenem-

resistant Enterobacterales (CRE), are prevalent infectious agents

following solid organ transplantation (SOT).1–3 Infections by MDR

GNB are associated with increased risk for recurrent infection, allo-

graft dysfunction, and mortality as compared to infections due to

non-resistant pathogens.3,4 In addition, these infections are frequently

treatedwith old or novel antimicrobials forwhich scarce data on safety

and efficacy are available.3 Such circumstances highlight the need to

improve the clinical management of ESBL-E and CRE infections among

SOT recipients.

In 2018, the Spanish Society of Transplantation (SET), the Group for

Study of Infection in Transplantation of the Spanish Society of Infec-

tious Diseases and Clinical Microbiology (GESITRA-SEIMC), and the

SpanishNetwork for Research in Infectious Diseases (REIPI) published

their recommendations on themanagement ofMDRGNB infections in

SOT recipients.3 This consensus document covers a wide range of rel-

evant aspects of clinical management, from microbiological diagnosis

to therapeutic challenges.3 Since the release of the SET/GESITRA-

SEIMC/REIPI document, additional works have reviewedmanagement

principles of MDR GNB in the setting of SOT,5,6 including the recently

published guidelines from the Infectious Diseases Community of Prac-

tice of the American Society of Transplantation.5 In addition, the

European Society of Clinical Microbiology and Infectious Diseases

(ESCMID) has also issued its guidelines, although not restricted to

transplant patients.7

The INCREMENT-SOT Project is a large international retrospec-

tive cohort that includes nearly 800 consecutive SOT recipients

diagnosed with bloodstream infection (BSI) due to ESBL-E and CRE

between 2004 and 2016 (ClinicalTrials identifier NCT02852902).8–11

The INCREMENT-SOT consortium is currently integrated by 38 ter-

tiary centers in 16 countries (Figure 1), and this cohort study has

been recently extended to cover the period 2016–2021. In addition,

14 centers in seven countries from the consortium (seven hospitals

in Spain, two in Italy, one in Belgium, one in the UK, one in Turkey,

one in Malta, and one in the USA) have participated in the gen-

eration of an international microbial collection of 174 ESBL-E and

CRE isolates, representing 20% of the post-transplant BSI episodes

recorded in the clinical database. The study is mainly aimed at pro-

viding high-level observational data on the molecular epidemiology

and therapeutic management of ESBL-E and CRE BSI in the SOT

setting. Other aspects, such as pre-transplant screening, prophylaxis,

or decolonization strategies, are outside the intended scope of the

INCREMENT-SOT Project.

In the present work, we review the main contributions made by

the INCREMENT-SOT consortium and summarize additional recent

evidence concerning epidemiological trends, risk factors, use of

predictive scores to guide clinical management, and new thera-

peutic alternatives among SOT recipients with ESBL-E and CRE

infection. To this end, we conducted a set of computer-based

PubMed/MEDLINE (National Library of Medicine, Bethesda, MD)

searches using the MeSH terms “SOT” (and specific transplant

types) AND “extended-spectrum β-lactamase” or “carbapenemase-

producing” (or “carbapenem-resistant”) AND “Enterobacteriaceae” (or

“Enterobacterales”) AND “infection” or “bacteremia” (and specific syn-

dromes) to identify literature pertaining to the topic published until

January 2022. In addition, separate searches were performed for

each of the antibiotic agents reviewed. Only clinical studies covering
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F IGURE 1 The INCREMENT-solid organ transplantation (SOT) Project is a multinational consortium including 38 SOT centers. This Project
generated a large international retrospective cohort of 788 consecutive recipients with bloodstream infection (BSI) due to extended-spectrum
β-lactamase-producing (ESBL-E) and carbapenem-resistant Enterobacterales (CRE) for the period 2004 to 2016 (ClinicalTrials identifier
NCT02852902)

molecular epidemiology and therapeutic aspects were considered. The

bibliographies of the selected articles were scrutinized for additional

relevant references.

2 ESBL-E INFECTIONS AFTER SOT:
EPIDEMIOLOGY, MOLECULAR
CHARACTERIZATION, AND CLINICAL FEATURES

The rates of ESBL-E infection in SOT recipients show geographical

variations and have increased in recent years. Approximately 40% of

infectious episodes caused by Enterobacterales after SOT are due to

ESBL-E, primarily Escherichia coli and Klebsiella pneumoniae.12–16 A sys-

tematic review involving 1089 recipients reported that asmuch as 18%

of them were colonized with ESBL-E (95% confidence interval [CI]:

5%–36%). The prevalence of ESBL-E colonization for pre-transplant

candidates was estimated at 7% (95%CI: 5%–9%). Stratifying by trans-

plant type, the ESBL-E colonization rate was 17% for liver transplant

(LT) recipients and24%forkidney transplant (KT) recipients.According

to the continent, no significant differences in theprevalencewere iden-

tified between studies performed in Europe and North America (15%

and 31.4%, respectively).4

Molecular characterization of the INCREMENT-SOT strain collec-

tion corresponding to 174 recipientswith BSI classified 75%of isolates

as ESBL-E and 25% as CRE (10% of which harbored both ESBL and car-

bapenemase genes). E. coli (53.0%) and K. pneumoniae (40.9%) were the

most frequent ESBL-E, whereas K. pneumoniae (83.7%) accounted for

most CRE isolates. blaCTX-M β-lactamase geneswere themost frequent
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among ESBL producers, while blaKPC and blaOXA-48 were the more

prevalent carbapenemase genes.17 Our data are consistent with those

obtained from a prospective cohort study conducted between 2014

and 2018 in seven Spanish centers (ENTHERE study), which reported

78.0% of ESBL-E and 21% of CRE among 531 isolates from LT and

KT recipients.16 In this study, E. coli producing cefotaximase-Munich

(CTX-M)-1 group and K. pneumoniae harboring blaOXA-48 (either alone

or in combinationwith blaCTX-M-1) were themost prevalent Enterobac-

terales causing colonization.16 A further study analyzing the etiology

of post-transplant BSI in a Spanish center detected an increasing rate

of ESBL-producing strains, mainlyK. pneumoniae, from7% in the period

2007–2008 to 34% in 2015–2016.2 A nationwide study carried out

in Switzerland reported that the proportion of ESBL-E infections in

SOT recipients rose in recent years to 11.4%, although the propor-

tion of ESBL produces among E. coli isolates remained stable over

time (in contrast to the increasing trend observed for non-E. coli

strains).18

Risk factors for developing post-transplant ESBL-E infection include

previous antibiotic exposure, pre-transplant colonization, perioper-

ative prophylaxis, prolonged tracheal intubation, long-term hospi-

talization, urinary tract obstruction and instrumentation, kidney-

pancreas transplantation, post-transplant renal replacement ther-

apy (RRT), and recurrent urinary tract infection (UTI), as reviewed

elsewhere.3,19 A recent multicenter case-control study in the USA

comprising 988 ESBL-E BSI episodes identified various risk fac-

tors of relevance, including the isolation of ESBL-E in a prior cul-

ture, a corticosteroid-containing immunosuppression regimen, acute

rejection treated with corticosteroids, and previous exposure to

third-generation cephalosporins, echinocandins and trimethoprim-

sulfamethoxazole.20

The incidence of ESBL-E infection among LT recipients has been

reported to reach 5.5%–13%.13,21,22 The median time from transplan-

tation to infection was reported to be 15 days (range: 3–105 days) in

a unicentric retrospective cohort in France that included 710 patients

between 2001 and 2010.22 Since the urinary tract is one of the most

frequent sources of infection, KT recipients are exposed to a higher

incidence. According to a meta-analysis, the proportion of KT recipi-

ents that developed a UTI due to ESBL-E was 2% in North America, 5%

in Europe, 17% in South America, and 33% in Asia. These patients face

an almost three-times increased risk of recurrence compared to those

infected with non-ESBL-producing strains.23 In a 3-year, monocentric

retrospective study in France on 659 KT recipients, the median time

from transplantation to the occurrence of UTI due to ESBL-E was 48

days (range: 17–253).24

The most common sources of post-transplant BSI by ESBL-E are

intravascular catheters and complicated UTI (cUTI).25 In a large single-

center retrospective study in Brazil, BSI was more frequent among

LT recipients (7% of 238 patients) than KT recipients (3% of 759

patients; p-value = .005).26 In this study, the 30-day mortality rate

among 54 recipients that developed ESBL-E BSI was 26%. However,

the proportion of cases of bacteremia secondary to cUTI was sig-

nificantly higher among KT than LT recipients (60% vs. 11%, p-value

= .008), and the 30-day mortality rate in these patients was 6.7%

only.26 In the INCREMENT-SOTcohort,we reported a30-day all-cause

mortality rate of 2.9% in the subcohort of 306 KT recipients with non-

severemonomicrobial ESBL-EBSI secondary toUTI between2004 and

2016.11 Consistentwith thismore favorable outcome, in a second anal-

ysis comparing the efficacy of meropenem versus ertapenem in KT

recipients with non-severe bacteremic urinary tract infections due to

ESBL-E, only one meropenem-treated patient died within the first 30

days fromBSI onset.9

Improved outcome prediction in a complex clinical setting such

as MDR GNB infection after SOT is critical in order to inform the

decision-making process. Wang et al. recently developed a clinical pre-

diction tool for post-transplant ESBL-EBSI on thebasis of amulticenter

cohort with 897 patients. They generated a predictive model con-

sisting of 10 variables, which fell into four clinical categories: prior

colonization or infection with Enterobacterales, recent antimicrobial

exposure, the severity of underlying illness, and type of immuno-

suppression. The authors recommend that any patient scoring 2 or

more points should be deemed at high risk of ESBL-E BSI and con-

sidered for empiric carbapenem therapy while awaiting the results of

susceptibility testing.27

The multinational INCREMENT project preceded INCREMENT-

SOT and was focused on infections due to ESBL-E and CRE in the

general population (ClinicalTrials.gov Identifier NCT01764490). As

part of this study, an easy-to-collect predictive scoring model for 30-

day all-cause mortality in ESBL-E BSI was developed, which has been

proven to accurately stratify patients with this condition.28 Key risk

factors included in this score were: age >50 years (3 points), infection

due to Klebsiella spp. rather than other species (2 points), a source of

infection other than urinary tract infections (3 points), and ultimately

or rapidly fatal disease according to the McCabe classification (i.e.,

death is expected to occur in <5 years as a consequence of the under-

lying condition, 4 points), a condition of acute severity as measured by

a Pitt score >3 (3 points), presentation of BSI with severe sepsis or

septic shock (4 points), and inappropriateness of early targeted ther-

apy (2 points). Mortality rates for INCREMENT-ESBL scores <11 and

>11pointswere near 5%and40%, respectively.28 The predictive accu-

racy of this score for risk stratification in SOT recipients remains to be

investigated.

3 CRE INFECTIONS IN THE SOT POPULATION

The emergence of CRE constitutes a major threat for SOT recipi-

ents since infections caused by these difficult-to-treat pathogens lead

to significant morbidity and mortality.3 Mortality rates reported for

CRE infections following SOT vary from 20% to 80% and are sig-

nificantly higher in the case of BSI as compared to non-bacteremic

syndromes.29–33 Post-transplant CRE infections tend to occur within

the first two months after the procedure, and the infection site fre-

quently correlates with the transplant type.3,34 Thus, LT recipients

commonly develop the surgical site (SSI) and intraabdominal infection

(IAI), which are often associated with BSI. On the other hand, UTI

and SSI are more common among KT recipients, with a high relapse
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rate. Finally, lung transplant (LuT) recipients are typically at risk of

developing pneumonia.3,5

The molecular epidemiology of CRE in the SOT setting has been

characterized in several recent studies. As part of the INCREMENT-

SOT project, we performed a comparative genomic analysis of 35

carbapenemase-producing K. pneumoniae (CP-KP) strains from BSI

episodes in nine centers (five in Spain, one in Italy, one in Belgium, one

in Malta, and one in the USA). blaKPC was detected in 68.6% of iso-

lates, in association with sequence type 512 (ST512) (40%, Italy and

Spain), ST258 (20%, Italy and USA), ST307 (6%, Italy), and ST101 (3%,

Italy). In addition, blaOXA-48 was detected in 28.6% of CP-KP isolates,

in association with ST15 (11%, Spain and Belgium), ST11 (9%, Spain),

ST392 (3%, Spain), ST405 (3%, Spain), and ST496 (3%, Malta). Finally,

blaVIM was found in a single K. pneumoniae isolate of ST1 (3%, Spain).17

Clancy et al. described a series of 17 recipients with CRE BSI from

a single US center, with 16 of them infected with the sequence-type

258 (ST258) harboring the blaKPC-2 gene and the remaining patient

with a KPC-3-producing ST37 strain.35 In a prospective cohort study

in another US center, Macesic et al. performed a comparative genomic

analysis of 95 CRE isolates (57 K. pneumoniae, 20 E. coli, 15 Enterobac-

ter cloacae complex, two Citrobacter freundii, and one K. oxytoca) from

LT recipients with either colonization (80 isolates) or infection (15 iso-

lates). They identified 26 CRE clades, with K. pneumoniae ST258 being

the most common (39%), followed by E. cloacae complex ST252 (8%),

K. pneumoniae ST17 (7%), and K. pneumoniae ST307 (5%). The blaKPC
gene was detected in 66% of isolates.36 An Italian study performing

genotypic characterization of 81Klebsiella pneumoniae carbapenemase

(KPC)-producing K. pneumoniae isolates from LT or LuT donors and

recipients showed that 83% of them belonged to clonal group 258, in

particular to ST258 (20%) and ST512 (60%). The remaining isolates

(17%) fell within seven other STs, the most common being ST101.37

Another recent study thatdescribes themolecular epidemiologyofCP-

KP in 80 recipients from Brazil identified 88.8% and 11.2% of isolates

harboring blaKPC−2 and blaNDM-1 respectively. The most common STs

were ST11/KPC-2 (63%), ST437/KPC-2 (10%) and ST258/KPC-2 (4%)

within clonal complex 11/258 (CC11/258), ST16/KPC-2 (10%) within

CC17, and ST15/NDM-1 (9%).38

The incidence of CRE infection in SOT populations varies consider-

ably across centers and transplant types. Reported rates range from

1% to 16% for LT recipients, 1%–11% for KT recipients, and 1%–8%

for LuT recipients.5,39 Higher rates of CRE colonization and infection

have been reported in studies focused on LT recipients and conducted

in centers with established endemicity.37,39–41 A multinational retro-

spective cohort (CRECOOLT study) included 840 LT recipients from15

centers in Italy, Brazil, the USA, Spain, and Israel that had been found

to be colonized by CRE either before or at transplantation (24.2%)

or within the first 180 days after the procedure (75.8%). The overall

infection rate was 29.7%, which occurred at a median of 19 post-

transplant days (range: 9–42).42 A prospective monocentric cohort

study on 386 LT recipients in Brazil also revealed high incidence rates

of CRE colonization (17.6% and 30.8% before or following transplan-

tation), although the proportion of patients that developed infection

was lower (15.7% after a median of 11 days).41 In a prospective cohort

of 553 LT recipients from an Italian center, 7% were pre-transplant

carriers and 19% acquired colonization after the procedure, with a sig-

nificant increaseover the studyperiod (2010–2017).39 Theoverall rate

of CRE infection was 10.3%, within a median of 31 days (range: 11–

115) from transplantation. This figure rose to 34.7% among patients

with previous CRE colonization.39 Finally, in a large cohort of KT recip-

ients colonized with CRE, the median time from transplantation to the

first CRE-positive culture was 42 days, and nearly 38% of patients

developed an infection, mostly UTI.43

Risk factors for CRE infection in LT recipients include CRE car-

riage acquired before or after transplantation, Model for End-Stage

Liver Disease (MELD) score, multi-organ transplantation, need for

reintervention or RRT, acute kidney injury, prolonged mechanical

ventilation, and graft rejection.39,41,42,44 Freire et al. found the fol-

lowing risk factors in a single-center Brazilian cohort of 331 KT

recipients with pre-transplant CRE colonization: recipient age at CRE

acquisition >50 years, median lymphocyte count ≤700 cells/mcL,

carbapenem use, and colonization by a polymyxin-resistant strain.43

Other risk factors reported in different studies include multi-organ

transplantation, ureteral stent, length of hospital stay, deceased donor

allograft, pre-transplant CR-KP infection or colonization, diabetes

mellitus, and receipt of antimicrobials other than trimethoprim-

sulfamethoxazole.31,32

Optimization of the management of CRE infection relies on reduc-

ing the risk of acquisition, improving early detection, and choosing

aggressive antibiotic therapy.45 In patients with CRE colonization and

clinical suspicion of infection, a careful assessment of the underly-

ing conditions and the extent of colonization may serve to guide

empirical therapy. As part of the afore-mentioned CRECOOLT study,

Giannella et al. developed a risk prediction model for CRE infection

after LT based on the following risk factors: CRE colonization within

60 days before or after transplantation, multisite post-transplant col-

onization, prolonged mechanical ventilation, acute kidney injury, and

surgical reintervention. The discrimination accuracy of the model in

the derivation and bootstrapped validation datasets were acceptable

(area under the curve [AUC] of 74.6 and 73.9, respectively).42 As part

of the INCREMENT-SOTproject,wedeveloped the INCREMENT-SOT-

CPE score to predict 30-day all-cause mortality in SOT recipients with

BSI due to CRE.8 The score is based on a previously derived and val-

idated tool for the general population46–48 enriched with additional

transplant-specific variables (i.e., adequate therapy, source control,

lymphopenia, and cytomegalovirus [CMV] disease) (Table 1). The score

was able to classify patients into three strata according to the mor-

tality risk: 0–7 (low risk), 8–11 (high risk), and 12–17 (very high risk)

(Figure 2). Of note, the INCREMENT-SOT-CPE score still remains to be

externally validated.

4 THERAPEUTIC OPTIONS FOR ESBL-E AND
CRE INFECTIONS IN THE SOT POPULATION

As commented above, the evidence-based SET/GESITRA-

SEIMC/REIPI documentwas published in 2018.3 Thismultidisciplinary
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F IGURE 2 Thirty-day all-causemortality for solid organ transplantation (SOT) recipients with carbapenem-resistant Enterobacterales and
bloodstream infection (CRE BSI) according to increasing categories in the INCREMENT-SOT-CPE score and type of active therapy administered
(adapted from Pérez-Nadales et al.80)

TABLE 1 The INCREMENT-SOT-CPE score for predicting
all-cause 30-daymortality in solid organ transplantation (SOT)
recipients with carbapenem-resistant Enterobacterales and
bloodstream infection (CRE BSI) (adapted from Pérez-Nadales et al.80)

Variable

Regression beta

coefficients (95%CI) Score

INCREMENT-CPE score≥8a 2.62 (1.79–3.56) 8

CMV disease in the previous

30 days

2.38 (0.58–4.34) 7

Lymphopenia≤600 cells/mcL 1.24 (0.55–1.97) 4

No source control 0.98 (0.17–1.83) 3

Inappropriate empirical therapy 0.64 (−0.26–1.45) 2

Interaction INCREMENT-CPE

score≥8 * CMV disease in the

previous 30 daysb

−2.39 (−4.90–−0.10) −7

Maximum score 17

Abbreviations: CMV, cytomegalovirus; CPE, carbapenemase-producing

Enterobacterales; CRE, carbapenem-resistant Enterobacterales.
aThe INCREMENT-CPE mortality score was developed to predict all-cause

mortality in carbapenemase-producing Enterobacterales and includes the

following variables: severe sepsis or shock at presentation (5 points), Pitt

bacteremia score ≥6 (4 points), Charlson comorbidity index ≥2 (3 points),

and source of bloodstream infection other than urinary or biliary tract (3

points).
bThe negative interaction coefficientmeans that the effect of the combined

action of 2 predictors is less than the sum of the individual effects. Conse-

quently, in our model, the maximum score in a patient with all risk factors

would be 17.

initiative was justified by the rapid spread across transplant centers of

cephalosporin- and carbapenem-resistant strains and by the particular

challenges that transplant and infectious diseases physicians face in

treatingMDRGNB infections. Beyond their increased susceptibility to

infection related to long-term immunosuppression, the SOTpopulation

shows distinct clinical characteristics in comparison to non-transplant

patients, such as the repeated exposure to the healthcare system and

invasive procedures, the frequent presence of renal or liver impair-

ment associated with nephrotoxic therapies (i.e., calcineurin inhibitors

[CNIs]) or underlying conditions, and the risk of drug-to-drug interac-

tions. The limited therapeutic options for MDR GNB often require the

use of second-line agents with unacceptable toxicity, such as colistin.

On the other hand, the evidence available to guide the management

of these difficult-to-treat pathogens derives from randomized clinical

trials (RCTs) and observational studies that rarely provide separate

outcomes for SOT recipients, thus compromising the extrapolation of

results.

In this section, we summarize some of the SET/GESITRA-

SEIMC/REIPI recommendations in the light of the new evidence

that emerged since their publication, with a focus on the contributions

made by the INCREMENT-SOT consortium for the treatment of

ESBL-E and CRE BSI. The initiatives taken to design carbapenem-

sparing regimens by repositioning existing drugs—either β-lactams or

belonging to other classes—are reviewed. Finally, we summarize the

main features and approved indications of the novel antibiotics, as

well as the existing experience and their potential positioning in the

treatment of post-transplant infection (Table 2).

4.1 Old drugs for emerging problems

4.1.1 Repositioning β-lactams

A notable amount of research has been devoted over the last years

to defining the role of non-carbapenem-based approaches for ESBL-E

BSI from low-risk (urinary and biliary) sources, with the aim to spare

the use of carbapenems and the subsequent ecological pressure.49,50

Existing β-lactam/β-lactamase inhibitor combinations (BLBLI) appear

as a good alternative since a variable proportion of ESBL-E isolates

across geographical areas (from 20% to over 60%) remain suscepti-

ble in vitro to amoxicillin-clavulanate or piperacillin-tazobactam.51–56

Gutiérrez-Gutiérrez et al. analyzed more than 600 patients with

monomicrobial BSI due to ESBL-E (mainly CTX-M-type-producing

E. coli) within the INCREMENT project and found a comparable
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TABLE 2 Recently approved antibiotic agents with potential activity against extended-spectrum β-lactamase-producing (ESBL-E) and
carbapenem-resistant Enterobacterales (CRE)

Agent Approved indications

Dose (normal renal

function)

Experience in SOT

recipients Considerations

Cefiderocol cUTI, HAP/VAP (FDA)

Infections due to aerobic GNB

with limited treatment options

(EMA)

2 g IV every 8 h Case reports The only agent with activity against

MBL-producing CRE

FDAwarning due to increased all-cause

mortality in phase III RCT compared to

best available therapy

Potential for resistance selection

Ceftazidime-

avibactam

cUTI, cIAI, HAP/VAP (FDA, EMA)

Infections due to aerobic GNB

with limited treatment options

(EMA)

2/0.5 g IV every 8 h Case reports, case

series, comparative

retrospective

studies

Activity against OXA-48-producing CRE

Potential activity againstMBL-producing

CRE in combinationwith aztreonam

Meropenem-

vaborbactam

cUTI (FDA)

cUTI, cIAI, HAP/VAP (EMA)

Infections due to aerobic GNB

with limited treatment options

(EMA)

2/2 g IV every 8 h Case reports Lower potential for resistance selection

than CAZ-AVI

No additional activity beyondmeropenem

forMDR Pseudomonas
No activity against OXA-48-type and

MBL-producing CRE

Imipenem-

cilastatin-

relebactam

cUTI, cIAI, HAP/VAP (FDA)

HAP/VAP, infections due to

aerobic GNBwith limited

treatment options (EMA)

500/500/125mg IV

every 6 h

None No activity against OXA-48-type, GES-type,

andMBL-producing CRE

Plazomicin cUTI (FDA) 15mg/Kg IV every

24 h

None Potential role of monotherapy

Increased risk of nephrotoxicity with

calcineurin inhibitors

Not available in Europe

Eravacycline cIAI (FDA, EMA) 1mg/Kg IV every 24 h Small case series More potent activity, better tissue

penetration, and lower potential for

resistance selection than tigecycline

Interactionwith strong CYP3A4 inducers

Unfavorable PK/PD profile for BSI

Should be avoided in cUTI

Abbreviations: BSI, bloodstream infection; CAZ-AVI, ceftazidime-avibactam; cIAI, complicated intraabdominal infection; CRE, carbapenem-resistant Enter-

obacterales; cUTI, complicated urinary tract infection; EMA, EuropeanMedicines Agency; FDA, Food and Drug Administration; HAP/VAP, hospital-acquired

pneumonia/ventilator-associated pneumonia; MBL, metallo-β-lactamase; PK/PD, pharmacokinetic/pharmacodynamic; RCT, randomized clinical trial; SOT,

solid organ transplantation.

14-day cure/improvement rate and 30-day all-causemortality in those

receiving active BLBLI or carbapenem monotherapy, either in the

empirical or targeted therapy groups. The non-inferiority of BLB-

LIs was consistent across different subgroup analyses (e.g., type of

ESBL-E, source of infection, or clinical severity) and after propensity

score (PS) adjustment.57 These findings were supported by previous,

smaller observational studies.58,59 Conflictive results, however, had

been also reported, with poorer outcomes for BLBLI (particularly with

piperacillin-tazobactam for K. pneumoniae).60–62 Concerns exist on the

potential impact of the inoculum effect (i.e., a significant increase

in minimal inhibitory concentrations [MICs] with increasing bacterial

density), the source of infection, or the coexistence of CTX-M-type

enzymes with other β-lactamases (oxacillinase [OXA]-1/30).63 In an

attempt to clarify this key question, an open-label non-inferiority RCT

compared piperacillin-tazobactam versusmeropenem as the definitive

therapy for BSI due to ceftriaxone-resistant E. coli or K. pneumoniae

(MERINO trial). Since the primary outcome of 30-day all-cause mor-

tality was more common in the piperacillin-tazobactam than in the

meropenem arm (12.3% vs. 3.7%, respectively), the non-inferiority

assumption could not be demonstrated.64 This difference was atten-

uated, however, when non-susceptible strains centrally tested by

broth microdilution and whole-genome sequencing were excluded,65

or by considering only patients with a urinary tract source or low

comorbidity burden.50

On the basis of moderate-quality evidence, the SET/GESITRA-

SEIMC/REIPI document states that carbapenems should be recom-

mended as the empirical or targeted treatment of SOT recipients with

moderate-to-severe ESBL-E infections, although BLBLI therapy seems

reasonable for nonbacteremic episodes, particularly UTI.3 Ongoing

immunosuppression and the frequent instrumentation of the urinary

tractmay limit the extrapolation to the SOTpopulationof results show-

ing the non-inferiority of BLBLI therapy.66 With such uncertainties in

mind, we took advantage of the INCREMENT-SOT Project to compare

the effectiveness of active BLBLI-based monotherapy initiated within

the first 72h from theonset ofmonomicrobial ESBL-EBSI secondary to

UTI with that of carbapenems in the setting of KT. Sensitivity analyses
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were conducted at 24-hour and 7-day windows. Overall, 306 ESBL-

E BSI episodes were included, with E. coli (62.1%) and Klebsiella spp.

(35.0%) accounting for the majority of isolates. Consistent with the

low-risk nature of the source of infection, therapeutic failure (i.e., lack

of cure or clinical improvement and/or death from any cause) was rare

(8.2% on day 7 and 13.4% on day 30), as was all-causemortality (2.9%).

Most patients received carbapenem-based monotherapy for the first

72 h (68.6%), whereas BLBLI was used in 10.8% of cases only (mostly

piperacillin-tazobactam at 4/0.5 g every 8 h). Hospital-acquired BSI

and the Pitt bacteremia score were independent predictors of ther-

apeutic failure by day 7. We observed no significant differences in

the rates of therapeutic failure between KT recipients treated with

carbapenem or BLBLI monotherapy, either at day 7 (9.0% vs. 3.0%,

respectively; risk difference: -6.01%; 95% CI: -0.16–0.04; odds ratio

[OR]: 3.18; p-value = .267) or day 30 (13.8% vs. 9.1%; risk differ-

ence: -4.72%; 95% CI: -0.17–0.08; OR: 1.60; p-value = .459). Due to

baseline imbalances between groups, we constructed a PS for the

use of carbapenemmonotherapy (that included the geographical area,

pre-transplant heart failure, chronic pulmonary disease, presence of a

rapidly or ultimately fatal disease, and early receipt of active therapy).

Again, neither the risk of therapeutic failure at day 7 (PS-adjusted OR:

4.36; 95% CI: 0.51–37.38; p-value = .179) or day 30 (PS-adjusted OR:

2.59; 95%CI: 0.66–10.21; p-value= .175)were significantly influenced

by the type of antibiotic regimen.11 +++ Although caution should be

exercised in the interpretation of these results due to the low numbers

in theBLBLI group and the risk of underpowered sample size, our study

would suggest that—provided in vitro susceptibility—BLBLIs may be

a reasonable alternative to carbapenems for ESBL-E BSI from a uri-

nary source in KT recipients, supporting SET/GESITRA-SEIMC/REIPI

recommendations. On the other hand, this conclusion is in line with

the results reported for hematological neutropenic patients, includ-

ing hematopoietic stem cell transplant recipients.67 The debate on

to what extent carbapenems may be safely spared in favor of BLB-

LIs is far from being settled,68,69 pending on the results of ongoing

RCTs.70

Another relevant question is whether ertapenem and meropenem

are equally effective for ESBL-EBSI from a urinary source. The increas-

ing prevalence of ESBL producers among uropathogens in KT recipi-

ents has contributed to the widespread use of carbapenems.71 In con-

trast to group 2 carbapenems (imipenem, meropenem, or doripenem),

ertapenemdisplays no significant activity against non-fermentingGNB

and would contribute to decrease—or at least not add to—the risk

of selective pressure on Pseudomonas aeruginosa and Acinetobacter

baumannii.72–74 Moreover, ertapenem has more convenient dosing

for outpatient parenteral antibiotic therapy (OPAT). Nevertheless,

doubts have been raised on the probability of attaining appropriate

pharmacokinetic/pharmacodynamic (PK/PD) parameterswith the con-

ventional ertapenem dosing in patients with septic shock (due to their

increased volume of distribution) or for ESBL-E isolates different than

E. coli.75 We performed a subanalysis of the INCREMENT-SOT cohort

restricted to KT recipients with bacteremic UTI that received targeted

monotherapy with ertapenem or meropenem (100 and 101 patients,

respectively). The clinical cure rate by day 14was comparable between

patients treated with ertapenem (45.0%) or meropenem (50.5%),

whereas themedianhospital staywas shorter in the former group (10.5

vs. 14 days; p-value = .008). In the PS-adjusted multivariable analysis,

targeted therapywith ertapenemwas not associatedwith a lower odds

of achieving clinical cure as comparedwithmeropenem (OR: 1.29; 95%

CI: 0.51–3.22). This result was confirmed by the inverse probability

of treatment weighting and PS-matching. The desirability of outcome

ranking analysis suggested that ertapenem may have some advan-

tages in this setting, such as once-daily administration, lower ecological

impact, and the possibility of OPAT.9

4.1.2 The role of combination therapy

The potential benefit of combination therapy for MDR GNB remains

controversial in the non-transplant population. Available studies are

observational in nature and often limited by low sample sizes and

heterogeneity in the definition of “combination therapy” (i.e., number

of agents, in vitro activity, duration).7,76 For instance, a large multi-

center study comprising 661 patients with BSI and non-bacteremic

infection due to KPC-producing K. pneumoniae reported that com-

bination therapy with at least two drugs displaying in vitro activity

was associated with lower mortality, mainly in patients with sep-

tic shock. Meropenem-containing combinations were effective only

if the MIC value of the isolate was ≤8 mg/L.77 Some78 but not all

meta-analyses79 have reported differences in different outcomes—

clinical success, microbiological cure, or mortality—between patients

treatedwithmonotherapy or combination therapy for CRE. The recent

ESCMID guidelines conditionally recommend combination therapy for

certain scenarios only, such as severe infections due to metallo-β-
lactamases (MBL)-producing CRE or isolates with resistance to new

antibiotics.7 Existing experience in the SOT setting was much scarce,

highlighting the contributions of the INCREMENT-SOT Consortium.

Recipients with CRE BSI treated with a single active agent overall

showed increased 30-day mortality as compared to those receiving

combination therapy. This difference, however,was only evidentwithin

the highest strata of the INCREMENT-SOT CPE score (adjusted haz-

ard ratio [aHR] for 12–17 points: 2.82; 95% CI: 1.13–7.06; aHR for

8–11 points: 9.93; 95% CI: 2.08–47.40). In contrast, no apparent

benefit derived from the use of combination therapy was observed

among patients in the low-risk stratum (≤7 points) (Figure 2).80 These

results mirror those obtained from the INCREMENT cohort for non-

transplant patients,81 and lead us to propose an algorithm for clinical

management (Figure 3). It should be noted that considerable hetero-

geneity existed in the specific combinations administered, with most

of them including an aminoglycoside, colistin, or tigecycline. In addi-

tion, the potential impact of “immortal time bias” on the protective

effect observed for combination therapy among recipients with higher

scores cannot be completely ruled out, although patients dying within

the first 48 h after the blood cultureswere obtained had been excluded

from the analysis.80 Finally, these studies were conducted before the

introduction of ceftazidime-avibactam (CAZ-AVI) or other new BLBLIs

reviewed below.
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F IGURE 3 Proposed algorithm for the choice of definitive therapy for post-transplant CRE BSI (adapted from Pérez-Nadales et al.80). BSI,
bloodstream infection; CMV, cytomegalovirus; CRE, carbapenem-resistant Enterobacterales; SOT, solid organ transplantation

4.1.3 Non β-lactam alternatives

In addition to BLBLIs, the reprofiling of existing antibiotics has been

proposed as an alternative basis for the design of carbapenem-sparing

regimens for ESBL-E and, in some cases, CRE. These “revisited” drugs

include aminoglycosides, tigecycline, fosfomycin, and colistin among

others.50 All of them are positioned as second-line regimens by the

SET/GESITRA-SEIMC/REIPI documentdue to their adverseeffects and

the increasedmortality rate when compared to β-lactams.3

Aminoglycosidemonotherapy—with preference given to amikacin—

may constitute a valid choice for selected cases with limited thera-

peutic options, such as non-bacteremic UTI due to ESBL-E.82,83 In the

INCREMENT cohort the use of aminoglycosides as the only active

agent for a median of 4 days was not associated with increased mor-

tality in ESBL-E BSI compared to carbapenems, although the number

of patients analyzedwas low.84 The GESITRA/SEIMC consensus state-

ment on the management of post-transplant UTI published in 2015

supported monotherapy with gentamicin or amikacin for cystitis due

to CRE.85 The administration of aminoglycosides for more than 2–3

days among SOT recipients, however, is limited by the development

of nephrotoxicity, particularly in the presence of concomitant CNI

exposure.86

Tigecycline is not affected by β-lactamases and retains in vitro

activity against most ESBL-E isolates—with the notable exception of

the Morganellaceae family—and a variable proportion (from 40% to

more than 90%) of CRE isolates, includingMBLs producers.87–92 There

have been some favorable experiences with tigecycline in the treat-

ment of MDR GNB,93,94 and a meta-analysis pooling data from 21

studies (none of them randomized) suggested efficacy in CRE sim-

ilar to other antibiotics, particularly as combination therapy or at

high doses.95 In an Italian study comprising 125 patients with KPC-

producing K. pneumoniae BSI, combination therapy with at least two

active agents was associated with a lower mortality rate. The best

outcomeswere obtainedwith the triple-drug regimen comprising tige-

cycline, colistin, and meropenem.96 Nevertheless, and likely due to

its bacteriostatic action, tigecycline has been consistently shown to

be associated with higher mortality when used off-label to treat seri-

ous infections,97,98 which resulted in a warning by the Food and Drug

Administration (FDA). The low urine concentration achieved with tige-

cycline prevents its use for UTIs. As for SOT recipients, experience

with tigecycline for CRE is mainly limited to single case reports99

or small series.100–102 The SET/GESITRA-SEIMC/REIPI recommenda-

tions state that tigecycline may be considered as the combination

drug associated with a carbapenem (provided that the MIC value ≤8

mg/L) for non-urinary CRE infections, whereas monotherapy should

be reserved to non-severe infections.3 After the publication of this

document, a single-center retrospective study found that SOT recip-

ients with polymicrobial IAI treated with tigecycline were less likely

to achieve favorable clinical outcomes and experienced more adverse

events (AEs) than comparator broad-spectrum agents.103 On the other

hand, KT recipients on CNIs may be at an increased risk of developing

tigecycline-induced acute pancreatitis.104–106

Despite its five decades of existence, fosfomycin has recently

regained attention due to its unique mode of action—the irreversible

inhibition of the first cytoplasmic step of peptidoglycan synthesis—that

results in a potent bactericidal activity with minimal cross-resistance

with other classes of antibiotics.107,108 A non-negligible proportion of

ESBL-E and CRE isolates remain susceptible,109 although decreasing
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rates are being gradually reported.110–112 Oral formulations (calcium

salt and trometamol) have a favorable safety profile, whereas the intra-

venous fosfomycin disodium is associated with a high sodium intake

that may limit its use in patients with heart failure or undergoing

hemodialysis.113 Amulticenter retrospective study performed in Spain

included 143 episodes of uncomplicated UTI (cystitis) in KT recipients

treated with oral fosfomycin, with rates of clinical and microbiologi-

cal cure of 83.9% and 70.2%, respectively. Half of the isolates had an

MDR phenotype (ESBL-E in 14.0%, CRE in 3.5%), although the odds of

microbiological cure were not decreased in these episodes (71.4%).114

Similar results have been also reported for asymptomatic bacteri-

uria within the first post-transplant months.115 Concordant with these

observational experiences, the administration of a single 4-g dose of

intravenous fosfomycin disodium before the placement or removal of

a urinary catheter or a double-J ureteral stent resulted in a lower

incidence of symptomatic UTI or asymptomatic bacteriuria during the

first weeks after KT as compared with placebo.116 Evidence support-

ing the use of intravenous fosfomycin for serious GNB infection is

still emerging.117 A recent open-label RCT compared intravenous fos-

fomycin versus a β-lactam (ceftriaxone or meropenem) for patients

with BSI from urinary source due to MDR (mainly ESBL-producing)

E. coli. While clinical or microbiological failure was lower with fos-

fomycin than with the comparator (14.3% vs. 19.7%, respectively), the

primary outcome of non-inferiority was not met due to an increased

rate of AE-related discontinuations in the former group, mostly due to

the occurrence of heart failure (which happened only in patients over

80 years and those with preexisting heart disease or renal failure).118

Although fosfomycin showed high efficacy, this trial exemplifies that

patients to be treated with intravenous fosfomycin at doses of 4–6

g every 6–8 h should be properly selected. Moreover, this formula-

tion is not available in some countries. The SET/GESITRA-SEIMC/REIPI

recommendations limit the use of fosfomycin trometamol for non-

severe infections with an adequate site penetration (in particular UTI),

whereas intravenous fosfomycin should only be considered for CRE

infections as part of a combination regimenwhich includes at least one

more active agent, preferably as three-drug regimens.3

4.2 New β-lactam actors in the MDR landscape

4.2.1 Cefiderocol

Cefiderocol is a third-generation cephalosporin structurally related to

ceftazidime and cefepime, which is conjugated with a catechol moiety

on the C-3 side chain. Similar to other β-lactams, cefiderocol transits

the outer cell membrane of gram-negative bacteria by passive dif-

fusion through porins. In addition, it actively enters the periplasmic

compartment—where high concentrations are achieved—by exploiting

the bacterial siderophore-iron complex pathway as a “Trojan horse”.119

Thismode of action overcomes commonmechanisms of β-lactam resis-

tance such as loss of porin expression or up-regulation of efflux pumps

and results in stability against hydrolysis by various types of car-

bapenemases, including most serine enzymes (e.g., KPC, OXA type)

and MBLs.120 Cefiderocol also retains antibacterial activity against

ESBL- and AmpC-producing strains.121 Its clinical development pro-

gram comprised three non-inferiority phase II/III RCTs.122–124 One of

them compared cefiderocol with the best available therapy (BAT)—as

chosen by the investigator and including a maximum of three drugs—

in patients with hospital-acquired pneumonia (HAP), BSI, or cUTI due

to carbapenem-resistant GNB. Pseudomonas aeruginosa andA. bauman-

nii were the most common pathogens in the microbiological modified

intention-to-treat (mITT) population. The rate of clinical cure was sim-

ilar between both groups across the qualifying infectious syndromes.

Nevertheless, numerically more deaths occurred in patients receiving

cefiderocol (33.7% vs. 18.4% in the BAT arm), mainly in the subgroup

with Acinetobacter infection.122 This unexpected finding led the FDA

to issue a warning, although the underlying explanation is unclear and

might be related to the heterogeneity in patient characteristics, small

sample size, and imbalances between study groups. The remaining

two trials demonstrated the non-inferiority of cefiderocol to high-

dose, extended-infusion meropenem in terms of all-cause mortality in

patients with HAP,123 or to imipenem-cilastatin in terms of clinical and

microbiological outcomes in cUTI.124 The safety profile observed is

concordant with that expected for cephalosporins, and dose adjust-

ment is required in moderate to severe renal impairment.119 Cefide-

rocol was FDA approved in 2019 for the treatment of cUTI (including

pyelonephritis) and in 2020 for HAP and ventilator-associated pneu-

monia (VAP). TheEuropeanMedicinesAgency (EMA) granted a generic

approval for infections due to aerobic GNBs with limited therapeutic

options. A common feature of the novel agents for the treatment of

ESBL-E and CRE reviewed herein is the scarcity of data available for

the specific population of SOT recipients. This limitation also applies

for cefiderocol, with only a few cases reported.125–128 A LT recipient

that developed liver abscesses and BSI due to KPC-producing K. pneu-

moniae resistant to CAZ-AVI was successfully treated with cefiderocol

for >10 days.126 AKT recipient was treated with cefiderocol in com-

bination with CAZ-AVI a polymyxin B for a complicated IAI (cIAI) due

to two genetically different K. pneumoniae strains carrying blaNDM-1,

blaOXA-232, and blaCTX-M-15 genes, with bacterial clearance.125 It has

been also reported the case of an LT recipient with cUTI due to an

MDR C. freundii strain harboring blaKPC-1 and blaNDM-3 that was exten-

sively resistant to CAZ-AVI (MIC >256 mg/L), in which clinical cure

was achieved after a 10-day course of cefiderocol (MIC = 1 mg/L).127

The rapid development of high-level resistance in E. cloacae within

the first weeks of cefiderocol therapy has been recently reported

in an LT recipient. Whole-genome sequencing identified functional

alterations in the cirA gene encoding for the catecholate siderophore

receptor used by the cefiderocol-ferric complex to enter the periplas-

mic compartment.128 Pending the generation of clinical experience,

cefiderocol appears as a promising option for MDR GNB infection in

SOT recipients.

4.2.2 New BLBLI combinations

Three new BLBLIs have been recently added to the therapeutic arma-

mentarium against MDR GNB: CAZ-AVI, meropenem-vaborbactam

(MER-VAB), and imipenem-cilastatin-relebactam (IMI-REL).129–131 All
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of them retain activity against ESBL-E and AmpC-producing Enter-

obacterales, although some important differences must be noted.

Avibactam is the first member of the diazabicyclooctanone non-

β-lactam class and exhibits the broadest spectrum of β-lactamase

inhibition, including Ambler class A (e.g., KPC- and Guiana extended-

spectrum [GES]-type), class C (Amp-C cephalosporinases), and some

class D enzymes (notably OXA-48-like).132 The FDA approved CAZ-

AVI in 2015 for the treatment of cUTI and cIAI, and in 2018 for patients

with HAP/VAP. Soon after its release, descriptions emerged of the

developmentofCAZ-AVI resistance inKPC-producing strains, typically

driven by the D179Y substitution in the blaKPC-3 gene that affects the

stability of the Ω-loop.133,134 Vaborbactam is a new cyclic boronate

β-lactamase inhibitor with potent activity against KPC-2 and KPC-3

enzymes, as well as ESBLs (e.g., sulfhydryl variable, temonera, CTX-

M)135 and class C cephalosporinases.130 Vaborbactam is also able to

overcome CAZ-AVI resistance due to D179Y mutations at the KPC

binding site.136 Of note, carbapenem-hydrolyzing class D enzymes

are not affected by vaborbactam,137 a notable limitation in European

countries such as SpainwhereOXA-48-like enzymes are themost com-

mon type of carbapenemase.138,139 Resistance to MER-VAB among

KPC-producing isolates is mediated by a combination of KPC pro-

duction and mutations in the OmpK35 and OmpK36 porins, although

the odds of resistance developing seem to be lower than with CAZ-

AVI.140,141 Finally, relebactam is also a diazabicyclooctane β-lactamase

inhibitor, like avibactam, that bears a piperidine ring in the R1 side

chain.131,142 Similar to MER-VAB, IMI-REL is highly effective against

CRE isolates carrying blaKPC-2 and blaKPC-3 genes and ESBL-E and

AmpC-producing Enterobacterales. Nevertheless, the inhibitory activ-

ity against most OXA-type and GES-type carbapenemase-producing

strains is poor.143,144 It should be highlighted that none of these

novel BLBLI combinations retain significant activity in the presence of

MBLs.129

Experience with newBLBLIs among SOT recipients has beenmainly

restricted to case reports145–148 and small series with no comparator

group.149,150 The SET/GESITRA-SEIMC/REIPI document did not make

any mention of MER-VAB or IMI-REL and simply suggested—based on

low-quality evidence (CIII)—that CAZ-AVI may be considered for the

treatment of CRE infections if the strain shows in vitro susceptibility.3

In view of this research gap, we have conducted a subanalysis within

the INCREMENT-SOT cohort in which the effectiveness of CAZ-AVI

was compared with BAT (mainly including colistin, tigecycline, or fos-

fomycin) in 210 recipients diagnosed with monomicrobial CRE BSI

from2016 to 2021. In the primarily targeted therapy cohort, 85 and 81

patients were analyzed within the CAZ-AVI and BAT groups, respec-

tively. There were significant differences favoring CAZ-AVI over BAT

in the 14-day (81.2% vs. 58.0%, p= .001) and 30-day (81.2% vs. 60.5%,

p = .004) clinical success rate as well as in 30-day mortality (12.9%

vs. 27.2%, P = 0.036) that persisted after multivariate adjustment.

Interestingly, we were able to validate in this cohort the good perfor-

mance of the INCREMENT-SOT CPE Score to predict the risk of death

(adjusted OR per one-point increment: 1.17; 95% CI: 1.08–1.28, p <

0.001) (data not yet published).

4.3 Non-β-lactam classes or the promising
newcomers

4.3.1 Plazomicin

Plazomicin is a novel semisynthetic parenteral aminoglycoside that

inhibits bacterial protein synthesis.151 Thanks to various structural

modifications it retains activity in the presence ofmost aminoglycoside

modifying enzymes, as well as ESBLs and carbapenemases (including

MBLs).151–153 Aphase III RCT showed thenon-inferiority of plazomicin

to meropenem for cUTI. The rate of microbiological eradication at

the test-of-cure visit in patients with ESBL-E infection was numeri-

cally higher in the plazomicin group (82.4% vs. 75.0%, respectively).154

A second small open-label trial recruited patients with CRE BSI or

HAP/VAP that were randomized to receive plazomicin or colistin in

combination with meropenem or tigecycline. The composite outcome

of death from any cause at 28 days or disease-related complications

in the microbiological mITT population was numerically lower with

plazomicin than colistin. Such a benefit was observed only in the sub-

group of patients with BSI, although the numbers were too low to

draw reliable conclusions since the trial was prematurely terminated

due to slow enrollment.155 Plazomicin received FDA approval in 2018

for adult patients with cUTI, whereas the application for marketing

authorization in Europe was withdrawn by the manufacturer in June

2020. Unfortunately, clinical experience in SOT recipients is still lack-

ing. Of note, this population was excluded from the pivotal trial for

cUTI as per study protocol.154 Similar to other aminoglycosides, the

risk of nephrotoxicity remains a concern with plazomicin, in particu-

lar among patients with impaired baseline renal function and higher

cumulative drug exposure.154 This safety profile would further limit

its use in the KT setting. It is likely that therapeutic drug monitoring

will be needed to optimize exposure and clinical outcomes.156 Other

AEs observed include ototoxicity, gastrointestinal disturbances, and

hypotension.151

4.3.2 Eravacycline

Eravacycline is a novel, fully synthetic fluorocycline that reversibly

binds to the 30S ribosomal subunit, blocking the elongation phase

of bacterial protein synthesis. In line with other members of the

tetracycline class, eravacycline shows a broad spectrum of in vitro

activity that comprises methicillin-resistant Staphylococcus aureus,

vancomycin-resistant enterococci, anaerobes, A. baumannii and some

ESBL-E and CRE.157 Susceptibility rates among CRE isolates range

from 96.2% to 98.0% for E. coli and from 66.6% to 84.0% for K.

pneumoniae.158–161 Interestingly, eravacycline shows reasonable activ-

ity against New Delhi MBL (NDM)-producing Enterobacterales, with a

reported susceptibility rate of 66.2% according to the CLSI interpre-

tive criteria,162 and has been shown to be 2- to 4-fold more active

than tigecycline against CRE.163 In addition, it remains active against

the main acquired tetracycline-specific resistance mechanisms (efflux
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TABLE 3 Summary of the reported experience with novel antibiotic agents for the treatment of solid organ transplantation (SOT) recipients
with extended-spectrum β-lactamase-producing (ESBL-E) and carbapenem-resistant Enterobacterales (CRE) infections

Agent, reference Type of SOT Type of infection

Isolate, molecular resistance

mechanism (if available) Outcomes

Cefiderocol125 KT recipient BSI and cIAI following

allograft nephrectomy

Two different carbapenem-resistant

Klebsiella pneumoniae strains
(ST14 and ST2497) carrying

blaNDM-1, blaOXA-232, blaCTX-M-15,

armA, and tet(D)

Clinical andmicrobiological

response

Non-related death (ischemic colitis

andmultiorgan failure)

Cefiderocol126 LT recipient BSI and cIAI (liver abscesses) Carbapenem-resistant K.
pneumoniae

Clinical andmicrobiological

response

Cefiderocol127 LT recipient cUTI Citrobacter freundii complex carrying

blaNDM-1 and blaKPC-3

Clinical andmicrobiological

response

Non-related death (angiosarcoma)

Cefiderocol128 LT recipient BSI and cIAI (multiple biloma

and hepatic abscesses)

Carbapenem-resistant Enterobacter
cloacae (ST96) carrying blaNDM-5

and blaOXA-48

Initial microbiological response, the

emergence of resistant isolate

(mutations in cirA gene) leading to

relapse of infection and death

Meropenem-

vaborbactam145

LT recipient BSI and cIAI (liver abscess

due to hepatic artery

thrombosis)

Carbapenem- and

CAZ-AVI-resistant K. pneumoniae
carryingmutant blaKPC-2 with
D179Ymutation within the KPC

Ω-loop

Clinical andmicrobiological

response

Ceftazidime-

avibactam146

KT recipient Recurrent UTI Carbapenem-resistant K.
pneumoniae

Clinical andmicrobiological

response

Ceftazidime-

avibactam147

KT recipient BSI, cUTI, and pneumonia

(probable donor-derived

infection)

Carbapenem-resistant K.
pneumoniae carrying blaKPC-2

Initial clinical andmicrobiological

response, relapse of BSI after 11

days with an appropriate response

after a second course

Ceftazidime-

avibactam148

KT recipient Vertebral osteomyelitis Carbapenem-resistant K.
pneumoniae carrying blaKPC

Clinical response

Ceftazidime-

avibactam149

LuT recipients

(n= 10)

Pneumonia and/or

tracheobronchitis (n= 9),

BSI and cIAI (n= 1)

Carbapenem-resistant K.

pneumoniae carrying blaKPC-2

Clinical andmicrobiological

response in 9/10 (90%)

Treatment failure in 1/10 (10%)

Relapse of lower respiratory tract

infection in 5/10 (50%)

30- and 90-day survival of 100% and

90%

Ceftazidime-

avibactam150

LuT recipients

(n= 4)

Pneumonia (n= 10) MDR K. pneumoniae Clinical andmicrobiological

response in 10/10 (100%)

Eravacycline166 SOT recipients

(n= 7) within

a larger

cohort

(n= 66)

NA for SOT recipients MDRGNB or GPC (NA for SOT

recipients)

NA for SOT recipients

Overall cohort:
Clinical response in 63/66 (95.5%)

Treatment-emergent adverse

events in 3/66 (4.5%)

Abbreviations: BSI, bloodstream infection; CAZ-AVI, ceftazidime-avibactam; cIAI, complicated intraabdominal infection; cUTI, complicated urinary tract

infection; GNB, gram-negative bacilli; GPC, gram-positive cocci; KT, kidney transplantation; LT, liver transplantation; LuT, lung transplantation; MDR,

multidrug-resistant; NA, not available; SOT, solid organ transplantation.

pumps and ribosomal protection proteins).163 On the basis of two

non-inferiority phase III RCTs,164,165 intravenous eravacycline was

approvedby theFDAandEMA in2018 for the treatment of cIAI. Erava-

cycline requires dose adjustment in severe liver function impairment

(Child-Pugh class C) and with the concomitant use of strong CYP3A4

inducers. In addition to its improved activity, eravacycline offers advan-

tages over tigecycline, such as higher serum and tissue concentrations,

the existence of both oral and intravenous formulations, and better

gastrointestinal tolerability.157 Again, the available experience in SOT

is very limited, as this condition was considered an exclusion crite-

rion in pivotal trials.164,165 A retrospective studywith 66 patients from

three US centers that received eravacycline for a mean of 13.1 days—

mainly as monotherapy for off-label indications such as pneumonia or

skin and soft tissue infection—included 7 SOT recipients (10.6%). The

overall rate of clinical improvement was 95.5%, although outcomes for

the SOT group were not separately provided.166 The high volume of
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distributionof eravacycline (58.3–320.0L) confers a theoretically unfa-

vorable PK/PD profile for treating BSI, although the pooled clinical and

microbiologic outcomes in patients with bacteremic cIAI recruited in

the pivotal trials were similar to those observed in the carbapenem

arms.167

5 CONCLUSIONS AND FUTURE RESEARCH
AVENUES

As outlined in the present review, MDR GNB constitutes a rapidly

evolving threat to modern medicine that adopts particular epidemi-

ological, clinical, and therapeutic features in the SOT population.

Notable advances have been made in the management of ESBL-E and

CRE infections after SOT since the publication, 4 years ago, of the

SET/GESITRA-SEIMC/REIPI recommendations.3 The findings gener-

ated by the INCREMENT-SOT consortium have helped to refine the

prognostic stratification in SOT recipients with CRE BSI—highlighting

the impact of previous CMV disease and lymphopenia—as well as the

role of antibiotic combination therapy in this setting.80 Other rel-

evant contributions include the comparable effectiveness of active

BLBLI-based monotherapy versus carbapenems for ESBL-E BSI in KT

recipients,11+++ and the potential advantages of ertapenem com-

pared to group 2 carbapenems to minimize selective antibiotic pres-

sure in such patients9. Beyond the reprofiling of existing antibiotics

(such as aminoglycosides, tigecycline, or fosfomycin) to spare the use

of carbapenems against ESBL-E or to provide alternative agents in CRE

infection, recent years have witnessed the approval of novel β-lactam
and non-β-lactam agents. In view of their activity in the presence of

most serine carbapenemases andESBLs and their favorablePK/PDand

safety profiles, newer BLBLIs combinations and cefiderocol are partic-

ularly promising. The clinical experience reported with these agents in

SOT recipients (summarized in Table 3), however, is so far limited. In

this line, the INCREMENT-SOT Project is generating real-life data for

CAZ-AVI in the treatment of post-transplant CRE BSI. Despite these

achievements, many challenges persist. In particular, the development

of effective agents that retain activity against MBL-producing Enter-

obacterales represents an unmet need. It must be highlighted that the

literature supporting the clinical benefit of combination therapy for

patients with more severe infections—higher INCREMENT-SOT-CPE

scores—was produced before the novel therapeutic options became

available (particularly new BLBLIs). Therefore, further studies should

be conducted to eventually confirm such findings. A better under-

standing is required of how immunosuppression should be managed

in recipients with serious ESBL-E and CRE infections (e.g., BSI, cIAI,

or HAP/VAP) and the long-term consequences on graft function. In

addition, robust evidence derived from RCTs to guide the treatment

of ESBL-E and CRE infections after SOT is still essentially lacking. The

INCREMENT-SOT Cohort exemplifies the usefulness of multinational

initiatives specifically aimed at providing high-quality observational

data on the optimal therapeutic approach to MDR GNB infections in

the SOT population.
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