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RNAStructuromeDB: A genome-
wide database for RNA structural 
inference
Ryan J. Andrews1, Levi Baber   2 & Walter N. Moss1

RNA plays important roles in almost every aspect of biology, and every aspect of RNA biology is 
influenced by its folding. This is a particularly important consideration in the era of high-throughput 
sequencing, when the discovery of novel transcripts far outpaces our knowledge of their functions. 
To gain a comprehensive picture of biology requires a structural framework for making functional 
inferences on RNA. To this end we have developed the RNA Structurome Database (https://
structurome.bb.iastate.edu), a comprehensive repository of RNA secondary structural information 
that spans the entire human genome. Here, we compile folding information for every base pair of 
the genome that may be transcribed: coding, noncoding, and intergenic regions, as well as repetitive 
elements, telomeres, etc. This was done by fragmenting the GRCh38 reference genome into 
154,414,320 overlapping sequence fragments and, for each fragment, calculating a set of metrics 
based on the sequence’s folding properties. These data will facilitate a wide array of investigations: 
e.g. discovery of structured regulatory elements in differential gene expression data or noncoding RNA 
discovery, as well as allow genome-scale analyses of RNA folding.

Once thought to be solely an intermediary between the genome and proteome, RNA is now known to be a key 
player in the biology of all living things (as well as viruses, viroids and transposable elements). In addition to 
carrying the genetic information needed to generate proteins, RNA can also act as a catalyst1,2, encode signals 
for subcellular localization3–5, and regulate gene expression6. RNA’s gene regulatory roles can occur in-cis, via 
sequence/structure elements embedded within messenger (m)RNAs: e.g. regulatory elements in untranslated 
regions (UTRs) and introns can affect translation5,7 alternative splicing8, and mRNA lifetime/abundance9 
Additionally, RNA can regulate gene expression in-trans via intermolecular base pairing between mRNAs and 
noncoding (nc)RNAs such as micro (mi)RNAs10,11, as well as through interactions that mediate the epigenetic 
control of gene expression: e.g. the Xist long (l)ncRNA that associates with one of two X chromosomes in mam-
malian females and leads to chromosomal condensation and inactivation. A great deal of work has gone into 
identifying, understanding, and archiving cis- and trans-regulatory sites on human mRNAs. For example, the 
regulatory (reg)RNA12 web server contains a large repository of data on various motifs, such as splicing reg-
ulatory motifs, polyadenylation signals, and mRNA degradation elements; drawing from additional databases 
of cis-regulatory elements: e.g. ERPIN13, fRNAdb14, and Rfam15. The RBPMap web tool allows users to deduce 
primary sequence binding motifs on RNAs for a wide array of regulatory proteins16.

The list of new ncRNAs and novel functions of ncRNAs grows daily: however, this is likely only the “tip of the 
iceberg”. The current release of the human genome reference sequence (GRCh38.p10) is 3,088,269,832 base pairs 
(bp) long (Genome Reference Consortium). Approximately 90% of our genome is transcribed into RNA17 yet, 
only 1.5% encodes protein. This results in a staggering amount of potentially functional RNA to be characterized. 
Although some of this pervasively transcribed RNA may be “junk”, many of these sequences are differentially 
expressed (compiled within the NRED database18) in diseases such as cancer19–21, or under conditions of cellular 
stress22. Considerable effort is underway to identify and elucidate the functions of ncRNAs. A number of labs 
have been recording and annotating sequences recovered from high-throughput sequencing and more traditional 
molecular and cell biology approaches. Collections of ncRNA sequences are being built into databases such as 
Rfam15,23, lncRNAdb24,25, LNCipedia26,27, mirBASE28–32 and RNAcentral33–35. These important projects are com-
piling well-annotated and, in many cases, functionally validated ncRNAs alongside other valuable data. The RNA 
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families (Rfam) database, for example, contains entries for families of ncRNAs linked by homology. Rfam entries 
contains information describing ncRNA biosynthesis, localization, phylogenetic distribution and functional roles, 
as well as evolutionary conservation of primary sequence and, importantly, secondary structure. Conservation of 
secondary structure is a defining feature of ncRNAs and is used in essentially all ncRNA prediction programs36.

A powerful, and popular, program for genome-wide ncRNA prediction is RNAz37–40. This program is based 
on a support vector machine (SVM) that is trained on data from known ncRNAs contained within Rfam. Two 
primary training parameters are used for ncRNA classification: a structure conservation index (SCI), which 
measures conservation of secondary structure and a thermodynamic z-score, which measures the propensity of 
a particular sequence to form a defined and energetically stable structure. Typical ncRNAs have structures with 
high conservation and propensity to form structure. RNAz was previously used to scan through whole genome 
alignments comparing human vs. animal genomes (ranging in similarity down to zebrafish) to identify putative 
ncRNAs. This yielded >30,000 high-confidence predictions with ~1,000 that were conserved throughout all ver-
tebrates41. The identification of so many deeply conserved structured RNAs highlights their likely ubiquity and 
importance.

In both coding and noncoding RNAs, secondary structure plays key roles throughout their functions. The 
diversity of RNA functions and potential for physiological impact (much like with proteins) is made possible by 
the ability of RNA to fold into unique functional structures. Functional RNA structures form thermodynam-
ically stable base pairs that have been selected for by evolution42. This is the key principle behind the thermo-
dynamic z-score implemented in RNAz: functional RNAs have a more stable folding energy than randomized 
sequences. Specific folds can be recognized by regulatory proteins43, occlude/present functional motifs44, or alter 
the distance between functional sites45.The impact of RNA structure on alternative splicing, for example, has 
been particularly well-studied46,47. Additionally, awareness of the importance of non-specific RNA structure (e.g. 
regions that do not form particular folds or adopt dynamic structures) is growing. For example, thermodynam-
ically stable regions within open reading frames are proposed to modulate the speed of translation and thus 
affect protein folding48,49. RNA intramolecular thermodynamic stability is important in mediating its accessibility 
for intermolecular interactions: e.g. stable regions in UTRs are less accessible to miRNA binding, thus affecting 
miRNA-mediated gene silencing50. Dynamic RNA structure also has significance to disease: single nucleotide 
polymorphisms (SNPs) can affect RNA folding in ways that impede healthy function by disrupting specific motifs 
or altering conformational equilibria51,52.

Advances in sequencing technology will continue to massively expand the list of interesting RNA sequences 
and, excitingly, also provide information on secondary structure. Several in-vivo RNA structure probing tech-
niques have been developed to acquire transcriptome-wide folding information53. Snapshots of the human “RNA 
structurome” (ranging across tissue/cell types, disease states, and treatments with drugs) will become more 
common in the near future; informing our knowledge of human biology and advancing our understanding of 
pathogenesis. For this reason, and the reasons discussed above, it is critical to have a knowledge framework 
in place to understand the roles of RNA structure in human biology. This is the motivation for the creation of 
the RNAStructuromeDB. Here, we have compiled computed RNA folding information across the entire human 
genome, irrespective of whether or not it is known to be transcribed. The RNAStructuromeDB is a web-accessible 
(https://structurome.bb.iastate.edu) repository for investigators to obtain structural metrics for any RNA 
sequence originating from the human genome. To further aid investigators we have put the data into context 
by incorporating comprehensive Gencode annotations54 using the biological database schema Chado55. This 
allows the rapid comparison of differential gene expression data (e.g. to identify regulatory RNA structures) or 
transcriptome-wide RNA biochemical probing data against the RNAStructuromeDB facilitating these, and other 
types of studies.

Results and Discussion
The RNAStructuromeDB holds the results of a genome-wide computational analysis in which we folded the entire 
human genome. The results of this analysis are comprised of folding metrics which indicate every region of the 
genome’s propensity to generate structured RNA molecules. Tools have been built by which users can quickly 
download these metrics or use them to search for novel RNA structural elements or to assess the global folding 
properties of a transcript. Here we present the metrics that will aid in the investigation of RNA structure/function, 
and the tools which have been developed to view these metrics effectively.

Data types.  To analyze a genome as large as the human genome requires fragmenting the sequence data into 
smaller pieces that are both computationally tractable, as well as biologically meaningful. The fragmentation 
approach taken in the construction of the RNAStructuromeDB is similar to those that were successfully used for 
the analysis of RNA structure in the human and other genomes39–41,56–58 as well as in specific lncRNAs59. Here 
we consider discrete, overlapping windows whose size was selected based on several considerations. Due to the 
kinetics of RNA folding, RNAs typically fold into structures composed of smaller motifs; for example, lncR-
NAs like HOTAIR (2,421 nt) are comprised of locally folding domains (4 domains), each containing many local 
substructures (e.g. RNA hairpins60). Additionally, the majority of known RNA sequences/structures archived in 
Rfam are short (<200 nt long). Incidentally, a window size spanning 100 to 150 nt was shown to be most accu-
rate at predicting base pairs in known cis-regulatory structures of large mRNA molecules (>85,000 nts long)61. 
Finally, folding algorithms scale O(N3) in time and O(N2) in memory, where N is the sequence length62; thus, 
shorter sequences, in addition to yielding more accurate predictions, can be folded more quickly and efficiently. 
With these factors in mind, a window size of 120 nt was selected to maximize the chance of encapsulating struc-
tured elements, while also optimizing prediction accuracy and computational resources. A step size of 40 nt was 
selected to ensure the entire genome is canvassed with multiple frames, increasing the likelihood of capturing all 
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structured elements. This window and step size resulted in the generation of 154,414,320 windows which were 
analyzed in both strand orientations.

For each window, five folding metrics were calculated and archived. The Gibb’s minimum free energy (MFE) 
of folding (ΔG), which estimates the thermodynamic stability of the most stable 2D conformation of an RNA 
given Turner nearest neighbor energy parameters63,64 (a set of experimentally measured values taken from the 
analysis of many small RNA motifs). The ΔG was calculated using the program RNAfold, which is a component 
of the ViennaRNA package63; predictions were made at 37 °C (human body temperature) and values are reported 
in kcal/mol. 2D structures associated with window MFE predictions were captured and archived in “dot-bracket" 
notation; here, paired nt are represented by matched brackets “()” and single stranded nt by dots “.”. To determine 
if the MFE ΔG depends on the nt order or composition, we compared the native sequence ΔG vs. in silico rand-
omized sequences with the same nt composition. In general, structured ncRNA molecules have lower (more 
stable) MFE values than random sequences of the same nucleotide composition65; a property which can be 
exploited for structured RNA motif discovery66. For each window, we report the thermodynamic z-score. The 
z-score is calculated by taking the difference between native MFE (ΔGnative) and the mean MFE of random 
sequences (ΔG )random , then normalizing by the standard deviation, as described in equation (1) in the Materials 
& Methods section. The z-score sign indicates if the native MFE is either lower (negative) or higher (positive) than 
ΔGrandom and its magnitude indicates the standard deviations ΔGnative is from ΔGrandom. A z-score less than −1, 
for example, indicates a ΔGnative which is one standard deviation lower than random. Negative z-score suggests 
that a sequence’s order was selected by evolution to fold into a stable structure42: e.g. if the order is important, 
shuffling nt will lead to less stable folds by disrupting native (evolved) pairing contacts that give the RNA thermo-
dynamic stability. Positive z-scores are harder to interpret, however, they could suggest regions of RNAs that are 
evolved to be more accessible/unstructured59. The z-score can also be qualified using the p-value, which is calcu-
lated as the fraction of ΔGrandom values with more thermodynamic stability than ΔGnative. This provides a measure 
of the z-score quality, where p-values close to zero indicate higher prediction confidence: few or no randomized 
sequences are more stable than the native sequence; this also indicates if the randomization number is high 
enough to yield reliable z-scores.

Two values are recorded which measure statistical properties of the RNA 2D folding ensemble: the ensemble 
diversity (ED) and the frequency of the MFE (fMFE) metrics. Structured RNAs have rough folding landscapes 
(with many “suboptimal” folds that are near in energy to the native MFE fold) and, in some cases, are capable of 
occupying several conformations. The probably of finding any of these structures within the Boltzmann ensem-
ble is mathematically described by the partition function67, which was calculated using RNAfold63. From this 
partition the ED is calculated by taking the average base-pair “distance” between all structures in the ensemble, 
where distance is defined as the number of base pairs different between structures65. The ED then, is a metric to 
mathematically signify the variety of folding structures within the ensemble (a low ED implies a small number 
of similar structures are present, while a high ED suggests several alternative folds or a lack of overall structure 
in the ensemble68). The fMFE metric is the probability of finding the MFE within the Boltzmann distribution of 
structures, where a high probability suggests the MFE structure is more likely to be the dominant fold.

The five archived metrics each suggest regions of the human genome that may generate RNAs with interesting 
folding properties. The MFE ΔG defines the thermodynamic stability, while the z-score suggests whether or not 
that stability is unusual (given the sequence composition). A region can have a very stable ΔG, but mediocre (or 
positive) z-scores because the order is unimportant vs., for example, the GC content. The p-value estimates the 
quality of the z-score. If almost every randomized sequence is less stable than native, then the likelihood of the 
order being significant is higher. The ED and fMFE indicate the diversity of the RNA folding ensemble in a region 
and how well-represented the MFE prediction is in the 2D structural ensemble, respectively. These can suggest 
which regions have well-defined folds (e.g. with low ED and high fMFE) or where folding may be diverse (e.g. 
dynamic regions or regulatory structural switches that have higher ED and low fMFE). Taken together, these 
metrics can also suggest which regions may be harboring functional structures. Overlapping windows with inter-
esting folding metrics can be concatenated to define larger regions of interest, which can then be used for com-
parative sequence/structure modeling69 or ncRNA prediction (e.g. using approaches such as RNAz37–40. Examples 
of how the metrics contained in the RNAStructuromeDB can be used are discussed below in the “Examples” 
subsections.

Data accessibility.  There are three main methods for accessing the data: flat files, data tables, and via an 
interactive genome browser. Users can freely download raw data as flat files in generic feature format version three 
(GFF3) directly from the download page (https://structurome.bb.iastate.edu/downloads). GFF3 is a standardized 
file format developed by The Sequence Ontology70 for the sharing of genomic information in a unified manner 
and is compatible with several bioinformatics programs. This file contains each window’s sequence, coordinates, 
strand orientation (forward or reverse), MFE, z-score, p-value, ED, fMFE and dot-bracket 2D structure. This data 
format will allow interested end-users to parse out trends using their preferred methods or protocols; however, 
users may want to filter the metrics, downloading only information relevant to their needs/interests. Therefore, 
we have also created an interface where a user can filter and search for data based on any combination of genomic 
coordinates, Ensembl IDs, gene symbols, or folding metrics—facilitating varied inquiries. Investigators interested 
in multiple genes can quickly search for, populate, and download folding metrics coinciding with each gene as a 
single consolidated CSV (comma-separated values) file. Conversely, a user may have discovered an RNA mole-
cule lacking any established annotations; as long as coordinates are supplied, this user will find folding metrics 
for their novel transcript as well. This genome-wide analysis provides the freedom to obtain data from any known 
or novel transcript.

https://structurome.bb.iastate.edu/downloads
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The JBrowse genome browser provides significant insights into the structural landscape of each chromosome 
via a customizable visual interface. Within the JBrowse interface, folding metrics have been adapted to allow for 
rapid structural inferences to be made: they are displayed as bar graphs canvasing each chromosome sequence. 
Each folding metric (MFE, z-score, p-value, ED, and fMFE) has been split into separate graphical tracks that can 
be displayed parallel to genomic annotations. A user interested in a specific transcript will be able to observe the 
folding metrics of its constitutive features (exons, introns, and UTRs are all displayed with unique visualizations), 
while at the same time be able to see the folding metrics of the entire gene within greater genomic context. The 
human eye is very good at identifying patterns (e.g. within the structure of the data represented in the JBrowse 
tracks) and visualizing the genome, transcriptome and predicted RNA structurome simultaneously can facilitate 
discovery. Examples are given below.

Example 1: The MALAT1 lncRNA.  Currently, thousands of lncRNAs have been discovered in the human 
transcriptome and a growing list has been assigned functions and are implicated in diseases such as cancer71–73; 
however, most lncRNAs and their functions remain uncharacterized73. One aspect of lncRNA function that 
remains controversial, is the role played by RNA secondary structure. Many reports describe extensive local 
or global folding for lncRNAs59,60,74; yet, statistical evidence of structure conservation remains tenuous75. It is 
worth noting that, even in the absence of high structural conservation, RNA folding can play functional roles76. 
Analyzing lncRNA folding landscapes and building 2D structural models of these molecules will aid in under-
standing their mechanisms of action (e.g. in detecting regulatory structural motifs) and, possibly, in developing 
therapeutic strategies77 to modulate function. lncRNAs tend be modular in structure, consisting of multiple struc-
tured domains78. Sliding window approaches for RNA structure detection are able to roughly define the extent 
of these domains59. The RNAStructuromeDB suggests these domains for all potential human lncRNAs with the 
folding metrics and local structural models necessary to begin to decipher the structure and function of these 
transcripts.

For example, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is a highly conserved 
(throughout 20 mammalian species, including mouse and human79) lncRNA, which is involved in numerous cel-
lular processes (e.g. transcriptional regulation80, alternative splicing81, and cellular localization82) and implicated 
in disease states: such as cancer83 and diabetes84. Here, the RNAStructuromeDB data table interface is used to 
define the structured domains of MALAT1 (summarized in Fig. 1). Upon inputting the MALAT1 target (specified 
by genomic coordinates, gene symbol, or Ensembl ID), all overlapping folding metric windows are extracted from 
the DB. These can be browsed on the website or downloaded as a single CSV file. With these data, investigators 
can use any method to define structured regions; in this example, regions with overlapping windows having 
z-scores 1 σ more negative (< −1.70) than the average MALAT1 z-score (−0.51) were concatenated into domains 
(similar to previous work on the Xist lncRNA59). This resulted in seven domains (labeled I–VII in Table 1) likely 
to generate structured RNAs and 11 individual windows with z-scores less than −1.70. Concatenated domains 
range from 160 to 280 nt (comprising two to six overlapping windows). Interestingly, in addition to their low 
z-scores, the defined domains also have lower than average ΔGnative (in all but domain II) and ED scores (Table 1), 
suggesting stable folding with one (or few) dominant conformations in the structural ensemble. Structure mod-
els for individual windows can be analyzed directly from the RNAStructuromeDB. For example, domain VII 
contains a window (positions chr11:65,506,081–65,506,200) that contains a known structured element impor-
tant to MALAT1 maturation and that also has independent functions in the cell: the MALAT1-associated small 
cytoplasmic (masc)RNA85. The terminal window in this domain contains the predicted model of the mascRNA 
(highlighted in Fig. 1d), which correctly predicts the mascRNA tRNA-like folding this is essential to its function. 
Sequences corresponding to each longer domain can be used for structure modeling: e.g. using RNAfold locally 
or through the RNAfold web server86, be used for BLAST87 searches to identify homologs, aligned to related 
sequences, and used for consensus folding, comparative sequence/structure analyses and ncRNA prediction (e.g. 
using the RNAz server38–40). Links to all of these tools can be found on the RNAStructuromeDB website.

Example 2: The VEGFA gene.  In 2008, the first human riboswitch was discovered in the mRNA of vascu-
lar endothelial growth factor-A (VEGFA)44. Within this mRNA, is a region of the 3′ UTR which can adopt two 
structural conformations, each of which leads to different translational levels of VEGFA. The adoption of either 
conformation is mediated by protein binding which occurs as a result of hypoxic signaling. When expressed in 
high abundance (under hypoxic conditions) the regulatory protein hnRNP L binds to the VEGFA riboswitch 
causing two sequences, known as the GAIT (gamma interferon inhibitor of translation) element and the stem sta-
bility sequence (Fig. 2d), to anneal to each other: inhibiting association with the GAIT complex and stimulating 
VEGFA expression. When hnRNP L is not highly expressed (under normoxic conditions), these elements form 
their own discrete hairpins (Fig. 2d) and the GAIT element is able to bind the GAIT complex repressing VEGFA 
expression.

Figure 2 shows the basic pipeline involved in using the genome browser. Upon opening the JBrowse tool, a 
user is able to input genomic coordinates or Ensembl ID and navigate to their region of interest. In the case of 
VEGFA, the Ensembl ID (ENSG00000112715.21) was entered to navigate to the genome coordinates. Graphical 
representations of folding metrics are displayed as tracks, which flank the VEGFA transcript model (Fig. 2a). 
Transcript models display exons (yellow), introns (black line), and UTRs (blue) as separate entities, allowing for 
quick visual analyses. VEGFA has a multitude of low z-score windows (197 windows below average), the majority 
of which (85%) lie within introns and UTRs. The lowest z-score window in the VEGFA gene resides in the 3′ 
UTR; excitingly, this window fully encompasses the VEGFA riboswitch, highlighting the utility of the metrics 
archived in the RNAStructuromeDB as well as the ease of picking out regions of interest visually using JBrowse. 
Users can highlight this region to “zoom in” to investigate that particular window (Fig. 2b).
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Individual windows can be selected to view a “pop-up” window (Fig. 2c) containing: folding metrics, RNA 
sequence, and a dot-bracket structure model (dot-bracket structures can be conveniently represented in 2D using 
the VARNA java applet88). Using VARNA, we annotated the 2D image with the key riboswitch elements (Fig. 2d). 
The model MFE structure archived in the RNAStructuromeDB recapitulates the translation permissive (TP) con-
formation that dominates under hypoxia, where the GAIT element and stem stability sequence are annealed to 
each other. The differences in the MFE model and the TP conformation described in the literature occur primarily 
at the hnRNP L binding site. The literature model is based on enzymatic probing of an in vitro generated construct 
that terminates 5 nt upstream of the hnRNP L interaction site. The MFE model, however, includes 13 additional 
upstream nt because of the window size used. These additional nt allow for the formation of a short hairpin stem 
that sequesters part of the hnRNP L binding site in a short hairpin loop (Fig. 2d). It is worth noting that the in 
vitro model for the TP conformer is poorly defined in this region: high reactivity spans the 5′ end and a strong 

Figure 1.  Pipeline for defining “structural regions of interest” in MALAT1 lncRNA. (a) Folding metrics can be 
obtained by inputting a desired target in a data table interface and downloading a corresponding CSV file from 
a link at the bottom of the page. (b) Here, the CSV file is analyzed in excel to find windows with one standard 
deviation lower than average z-scores; implying their likelihood to contain structured RNA sequences. (c) These 
windows were concatenated to define larger regions of interest within the MALAT1 lncRNA (labeled I-VII).  
(d) One of these regions (VII*) contains a window which encompasses the mascRNA of MALAT1. The JBrowse 
popup of this window is shown; directly adjacent is the window’s sequence and MFE dot-bracket structure as 
visualized in VARNA (with annotation highlighting the mascRNA sequence shown in red).
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cleavage site occurs within one of the proposed helices in this model44. The MFE model posits novel interactions 
of the hnRNP L binding nt that may be biologically significant.

Example 3: Hyperedited regions.  In addition to the most well-known RNA post-transcriptional modifi-
cations (splicing, capping, polyadenylation, tRNA base modifications, etc.) RNA molecules can undergo endog-
enous enzyme-mediated chemical modifications; a process known as RNA editing89. The most common editing 
event in the human cell, is that performed by the adenosine deaminase acting on RNA (ADAR) enzyme family: 
Adenosine to Inosine (A-to-I) deamination. These editing events are ubiquitous throughout the body90 and likely 
play a role in regulating gene expression91 and establishing disease states92. Inosine is recognized by most cellular 
machinery (as well as the enzymes used in RNA sequencing) as guanosine; indeed it is the A-to-G transitions 
observed as variants in sequencing reads that allows one to quantify the percent A-to-I editing at a nt93. Efforts 
towards creating an “inosinome Atlas” (by conducting whole genome and transcriptome sequencing of human 
cells to detect A-to-I editing events) resulted in the identification of ~3 million A-to-I editing sites90. Given their 
quantity, likely roles in regulating gene expression, and their implication in disease states it is important to gain 
insight into the structural features of A-to-I “hot-spots”.

ADAR enzymes have a strong preference for double stranded (ds)RNA regions94. ADAR editing was first 
described in helical regions of very long hairpins found in 3′ UTRs95,96 Subsequently, many editing sites were 
found; for example, within regions containing Alu elements97 whose inverted repeat structure facilitates hairpin 
formation. This structure-preference for ADAR makes the folding metrics within the RNAStructuromeDB par-
ticularly useful for interpreting patterns of A-to-I editing data. We utilized the customizability of JBrowse to visu-
alize A-to-I editing sites alongside folding metrics in order to examine the structural landscape corresponding to 
edited regions. We prepared tracks using data from a study which looked at RNA editing in human B cells91 where 
several transcripts were discovered to be hyperedited. For example, the formin binding protein 1 (FNBP1) tran-
script was found to have the most editing events (291) of any gene, and when viewed alongside folding metrics it 
was clear that predicted structured regions aligned well to editing sites (Fig. 3). A particularly striking example 
is the window with metrics shown in Fig. 3b (as well as the genome browser tracks shown in Fig. 3c and d); this 
window has not only a highly-negative z-score (almost five standard deviations more stable than random), but 
low (favorable) MFE, ED and high fMFE values as well. This window overlaps a cluster of five highly-edited sites, 
which are annotated on the predicted structure shown in Fig. 3e. Interestingly, in addition to the highly-stable 
hairpin in the individual window, concatenating adjacent windows which overlap editing sites (or are within 40 nt 
and have a less than average z-score) can define a larger hairpin structure (677 nt long) where this particular win-
dow forms the terminal hairpin stem loop (Figure S1). Nine out of the 15 windows overlapping this region had 
z-scores lower than the transcript average (Supplementary Table 1) showing how the sliding window approach 
can still be used to define domains > the window size used (120 nt in this case). In this particular region there 
have been two inverted Alu element insertions (Fig. 3d), which provide the complementarity for forming such a 
large stem structure. As this whole region is transcribed as part of an intron, it is possible for it to fold as predicted 

region

Position z-score (ΔGnative) ED

start end average minimum average minimum average minimum

— 65497841 65497960 — −2.27 — −47.4 — 18.51

I 65497961 65498240 −2.61 −2.94 −34.34 −42.7 14.24 5

— 65498201 65498320 — −2.14 — −32.6 — 16.36

— 65498281 65498400 — −2.56 — −53.9 — 7.34

II 65499361 65499600 −2.38 −2.49 −24.42 −25.9 11.37 8.23

— 65499961 65500080 — −2.06 — −21 — 12.38

III 65500161 65500320 −2.66 −2.7 −24.76 −26.2 12.08 12

IV 65501841 65502000 −2.57 −2.86 −28.26 −35.5 11.84 4.25

— 65502001 65502120 — −2.54 — −37.5 — 19.23

— 65502881 65503000 — −2.2 — −18 — 12.84

— 65503081 65503200 — −3.28 — −40.1 — 5.03

V 65503201 65503400 −2.72 −3.07 −33.49 −38.1 12.56 10.02

— 65504041 65504160 — −2.26 — −35 — 14.03

— 65504921 65505040 — −1.87 — −31.1 — 13.72

— 65505081 65505200 — −2.17 — −38.5 — 12.31

VI 65505281 65505560 −2.72 −3.08 −37.26 −44.3 21.44 17.56

— 65505601 65505720 — −2.23 — −38.4 — 7.1

VII* 65505961 65506200 −2.79 −3.25 −34.45 −36.1 16.02 12.72

full 65497681 65506600 −0.51 −3.28 −24.52 −59.6 24.99 4.25

Table 1.  Low z-score windows and regions of MALAT1. Each region was defined as a low z-score region if 
it contained two or more consecutive windows with z-scores 1 σ lower (< −1.71) than the MALAT1 average 
(−0.50). Also reported is each region’s minimum and average ΔGnative (kcal/mol) and ensemble diversity (ED) 
value. Single windows with low z-scores (< −1.71) are also shown. Region names (I-VII) correspond to those 
shown in Fig. 1.
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into the long hairpin, which is structurally similar and similar in length to the long 3′ UTR hairpins described in 
earlier studies of ADAR editing95,96.

In addition to helping define the extent of structured domains recognized by ADAR (which could facili-
tate the design of assays to study editing, by removing/adding domains to reporters, etc.) the information in 
the RNAStructuromeDB can also offer insights into the detailed structural contexts of A-to-I editing sites. The 
primary sequence context of these editing sites is being investigated, with insights being made into flanking 
nucleotide preferences90 and tools have been created that predict editing sites based on these primary sequence 
rules98; the RNAStructuromeDB may enhance these investigations by providing secondary structure context. For 
example, we can compare the percent editing at an individual site to its structural context. In Fig. 3e, three editing 
sites occur in AU pairs (two flanked by Watson-Crick pairs, and the other at the end of a helix upstream of a 3 
nt bulge-loop) and two occur in internal loops opposite to cytosine residues. In all cases the inosine substitution 
would be expected to minimally disrupt folding energy (AU to IU pairs) or enhance stability (AC mismatch to IC 
pair). Additionally, the flanking nearest-neighbor nt can also affect stability. Thus, the folding information in the 
RNAStructuromeDB might be able to help discern sequence/structural features of editing hot spots that can help 
predict sites of editing as well as the effect of editing on RNA folding.

Conclusion
The RNAStructuromeDB is a repository of useful RNA folding metrics and a powerful vehicle for exploring the 
human genome via RNA structure. It allows users to browse, access, and retrieve the data quickly and flexibly, 
which will facilitate a wide array of researches. We presented three examples of how this database can be used: 
to generate a map of RNA folding throughout the MALAT1 lncRNA, VEGFA gene, and FNBP1 transcript. In 
each example, global properties of folding (e.g. the enrichment for stable folding in intronic or UTR regions), as 
well as the identification of functional motifs (e.g. the identification and modeling of the VEGFA riboswitch and 
stable hairpin in FNBP1) could be quickly deduced. We anticipate that this tool will have many applications both 
in basic research and in the therapeutic targeting of disease-associated human RNAs.

Materials and Methods
Overview.  Our database is housed on a Red Hat Enterprise Linux (RHEL7) server (provided by the Research 
IT group at Iowa State University http://researchit.las.iastate.edu) running Postgres 9.2, with all computational 

Figure 2.  JBrowse target identification pipeline. (a) The general JBrowse interface is shown with all five forward 
strand metrics shown as bigWig tracks. The z-score and ensemble diversity tracks have been set to pivot in color 
around their global mean values. The “Human transcript models” track visualizes transcripts from the Gencode 
comprehensive set (v26) showing UTRs in blue, exons in yellow, and introns in black. Here we have collapsed 
all transcripts in the area into a single entity via the JBrowse user interface. (b) The lowest z-score window of the 
region has been highlighted and focused on to identify and select the corresponding window (yellow rectangle 
which we have outlined with a thick black border). (c) Upon clicking this window in JBrowse, a pop-up is 
generated which reports all corresponding metrics. (d) The sequence and MFE dot-bracket structure were 
viewed and annotated in VARNA to show where the predicted structure overlaps with the previously described 
VEGFA riboswitch. Functional sites are color annotated and labeled.

http://researchit.las.iastate.edu
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and genomic data stored within the Chado schema. Folding metrics were calculated on Iowa State University’s 
High Powered Compute cluster using RNAfold (version 2.2.10) and Perl (version 5). The website pages were built 
using Iowa State University’s Luggage platform (http://luggagedocs.info/), which is constructed on an underlying 
Drupal 7 framework. Tripal99,100 (version 2.1) was used to upload all data into the Chado schema and populate 
page “views” by later pulling relevant data from the Chado schema. JBrowse API (https://github.com/isubit/tri-
pal_jbrowse_api) was used to generate JBrowse tracks directly from the Chado schema. An overview of this 
procedure is indicated in Fig. 4.

Genomic sequence and annotations files.  This analytical approach utilizes FASTA chromosomal DNA 
sequence files as input. For the human genome, the standardized reference sequence is generated by the Human 
Genome Reference Consortium. The latest major release of this human genome reference sequence (GRCh38/
hg38) was acquired from Ensembl FTP server (ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/dna/) 
as 24 separate chromosomal FASTA files (consisting of unmasked DNA sequence). Regions of sequence ambi-
guity and/or difficult to sequence nucleotides are depicted as the character “N” and were not considered in any 
calculations, but remain as placeholders within corresponding windows. Comprehensive Gencode genome anno-
tations54 (release 26) were acquired from Gencode directly in the form of GFF3 files (ftp://ftp.sanger.ac.uk/pub/
gencode/Gencode_human/release_26/gencode.v26.annotation.gff3.gz).

RNA structure, partition function and z-score calculations.  Each chromosomal FASTA file supplied 
the underlying sequence for metric calculations, and was analyzed every 40 nt using 120 nt windows. Each win-
dow fragment is run through RNAfold to calculate its MFE (value and fold) and partition function at 37 °C. 

Figure 3.  Mapping A-to-I editing events in the FNBP1 transcript. (a) A-to-I editing event frequencies (0 to 1) 
observed in ref.88 were converted to bigWig tracks and added to JBrowse via the native user interface; editing 
frequencies are shown (in-blue) directly above nine transcript models of FNBP1 from Gencode annotations 
(v26). Transcript model models depict individual transcripts with their UTRs in blue, exons in yellow, and 
introns as black lines. (b) A detailed pop-up of an interesting window located within this region is pictured. 
(c) This window then is highlighted in yellow and shown in greater detail using JBrowse. (d) Further zooming 
towards this window (yellow rectangle outlined in black) we can see that it overlaps five A-to-I editing sites, and 
spans the region between two inverted Alu elements. (e) The folding structure of this window is shown with its 
A-to-I editing sites and editing frequencies shown in red.

http://luggageocs.info/
https://github.com/isubit/tripal_jbrowse_api
https://github.com/isubit/tripal_jbrowse_api
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To account for the reverse strand, each fragment is also converted to its reverse complement and run through 
the same process in a parallel script. Partition function calculations output an ensemble diversity score and an 
fMFE in the ensemble value for each window. Each “native” window sequence is then scrambled to produce 30 
randomized versions which are run through RNAfold to calculate their MFE values as well. The MFE values of 
the native sequences are then compared to the MFE values of random sequences to generate a thermodynamic 
z-score, calculated with a method adapted from Clote et al.66 as illustrated in the following equation:

σ
− =

Δ − Δz score G G
(1)

native random

The randomization number was optimized to yield converged z-score values using the minimal randomization 
number. As a measure of z-score quality, we also calculate the fraction of MFE values that were lower than the 
native (the p-value) using Perl operations.

Figure 4.  Overview of RNAStructuromeDB construction. (a) The human genome was fragmented into 154 
million windows, with each scrambled thirty times using a Perl script. (b) This resulted in over 4.5 billion 
sequences to be folded in RNAfold and utilized in the creation of all folding metrics. (c) Folding metrics, 
chromosomal fasta files, and genomic annotations were all uploaded to the Chado schema using the Tripal API. 
Each set of data references the same underlying human genome sequence (hg38/GRCh38), a fact which allows 
Tripal to relate all data sets based on their respective coordinates. (d) This data (now related within the Chado 
schema) is pulled from the Chado schema on demand via the Tripal JBrowse API and used to generate tracks 
on the JBrowse genome browser. (e) In a separate process, Tripal is also able to populate tables for our data-table 
interface by acting as an interface between Chado and Drupal/Luggage.
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Database web development.  Web-based interfaces were prepared to put folding metric output into 
genomic context. An example of the pipeline used to generate the RNAStructuromeDB is shown in Fig. 4. Data 
tables were constructed by linking genome annotations to folding metrics based on genomic coordinates (when-
ever such relationships existed) and made available as searchable and downloadable CSV files; a preview of the 
data can be found alongside download links on the “Data Search” and “Gene Search” web pages, where users 
can view the data from individual windows and find links to view the corresponding MFE structures in forna101. 
Folding metric windows and Gencode annotations were also prepared as feature tracks for the JBrowse genome 
browsing interface; each folding metric window is displayed as a feature with directionality and each gene was visu-
alized as “processed transcripts” (in order to visualize directionality, underlying exons, and UTRs when appropriate). 
Additionally, each folding metric (MFE, z-score, p-value, ED, and fMFE) was extracted and prepared as separate big-
Wig tracks for both forward and reverse strands – with each folding metric window trimmed to span only its initial 
40 nt, allowing for proper visualization of each metric as a bar graph. We have left JBrowse customizable: users are 
given the option to upload tracks (in BAM, BED, bigWig, VCF, or FASTA formats) alongside RNAStructuromeDB 
metrics. Users are also able to download data from every track (whole sets or selected regions).

MALAT1 Example.  MALAT1 metrics were obtained from https://structurome.bb.iastate.edu/folding-metric- 
feature-search by filtering using Ensembl ID (ENSG00000251562.7) and downloading via the CSV link in the 
webpage. Statistical analyses were performed and graphs/tables were generated in Excel.

VEGFA Example.  VEGFA was navigated to at https://structurome.bb.iastate.edu/jbrowse/ by inputting its 
Ensembl ID (ENSG00000112715.21). All data was gathered from the JBrowse interface directly. All structures 
were generated using VARNA and annotated as described in Ray, et al.

FNBP1 Example.  A-to-I editing sites were obtained from ref.88 supplemental table five. Genomic coordi-
nates were converted from human genome reference version hg18 to version hg38 using the UCSC reference 
conversion tool: https://genome.ucsc.edu/cgi-bin/hgLiftOver. Converted coordinates were then used to create 
bigWig tracks for each nucleotide site. These tracks were uploaded directly to JBrowse from the user interface for 
visualization along with folding metrics.

Data availability.  The datasets generated during the current study are available in the RNAStructuromeDB 
downloads repository, https://structurome.bb.iastate.edu/downloads or from corresponding author on reason-
able request.
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