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Abstract

Anthrax lethal factor (LF) is a Zn+2-dependent metalloprotease that cleaves several MAPK kinases and is responsible for the
lethality of anthrax lethal toxin (LT). We observed that a recombinant LF (LF-HMA) which differs from wild type LF (LF-A) by
the addition of two residues (His-Met) to the native Ala (A) terminus as a result of cloning manipulations has 3-fold lower
potency toward cultured cells and experimental animals. We hypothesized that the ‘‘N-end rule’’, which relates the half-life
of proteins in cells to the identity of their N-terminal residue, might be operative in the case of LF, so that the N-terminal
residue of LF would determine the cytosolic stability and thereby the potency of LF. Mutational studies that replaced the
native N-terminal residue of LF with known N-end rule stabilizing or destabilizing residues confirmed that the N-terminal
residue plays a significant role in determining the potency of LT for cultured cells and experimental animals. The fact that a
commercially-available LF preparation (LF-HMA) that is widely used in basic research studies and for evaluation of vaccines
and therapeutics is 3-fold less potent than native LF (LF-A) should be considered when comparing published studies and in
the design of future experiments.
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Introduction

Anthrax is a disease caused by spore-forming, Gram-positive

bacterium, Bacillus anthracis. The virulence of B. anthracis depends

on production of two major virulence factors-the gamma-linked

poly-D-glutamic acid capsule and anthrax toxin. The toxin is

composed of protective antigen (PA) and two catalytic moieties,

lethal factor (LF) and edema factor (EF) [1,2]. The binary

combination of PA and LF is known as lethal toxin (LT), while PA

and EF together constitute edema toxin (ET). PA is the central

receptor-binding component which delivers LF and EF into the

cytosol of mammalian cells. EF is a calmodulin-dependent

adenylate cyclase [3] while LF is a Zn+2-dependent metallopro-

tease that cleaves several MAPK kinases [4,5].

Injection of LT induces death of experimental animals, which can

occur in 1–2 days in mice or as little as 38 minutes in rats. LT has

been found to have many physiological and pathological effects

[6,7], including but not limited to impairing endothelial barrier

function [8] and glucocorticoid receptor activity [9], and inducing

necrosis or apoptosis in macrophages [10,11]. LT induces a shock-

like vascular collapse similar to that observed in anthrax-infected

animals and humans. Because LT plays a key role in virulence

during anthrax infections, substantial effort has been directed to the

development of vaccines and therapeutics that target this toxin.

These efforts depend on the availability of reliable, economical

sources of purified toxin components having consistent and well

characterized properties. Various expression hosts have been used

for the purification of PA and LF, including Escherichia coli, Bacillus

subtilis, and B. anthracis [12–14]. This laboratory originally produced

native PA, LF, and EF from the avirulent B. anthracis Sterne strain

[15,16] and later developed systems for efficient expression and

purification of PA and LF as recombinant molecules from avirulent

strains of B. anthracis [17,18]. In the course of these studies we noted

differences in LF potency between sources and individual

preparations which suggested that variability at the N-terminus of

the protein might have an impact on potency. This was consistent

with prior studies showing that the stability of LF fusion proteins in

the cytosol of cells depended on identity of the N-terminal residue

[19] pointing to the involvement of the N-end rule in determining

susceptibility to ubiquitinylation and subsequent degradation by the

proteasome [20].

The N-end rule of protein degradation relates the in vivo stability

of a protein to the identity of its N-terminal residue. Ubiquitin (Ub)

ligases target protein substrates that bear specific (destabilizing) N-

terminal residues [20,21]. The corresponding degradation signal

called the N-degron consists of a protein substrate’s destabilizing

N-terminal residue and an internal Lys residue, the latter being the

site of attachment for a poly-Ub chain. A ubiquitylated substrate is

then targeted to and degraded by the proteasomes [22]. It is of

interest to note that unlike many bacterial toxins that have a strong

bias of Arg over Lys [23], LF has a substantial number of Lys in

the N-terminal region that are potential ubiquitination sites. A

truncated LF protein, LF1–254 (also designated LFn), containing the

PA binding domain of LF, was shown to follow the N-end rule in

cells [19], since addition of destabilizing residues at its N-terminus

(e.g., Arg) increased the protein’s degradation rate in reticulocyte

lysate and cells. LF produced by B. anthracis contains the sequence

AGGH, which becomes the N-terminus of the mature protein
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following cleavage of its signal peptide by the bacterial signal

peptidase. In our studies we initially noted that the presence of two

additional N-terminal residues in recombinant LF decreased its

potency approximately 3-fold. This prompted a systematic study of

the role of the N-terminus, which is reported here.

Methods

Cell culture and cytotoxicity assays
RAW264.7 cells were used for cytotoxicity studies. Cells were

grown in Dulbecco’s modified Eagle medium containing 2 mM

Glutamax, 25 mM HEPES and 50 mg/ml gentamicin supple-

mented with 10% fetal calf serum (all from Invitrogen, Carlsbad,

CA) at 37uC in 5% CO2. For cytotoxicity assays, cells were plated

in 96-well plates 24 h prior to use. Cells were treated with varying

concentrations of LF in the presence of a fixed concentration of PA

(250 ng/ml) for 3–4 h. Cell viability was assessed by the addition

of MTT [3-(4,5-dimethylthiazo-2-yl-02,5-diphenyltetrazolium

bromide] (Sigma, St. Louis, MO) at a final concentration of

0.5 mg/ml, incubation for another 45 min at 37uC, and release of

the blue pigment produced by viable cells using 0.5% (w/v)

sodium dodecyl sulfate (SDS), 25 mM HCl in 90% (v/v)

isopropanol. A microplate reader was used to measure the A570

to quantify cell survival.

Plasmids and mutagenesis
Plasmid pSJ115 [18] was used to express wild type and mutated

LF proteins. The Quick Change-II site directed mutagenesis kit

(Stratagene, La Jolla, CA) was used for manipulations in pSJ115

according to the manufacturer’s instructions. Mutations were

confirmed by DNA sequencing, and for each construct the entire

gene was also sequenced to confirm that there were no other

mutations present.

Production and purification of proteins
Proteins PA, FP59, and all LF variants were produced and

purified from B. anthracis strain BH450 as described earlier [18,24]

. Samples of LF used for comparison were purchased from List

Biological Laboratories (Campbell, CA).

Processing of LF proteins by factor Xa
Factor Xa (Novagen, Madison, WI) was used to cleave off the

Myc tag from purified, mutated LF proteins. In a typical small

scale digestion, 25 mg of protein was incubated at room

temperature with 0.3 units of factor Xa in 1 X reaction buffer

containing 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 5 mM

CaCl2. After 14 h incubation at 4uC, 2 mM EDTA and 1 mM

DTT was added. Large scale preparations used the same

conditions. N-terminal sequencing was performed to determine

the N-terminus of LF proteins.

LF cellular affinity determinations
The affinity of LF proteins to cell-bound PA was measured by

Schild plot analyses [24,25]. These studies used CHO WTP4 cells,

which are not killed by LF, and the cytotoxic fusion protein FP59

[26,27], in which the N-terminus of LF is fused to the ADP-

ribosylating domain of Pseudomonas exotoxin A. CHO cells were

maintained in alpha minimal essential medium supplemented with

5% fetal bovine serum, 2 mM glutamine, 50 mg of gentamicin/ml,

and 25 mM HEPES. In Schild plot analyses, cells were incubated

with various concentrations of FP59 plus PA (constant at 12 nM)

in the presence of different fixed concentrations of the LF protein

being analyzed, which acted as a non-toxic competitor of FP59.

After 3 h, the toxins were replaced by media containing 10 mM

NH4Cl to inhibit further toxin delivery to the cytosol [24,28,29].

Cells were then incubated for 48 h at 37uC followed by MTT

addition for cell viability determination. Data were analyzed by

Graphpad Prism software to calculate binding constants.

Animal experiments
Female Fischer 344 rats (Taconic Farms Germantown, NY, 170–

190 g) were injected via the tail vein (200 ml/rat) with a mixture of

PA+LF (LT), prepared in sterile PBS. Concentrations and doses of

LT refer to the amounts of each component (i.e. 10 mg LT is 10 mg

PA+10 mg LF and 100 mg LT is 100 mg PA+100 mg LF). The same

PA preparation was used in combination with different LF proteins.

Rats were observed continuously for signs of malaise and mortality.

Balb/cJ mice (Jackson Labs, Bar Harbor, ME) were injected IP

(1 ml/mouse) with different doses of LT and monitored for up to 7

days for malaise and mortality. All animal experiments were

performed under protocols approved by the NIAID Animal Care

and Use Committee.

Results

Toxicities of LF proteins produced from avirulent B.
anthracis strains

LF has been expressed and purified in many laboratories from a

variety of expression hosts, including E. coli, B. subtilis and B.

anthracis. This laboratory produces LF from non-toxigenic strains

of B. anthracis. Originally, we prepared LF as well as PA and EF

from the Sterne strain of B. anthracis [15,16] grown in a manner

similar to that used to produce the currently licensed anthrax

vaccine [30]. A sample of LF produced in this way, kept frozen at

280uC since 1984, and here designated LF-A/St, was available

for use in the current study (Fig. 1). Subsequently, to facilitate

production of mutated proteins and to eliminate concerns about

contamination of one toxin component with the others, the LF

gene was cloned into a recombinant shuttle vector, pSJ115, which

was transformed into various B. anthracis strains cured of the pXO1

and pXO2 virulence plasmids [18]. LF expressed from pSJ115 is

here termed LF-HMA to denote the presence of the two residues

His-Met (HM) added at its N-terminus due to the cloning

manipulations. This expression system is licensed to List Biological

Laboratories (Campbell, CA), and the LF sold by them is therefore

also LF-HMA. All the LF proteins produced in our lab from B.

anthracis are secreted proteins containing signal peptides that are

cleaved by the endogenous signal peptidases during secretion.

Over the course of several years, we noted that multiple batches

of LF-HMA were less toxic than LF-A/St (data not shown). Based

on the hypothesis that the reduced toxicity of LF-HMA was due to

the two additional residues (HM), we mutated pSJ115 to remove

the two codons specifying HM, producing LF-A, with the native

N-terminal sequence matching LF-A/St (Fig. 1). Because secreted

proteins can undergo degradation by co-secreted bacillus proteases

in the bacterial culture supernatant or during protein purification,

we also constructed LF proteins with cleavable N-terminal

sequences or tags. Thus, the LF-A/X protein (Fig. 1) was obtained

from a secreted precursor protein processed by the bacterial signal

peptidases to yield a LF protein having a 6-residue N-terminal

extension. The purified protein was then cleaved with the factor

Xa protease to yield an N-terminal Ala (Fig. 1). A similar construct

was made in which the factor Xa cleavage site is preceded by a

Myc tag, which can be used for affinity purification and for

detection (LF-A/MyX, Fig. 1). The ability to precisely control the

N-terminus of each protein by factor Xa cleavage also eliminated

any heterogeneity that might occur if the selection of cleavage site

by the signal peptidase was inexact. We found that the insertion of

Importance of N-Terminus of LF
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the Myc tag and factor Xa recognition sequences after the signal

peptide had no measurable impact on protein yields (data not

shown). Precursor proteins purified from supernatants of B.

anthracis BH450 were cleaved with factor Xa to remove the N-

terminal extensions and to obtain mature mutated LF proteins

with different N-terminal amino acids (Fig. 1). Western blot studies

with anti-Myc antibodies were used to verify the initial presence of

the Myc tags and their subsequent removal by cleavage with factor

Xa (data not shown).

LF-A and LF-A/X showed enhanced toxicity as compared to

LF-HMA in macrophage cytotoxicity assays (Fig. 2A, Table 1).

The EC50 values (concentration required to kill 50% of the cells) of

LF-A and LF-A/X were approximately 3-fold lower than those of

LF-HMA (Fig. 2A, Table 1), and were comparable to the values

found in other experiments for LF-A/St (data not shown). Because

LF-A/St, LF-A and LF-A/X have the exact same N-terminal

sequence while LF-HMA has two additional residues at the N-

terminus (Fig. 1) but the latter has lower potency, we performed

more extensive analyses of the role of the N-terminal residue,

described below.

The N-end rule is predictive of LF potency
The ‘‘N-end rule’’ states that for certain proteins, the identity of

the N-terminal amino acid residue determines the rate of cytosolic

ubiquitinylation and thereby the rate of degradation by the

proteasomes. The fact that the His at the N-terminus of the LF-

HMA is classified as a destabilizing residue compared to Ala, at

least in Saccharomyces cerevisiae [31] and in Vero-Dr22 cells [32] ,

suggested that the N-end rule might apply to LF stability in cells.

To examine this possibility, the N-terminus of LF was substituted

with the amino acid residues Gly, Arg, Met, Phe, and His (Fig. 1).

These proteins and LF with the native N-terminal Ala were

produced with the Myc tag and factor Xa site, and designated as

LF-Z/MyX (Fig. 1, with Z representing the substitution and X

denoting presense of a factor Xa cleavage site). According to the

N-end rule, Gly and Met are classified as stabilizing residues while

Arg and Phe are considered destabilizing ones [22,31,33].

Cytotoxicity assays in the mouse macrophage RAW264.7 cell

line were performed to compare the activities of the mutated LF

proteins. LF with the most stabilizing residue, Met (LF-M/MyX)

was as toxic as wild type sequence LF-A/MyX but more toxic than

LF with destabilizing residues Phe (LF-F/MyX) and Arg (LF-R/

MyX) (Fig. 2B). LF proteins with His (LF-H/MyX) or Gly (LF-G/

MyX) at their N-terminus were less toxic than LF-M/Myx and

LF-A/MyX but more toxic than LF-F/MyX and LF-R/MyX

(Table 1). The destabilizing residue Phe clearly had a large impact

on toxin activity, as the EC50 was increased ,6-fold compared to

LF with the most stabilizing residue, Met (Table 1). These data

clearly support the hypothesis that the N-end rule applies to LF

potency in cells, likely by controlling cytosolic stability of the toxin.

In vivo role of N-terminal residue of LF
The rapid lethality that occurs in Fischer rats following

intravenous injection of LT provides an assay that is widely used

Figure 1. Schematic representation of various LF proteins. All proteins (except LF-A/St which is wild type LF produced from Sterne strain)
were generated as secreted proteins from B. anthracis BH450. All proteins contained a signal peptide that is cleaved by signal peptidases during
secretion. Constructs with a factor Xa recognition sequence alone or preceded by the Myc epitope tag are labeled ‘‘/X’’ or ‘‘/MyX’’, respectively. These
proteins were produced as precursor proteins followed by cleavage with factor Xa protease to generate the indicated N-termini. Residue (Z) circled in
red indicates the residue mutated for each protein, i.e., Z = A, H, M, R, F, G in different mutated LF constructs.
doi:10.1371/journal.pone.0003130.g001
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in the evaluation of LF-directed therapeutics. When injections are

done accurately, the response is highly predictable, with little

deviation in time to death (TTD) for a given dose. Historically, this

laboratory’s TTD following injection of 10 mg LT using various

preparations of LF-HMA fell in a range of 73–110 min. We found

that the same dose of LT using LF-A resulted in an average TTD

of 63 min (Table 2). Furthermore, LF constructs with the N-end

rule stabilizing residues Met or Gly, and the intermediate

stabilizing residues, His and Ala, resulted in a similarly low

TTD (Table 2). LF constructs having the N-end rule destabilizing

residues Arg and Phe, however, showed higher average TTD of

78 min and 122, respectively (Table 2). The injection of a high

dose of 100 mg LT/rat did not reduce the TTD for LF-HMA

preparations below 50 min (Table 2). A 100 mg dose of LF-A,

however, resulted in a TTD of 38–39 min in every rat. LF-A/X,

produced by cleavage with factor Xa, also resulted in a similar

rapid 37 min TTD in every rat. It was gratifying that these results

exactly match, to the minute, the theoretical minimum TTD

derived by extrapolation in studies done in 1984 [34] with a LF

preparation equivalent (and possibly identical) to the LF-A/St

used in these studies.

This laboratory has also used the mouse lethality test

extensively. We found that LF-A/St, the material prepared in

1984, was significantly more potent than LF-HMA (Fig. 3A). We

extended these studies and tested LF-A, LF-A/X, LF-R/MyX,

LF-F/MyX, LF-G/MyX, LF-M-MyX and LF-H/Myx in Balb/cJ

mice at two doses, 100 and 40 mg injected IP (Fig. 3B and 3C). At

the 100 mg dose, LF-HMA was less potent than all tested LF

preparations except LF-G/MyX and LF-R/MyX. These two

proteins resulted in extended malaise in mice, with no toxin-

induced animal deaths (LF-F/MyX was not tested in this study).

All other LF preparations had significantly lower TTD than LF-

HMA. At the 40 mg dose the LF-M/Myx was clearly the most

potent construct, being the only preparation resulting in 100%

lethality at this low dose. Thus the results from the in vivo mouse

studies, despite having higher variability than the rat studies, did

support the hypothesis of involvement of N-end based stability of

proteins in animal toxicity.

Affinity of LF proteins for cell-bound PA
To determine whether the difference in the activity of LF-HMA

and LF-A is caused by differences in binding affinity, we measured

the apparent affinities (Kd) of LF-HMA and LF-A for protective

antigen (PA). For these studies, CHO WTP4 cells which are

anthrax LT-resistant but sensitive to FP59 (a chimeric toxin of LFn

and catalytic sub-unit of Pseudomonas exotoxin A) were used. FP59

is highly toxic to CHO WTP4 cells due to its catalytic activity i.e.

ADP-ribosylation of elongation factor-2 and blocking of protein

synthesis [27]. Binding affinity for different LF-HMA and LF-A

proteins was compared by measuring the sensitivity of CHO

WTP4 cells to PA plus FP59 when LF-HMA or LF-A were used as

competing inhibitors of toxicity. Addition of fixed concentrations

of LF-HMA or LF-A shifted the PA plus FP59 cytotoxicity dose-

response curves (Fig. 4). The EC50 values of FP59 plus PA

cytotoxicity dose responses in the presence of various fixed

concentrations of LF-HMA or LF-A were determined and a non-

linear regression fit analysis was performed using the equation

Y = 2log(X+10log Kd)2P, where Y = 2log(EC50) (nM), X = [LF-

HMA] or [LF-A] (nM), and P is a constant, (see http://www.

graphpad.com/curvefit/schild.htm for details). The results show

that the apparent affinities of LF-HMA and LF-A to PA are very

similar, 0.19 nM and 0.17 nM, respectively (Fig. 4). Thus, these

data show that the difference in the activity of LF-HMA and LF-A

is not due to the altered binding to PA.

Discussion

The production of LF (and PA) from B. anthracis has a number of

advantages that, together with the improvements reported here,

recommend its continue use as a host for production of LF and

PA, which have value as biological research reagents and as

components of anthrax vaccines. Secretion to the culture

supernatant from the native host organism assures that processing

(e.g., by the signal peptidase) and folding will be optimal. Because

Figure 2. Cytotoxicity of LF proteins to RAW264.7 cells.
RAW264.7 cells were incubated with various concentrations of LF-
HMA, LF-A, and LF-A/X proteins (A) or LF proteins with mutated N-
termini (B) and a fixed concentration of PA (250 ng/ml). Cell viability
was assessed at 3 h. Percent viability was calculated relative to cells
treated with medium (no toxin).
doi:10.1371/journal.pone.0003130.g002
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B. anthracis secretes few proteins and little protease activity, due to

truncation and inactivation of the global transcriptional regulator

PlcR [35,36], the secreted toxin proteins typically constitute more

than half of the supernatant proteins. In this laboratory, a 3-L

shake flask culture typically yields 200 mg of purified LF. A final

advantage when the LF is to be used in studies of signal

transduction pathways is the absence of gram-negative endotoxin.

Data collected over several years in our laboratory indicated

that purified LF-HMA, either made in our laboratory or

purchased from List Laboratories, was less toxic in macrophage

toxicity assays when compared to LF purified from the B. anthracis

Sterne strain. LF-HMA differed from LF-A/St only in two N-

terminal residues (His and Met). We hypothesized that the

decreased potency of LF-HMA could be due to the lower stability

of protein once it is internalized to the cell cytosol, as might occur

if the N-end rule were operative for LF. Previous studies had

provided evidence that the N-end rule applied to proteins

containing the N-terminal LF domain [19], and since recognition

of proteins by the ubiquitinating enzymes typically depends on a

small region near the N-terminus of proteins, it was expected that

the N-end rule would also apply to native, full-size LF. We tested

this hypothesis by constructing recombinant LF proteins having

the same sequence as LF-A/St, either as a result of signal peptide

cleavage, or by cleavage of precursor proteins at a factor Xa

protease site (with or without a Myc tag upstream). All three such

proteins, LF-A, LF-A/X and LF-A/MyX, had three-fold lower

EC50 values (i.e., higher potencies) than LF-HMA in macrophage

toxicity assays, similar to what was historically observed for LF-A/

St. In the Fischer rat assay of LT potency, the lowest TTD

observed for LF-HMA was 50 min. In contrast, LF-A and LF-A/

X were lethal to rats within 37–39 min, respectively, in exact

correspondence to a theoretical minimum TTD previously

obtained by extrapolation in 1984 [34].

We further tested the role of N-end rule in controlling the LF

stability in cells by producing mutant LF proteins with different N-

termini. The N-end rule predicts that proteins bearing charged

Table 1. Toxicity of LF proteins to RAW 264.7 cells.

LF Proteins EC50 (ng/ml) * Source of data Estimated half life (h)#

Reticulocyte lysates Vero-Dr22 cells Yeast

LF-HMA 3.7 Fig. 2A 3.5 1.08 0.16

LF-A 1.2 Fig. 2A 4.4 2.9 .20

LF-A/X 1.1 Fig. 2A 4.4 2.9 .20

LF-A/MyX 1.4 Fig. 2B 4.4 2.9 .20

LF-R/MyX 6.1 Fig. 2B 1 0.83 0.03

LF-G/MyX 4.0 Fig. 2B 30 9.8 .20

LF-F/MyX 9.5 Fig. 2B 1.1 0.51 0.05

LF-H/MyX 3.9 Fig. 2B 3.5 1.08 0.16

LF-M/MyX 1.5 Fig. 2B 30 19.3 .20

*EC50 is the (effective) concentration of toxin required to kill 50% of cells. RAW264.7 cells were incubated with LF proteins and 250 ng/ml PA and viability determined as
described in Methods.

#Estimated half life is that measured for a Beta-galactosidase test protein having the same N-terminus when incubated in rabbit reticulocyte lysate or when produced in
vivo in Saccharomyces cerevisiae [31]. Half life in Vero-Dr22 cells mentioned here is for diphtheria toxin as reported earlier [32].

doi:10.1371/journal.pone.0003130.t001

Table 2. Toxicity of LF proteins in rats.

LF Proteins Dose (mg/rat) Survival* TTD (min) Average TTD (min)

LF-HMA 10 0/25 97, 97, 102, 130, 91, 92, 93, 93, 93, 93, 94, 94, 95, 73, 75, 95, 95,
96, 96, 97, 102, 102, 106, 107, 109

97

LF-A 10 0/25 62, 70, 53, 55, 56, 57, 57, 61, 61, 62, 65, 65, 66, 71, 76, 60, 60, 60,
55, 58, 59, 71, 73, 75, 76

63

LF-R/MyX 10 0/3 80, 77, 76 78

LF-F/MyX 10 0/3 98, 145, 124 122

LF-G/MyX 10 0/3 66, 65, 66 66

LF-M/MyX 10 0/3 60, 65, 65 63

LF-H/MyX 10 0/3 62, 65, 65 64

LF-A/MyX 10 0/3 62, 63, 61 62

LF-HMA 100 0/3 51, 51, 50, 54, 53 52

LF-A 100 0/3 39, 39, 39, 38, 38, 38, 38, 39 39

LF-A/X 100 0/6 37, 37, 37 37

*Fisher 344 Rats were injected with 10 mg PA or 100 mg PA plus equivalent amount of each LF preparation (IV) and monitored for minutes to death.
doi:10.1371/journal.pone.0003130.t002
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basic (type 1, e.g. Arg or Lys) or large hydrophobic (type 2, e.g.

Phe or Trp) N-termini are targeted more rapidly to the

proteasomes. These residues are termed ‘‘destabilizing’’ residues.

On the other hand, certain N-terminal residues such as Met or Gly

are highly stabilizing [31]. The N-end rule has been observed for

many proteins which have shown similar but not identical patterns

in terms of the effect of a specific amino acid on the protein

stability [32,33,37,38]. In our studies, LF with the stabilizing

residue Met was the most toxic in both cell culture and two animal

models. As predicted by the N-end rule, the LF protein with the

stabilizing Gly N-terminus was comparable to a LF construct with

native wild type amino terminus (Ala) in cell toxicity studies and

the rat lethality model. Addition of the potent destabilizing

residue, Phe, to LF resulted in significantly decreased LF potency

for both macrophages and rats, while an intermediate destabilizing

residue, Arg, showed predictable intermediate effects both in vitro

and in vivo. The amino acid His has been shown to have variable

destabilizing effects for different proteins depending on the cell

type [31,32]. In the case of LF, both His and the native N-terminal

residue, Ala, did not have a destabilizing effect and behaved

similarly to the LF construct with the stabilizing Gly residue,

however, they behaved differently in cell toxicity experiments. The

results of these mutational studies, especially those observed for the

highly stabilizing residue Met (in LF-M/MyX) and the highly

destabilizing residue Phe (in LF-F/MyX) clearly indicate that the

N-terminus has a significant impact on the activity of lethal factor

both in cell toxicity studies, as well as in animals.

Although our data implicates the N-end rule as determining and

explaining the relative potencies of the LF proteins discussed here,

we cannot exclude that other factors may contribute to the effects

we observed. The N-terminal domain of LF initiates the entrance

of LF into the channel formed by the PA heptamer, but residues

near the N-terminus are not involved in binding to PA [39,40],

nor is there evidence that they are needed for translocation. Thus,

N-terminal truncation of LF by more than 13 residues was needed

to strongly decrease the ability of LF to enter the PA heptamer

channel [41], suggesting that the identity of individual residues

near the N-terminus is not critical in translocation. This makes it

less likely that the substantial effects we see from substitution of

single N-terminal residues on activity are due to alternation of the

translocation process.

The clear role of LF stability in the Fischer rat model of LT

sensitivity is especially striking. The variability in TTD and

potency of the different LF proteins tested in this study can easily

explain the high degree of variability seen in the dosages required

by different laboratories for LT lethality in various animal models.

LF preparations purified from bacterial hosts can yield a

Figure 3. Toxicity of LF proteins to mice. (A) LF-HMA and LF-A/St
(100 mg) were injected in Balb/cJ mice in combination with 100 mg PA
via the IP route and survival was monitored for 120 h. Each group
contained n = 5 mice. (B) LF proteins (100 mg) were injected in Balb/cJ
mice in combination with 100 mg PA via the IP route and survival was
monitored for 120 h. Mouse numbers used in this experiment were as
follows: LF-HMA (n = 9), LF-A (n = 9), LF-A/X (n = 5), LF-G/MyX (n = 3) and
all other groups n = 4. (*) The animals in LF-G/MyX and LF-R/MyX groups
exhibited substantial malaise starting at 24 h and throughout the
experiment and were euthanized at 128 h to prevent suffering in
accordance with approved animal protocols. (C) LF preparations
(40 mg) were injected in Balb/cJ mice in combination with 40 mg PA
via the IP route and survival was monitored for 120 h. Mouse numbers
used in this experiment were as follows: LF-HMA (n = 14), LF-A (n = 9),
LF-A/X (n = 5) and all other groups n = 4. (**) The surviving animals in
these groups did not display any signs of malaise over the last 48 h of
the experiment.
doi:10.1371/journal.pone.0003130.g003
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heterogeneous population of proteins with a range of N-termini

(data not shown). The mixture of different N-termini in a

particular LF preparation can greatly affect the potency. In fact,

in our laboratory, where LF production is a routine and frequently

performed procedure, we have on rare occasions obtained

preparations of LF that produce much higher TTD in the

uniquely sensitive Fischer rat model when compared to previously

validated standard LF preparations. Similarly, different potencies

have also been noted with commercially available LF preparations

(data not shown). We believe that variable levels of different N-

termini in each preparation, generated through the purification

process or by bacterial proteases may explain potency differences

in these and other laboratories’ preparations. We suggest that new

approaches to LF preparation, such as generation of uniform N-

end termini as demonstrated in this work, offers a route to limiting

this variability.
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Figure 4. Evaluation of the apparent binding affinities of LF-HMA and LF-A for PA using Schild Plot analyses. CHO WTP4 cells were
incubated with various concentrations of FP59 plus a set concentration of PA (12 nM) and different concentrations of LF-HMA (A) or LF-A (B) for 3 h.
After toxin removal, cells were incubated with the toxin-free medium containing 10 mM NH4Cl for 48 h before assessment of cell viability. Schild Plot
analyses were performed as described in ‘‘Methods’’ to assess Kds of each LF protein for PA. Inserts shown in panels A and B are non-linear regression
curves obtained from these analyses using GraphPad Prism.
doi:10.1371/journal.pone.0003130.g004
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