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G E O P H Y S I C S

The predictable chaos of slow earthquakes
A. Gualandi1*, J.-P. Avouac1, S. Michel2, D. Faranda3,4

Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can 
therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 
2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the 
system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (<5) 
nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor 
like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that 
the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of 
large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deter-
ministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a 
limited predictable horizon of the order of their durations.

INTRODUCTION
There are typically two ways to forecast earthquakes. The first one 
considers that earthquakes result from a stochastic process: Mainshock 
interevent times are assumed to follow a specific distribution. This 
distribution is typically Poissonian and stationary (1), but it can be 
nonstationary if we consider a variable stress history (2) or it can be 
based on some renewal time model mimicking the elastic rebound 
theory (3). The probability of the next large event in a given time 
window can be estimated on the basis of the past seismicity using a 
probabilistic approach. The second way hypothesizes a deterministic 
process, for example assuming that earthquakes result from stick-
slip frictional sliding as observed in laboratory friction experiments 
(4). The deterministic predictability of earthquakes is a matter of 
debate. Friction is a nonlinear phenomenon (5) and hence can result 
in deterministic chaos (6) with only limited predictability. Which of 
these two approaches is more relevant boils down to the interpretation 
of earthquakes as a stochastic process or as a deterministic chaotic 
process (i.e., a process governed by deterministic laws but highly 
sensitive to initial conditions). Theoretical studies and numerical 
simulations based on deterministic equations suggest that stick-slip 
sliding can be chaotic (7–11). However, we do not know whether 
natural earthquakes result from deterministic chaos, and, if so, what 
would be their predictability horizon. Detecting chaotic behavior in 
geophysical time series is a difficult task, mainly because of the short 
and noisy data generally available (12). While historical catalogs (13) 
or particular earthquake sequences (14) have been used to argue for 
chaos, characterizing the chaotic behavior of regular earthquakes has 
been a challenge because of the short observation time period, making 
it difficult to record multiple ruptures of a same fault segment. This 
limitation does not apply to laboratory earthquakes and slow earth-
quakes, slip events that produce very little slip at slow rates and 
radiate very little seismic waves (15).

Recent laboratory experiments have shown that both slow and 
fast ruptures are preceded by crackling that can be detected and used 
to forecast the time of failure, implying that the stick-slip behavior 

observed in these experiments is governed by some deterministic 
dynamics (16). In nature, a possible chaotic behavior has been 
inferred in the particular case of low-frequency earthquakes (17), a 
class of small slow earthquakes that can be detected and characterized 
with seismology. Geodetic position time series capture the whole 
deformation independently of radiated seismic waves and can thus 
give a more comprehensive view of fault slip, in particular during 
slow earthquakes. Here, we focus on slow slip events (SSEs) imaged 
from geodetic time series. SSEs are a stick-slip phenomenon, which 
presents a recurrence time much shorter than that of typical earth-
quakes, of the order of months or years instead of decades or centuries. 
They have been documented along major subduction megathrusts 
(15), reaching moment magnitudes [Mw] comparable to that of large 
earthquakes [Mw > 7]. SSEs are notably similar to regular earth-
quakes. They evolve into large pulse-like ruptures (18). They follow 
similar scaling laws and exhibit systematic along-strike segmentation 
(18–19). These characteristics make them a most suitable system to 
study the dynamics of frictional sliding at scale of the order of 
hundreds or thousands of kilometers. Our goal is to characterize 
whether the observed slip time series irregular behavior is emerging 
from an underlying deterministic dynamics or from a stochastic 
nature of the source.

RESULTS
We focus on the Cascadia subduction using the slip history on the 
megathrust derived from the inversion of geodetic records over 
more than 10 years, from 2007.0 to 2017.632 (20). SSEs in Cascadia 
show a first-order segmentation consisting of 13 major segments, 
which produced repeating ruptures over the studied time period 
(18) (Fig. 1). We low-pass filter the slip time series to calculate 
the slip rate, and then integrate it over the area of a given segment 
to obtain the slip potency rate time series for all the 13 segments 
   [     P ̇    s  (t ) , s = 1, … , 13  ; Fig. 2, figs. S1 to S7, and the “Slip potency rate” 
and “Filters” sections]. The results shown here were obtained using 
the filter adopted by (20), i.e., an equiripple filter (EF) with normalized 
passband and stopband frequencies of 35−1 and 21−1    (    EF 1/35  1/21  )    , pass-
band ripple of 1 dB, and stopband attenuation of 60 dB. The type and 
characteristics of the filter have a limited influence on our results 
(“Filters” and “Surrogate data” sections). We resort to the embed-
ding theory (ET) (21) and the extreme value theory (EVT) (22) to 
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Fig. 1. SSEs in Cascadia. Left: Modified from (18). Blue contour line: SSE region. Color palette: Number of times a specific segment has ruptured in the time interval 
(2007.0, 2017.632) following the available SSE catalog (20). Dashed black lines indicate the segmentation from (18), here adopted. Black continuous line shows the coast 
for reference. Green lines are isodepths in kilometers. Right: Slip potency [P(t)] for four selected segments. The calculation is performed over the entire area belonging to 
the segment and colored in the left panel. Magenta dots: Slip potency for segments #1, #4, #7, and #12. Black dots: Causal low-pass–filtered slip potency. The causal filter 
introduces a 115-day time delay. For visual purpose, the filtered time series is shifted back to the starting date 2007.0 (see “Filter” section for more details).

Fig. 2. Slip potency and slip potency rate. (A) Causally filtered slip potency (black dots) for segment #1 (same as in Fig. 1). Red dashed lines indicate the epochs for 
which the instantaneous dimension d is larger than its 95th quantile up to that epoch and for which the slip potency is smaller than its 50th quantile up to that epoch. 
(B) Slip potency rate (black dots) for segment #1, calculated as the derivative of the causally filtered slip potency (A) using a 1-day interval time step, plus the long-term 
slip potency rate. Red dashed lines as in (A).
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study the dynamics of the system (see Methods). The system that we 
study is limited to the slow slipping belt on the megathrust, at a 
depth of about 30 to 40 km (Fig. 1). We treat it as an isolated dynam-
ical system, thus neglecting the potential interactions with other parts 
either of the megathrust or of the surrounding medium. Since we 
are focusing on the slow slipping region, it follows that we are dealing 
with only a part of the whole phase space. The phase space is that 
space where all possible states of the system can be represented, i.e., 
that space having for axes all the variables needed to explain the dy-
namics of the system. Because of the assumption of isolated system, 
we refer to the region representing the slow slipping phenomenon as 
the phase space, and to the trajectories in it, which represent how 
the state of the dynamical system evolves with time, as the attractor 
of the system. The slip rate (and thus the slip potency rate, which is 
directly proportional to it) is considered to be the main observ-
able variable governing the evolution of friction in laboratory exper-
iments (5). To apply ET and EVT, we need the temporal evolution of 
at least one of the variables needed to explain the system’s dynamics, 
and the slip potency rate is therefore a good candidate. It shows 
episodic bursts with the most extreme events occurring quite regu-
larly (Fig. 2 and figs. S1 to S7).

A quantity of interest to characterize a dynamical system is its 
dimension, a geometrical property of the underlying attractor. There 
are multiple definitions of an attractor’s dimension, but they should 
agree in telling how many effective degrees of freedom (dof) are 
needed to explain the dynamical system (23). The ET methods indicate 
an embedding dimension m ≃ 10 for all the segments, consisting in 
a correlation dimension of the attractor  ≲ 5 (figs. S8 to S12 and 
“Embedding theory” section). The application of EVT for the calcu-
lation of the average attractor dimension (D) (see “Extreme value 
theory” section) confirms low average dimension, for which we get 
a value <4 for all the segments (3.1 < D < 3.5; green dots in Fig. 3). 
However, the signal-to-noise ratio (SNR) is high enough only for 
segments located in the northern section of the megathrust (seg-
ments #1 and #2). This is evident when surrogate data (24) are used 
to test the significance of the observed low dimensionality of the 
system (Fig. 3, “Surrogate data” section, and figs. S13 and S14).

The dimension, D, being an average in the phase space, does not 
capture the information about transient instabilities. Recent advances 
in EVT applied to dynamical systems theory have proven that it is 
possible to characterize these transient instabilities via two instantaneous 
properties (25): the instantaneous dimension (d) and the instanta-
neous extremal index (). These quantities refer to the state of the 
system in a given location of the phase space and, for this reason, are 
also referred as local. As in (25), here we name them “instantaneous,” 
because they depend on the specific time, and we want to avoid con-
fusion with “local” in a geographical sense. Their distribution and 
temporal evolution are shown in figs. S15 to S19. The instantaneous 
dimension, d, indicates the number of variables needed to explain 
the dynamics of the system in a specific phase space location. We 
expect to find high values of d when a metastable state is approached. 
In this situation, the segment is transitioning from a stable to an 
unstable regime, or vice versa, and more variables are then needed 
to explain the state of the system. This is apparent from Fig. 4A, 
where a section of the attractor is plotted with d color coded, with 
high values of d marking the onset and end of large SSEs.

The instantaneous extremal index () measures the inverse of the 
average persistence time around a given state in a region of the 
phase space (Fig. 4B). In this sense, it is a local and instantaneous 

quantity. The extremal index (), a parameter in the range [0,1], 
measures the degree of clustering of extremes in a stationary process    
[     P ̇    s  (t)   in our case] and can be defined as the reciprocal of the mean 
cluster size (26). A relationship between  and the metric entropy 
H of a system has been recently demonstrated (27)

  ~1 −  e   −H   (1)

The relationship between  and  is not as straightforward as the 
one between D and d, but we must have  ∈ [min, max]. We can, 
thus, deduce a range of values for H. Given the values of  that we 
have found (figs. S15 to S19) and the fact that the metric entropy is 
equal to the sum of all the positive Lyapunov exponents, we deduce 
that there is at least one positive Lyapunov exponent in our system. 
The positive Lyapunov exponents tell us how rapidly two trajectories 
in the phase space exponentially diverge. We can thus derive a pre-
dictability time t* as the inverse of the metric entropy, and we find 
t* ranging from a few days to about 2 months (Table 1). A similar 
conclusion, with predictability horizons of the order of days to weeks, 
is reached by applying nonlinear forecasting analysis (NFA) tech-
niques (based on ET, see Methods) to estimate H (figs. S20 and S21) 
(28–29). The NFA provides only a lower bound estimate of H (29). 
It follows that the NFA estimate of t* is an upper bound, which, for 
all the segments, is in the range estimated from EVT (Table 1). 

DISCUSSION
According to the EVT, the dynamics revealed by the filtered data 
requires at least four variables, which is the first integer above the 
fractal value of D. The description of stick-slip friction in the laboratory 
can be schematized by a spring-slider system and, in a fully inertial 
model, must involve slip, slip rate, and at least one additional “state” 
variable to allow fault healing after slip events so that they can repeat. 
The underlying physics and the number of state variables needed to 
explain laboratory friction remain matters of debate (30). It is im-
portant to clarify here the difference between the state variables coming 
from the rate-and-state description of friction (RS-state variables) and 
the state variables that determine the state of the system. Typically, 
a point in the phase space is defined by a state vector, with elements given 
by the variables needed to explain the dynamics of the system. An 
RS-state variable is only one among all the state variables belonging 
to a state vector.

In the absence of coupling with other spring-slider systems, the 
expected number of dof is 2 (because the system is described by a 
second-order differential equation) plus the number of RS-state 
variables, and the dimension should be between dof-1 and dof. For 
a noninertial single spring-slider, adding a second RS-state variable 
is a viable way to enact chaotic behavior, and a Kaplan-Yorke dimension 
of 2.119 ± 0.001 has been derived (8), consistent with the fact that 
we can drop 1 dof because of the noninertial assumption. A one- 
dimensional, fluid-infiltrated, rate-and-state friction spring-slider 
has 5 dof, i.e., its dynamics can be described by five variables: load-
ing shear stress (which is proportional to slip in case of constant 
loading rate), slip rate, one RS-state variable (potentially related to 
the effective contact area) (31), porosity, and pore pressure (32). To 
describe SSEs, we can assume a quasi-static condition, and under this 
hypothesis, the number of state variables drops to four, consistent with 
the number of dof recovered from our analysis in Cascadia where 
pressurized fluid has been invoked to justify SSEs’ existence (33).
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Fig. 3. Surrogate data test. The average attractor dimension D has been estimated as the average of the instantaneous dimension d. The surrogate data have been 
obtained randomizing the phases of the Fourier-transformed slip potency and maintaining correlation between patches (see the “Surrogate data” section). The p-value is 
estimated after calculating D for every surrogate and comparing the data derived D with the distribution of the surrogate data derived Dsurrogate. Only segments 
#1 and #2 show an average dimension significantly (p < 0.001) lower than the one derived from the surrogate data independently from the choice of the filter, of the norm 
to calculate distances, and of the quantile threshold to determine the exceedances (see “Extreme value theory” section and figs. S13, S14, and S22 to S25).

Fig. 4. Instantaneous dimension and instantaneous extremal index on a section of the attractor. We use the slip potency [P(t)] and the slip potency rate  [ P ̇   (t ) ]  as 
variables to reconstruct a section of the attractor. The color palette indicates the instantaneous dimension d and the instantaneous extremal index  in the top and 
bottom panels, respectively.
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In a coupled system, the loading term would also depend on the 
variables associated with neighboring fault segments, which need to 
be introduced in the state vector to describe the system’s evolution. 
In the case of a one-dimensional system, similar to the one observed 
in Cascadia with along-strike segmentation, we would expect 
dimensions as high as 12, with the extra 8 dof carried in by the two 
adjacent segments. The neighbors’ effect may be particularly relevant 
in starting or stopping a slipping event. The maximum retrieved 
instantaneous dimension is in the range between 11 and 18 for the 
segments with high SNR. Considering the first-order segmentation 
here adopted and the available noisy data, we consider this result in 
good agreement with the maximum expected dimension of 12, as in 
a one-dimensional spring-and-slider chain. Potentially, an along-
dip segmentation would also increase the number of neighbors, i.e., 
the number of dof. The proposed description considers only short-
range elastic interactions, like in the Burridge-Knopoff model. 
Long-range interactions (i.e., interactions with segments further 
than the adjacent neighbors) would further increase the instantaneous 
dimension of the attractor.

Since the filter parameters may affect our findings, we perform 
the same analyses on the unfiltered time series as well as on time 
series filtered with various parameters and different filters. The 
surrogate data test on unfiltered time series suggests that we cannot 
reject the null hypothesis for which data can be described via a 
linear stochastic model (fig. S22). Furthermore, for unfiltered time 
series, we find extremal index values close to 1, with predictability 
horizons smaller than the data sampling rate, indicating a random 
system (fig. S26 for an example relative to segment #1). A similar 
conclusion would be reached by ET-based techniques (figs. S20, 
S21, and S27). This shows that, if not filtered, the noise in the data is 
dominating, masking the SSE dynamical structure. A more detailed 
discussion of the filter effects (and the tested filters) is reported in 

the “Filter” and “Surrogate data” sections. We stress here that filters 
applied to pure noise can potentially produce the spurious identifi-
cation of finite correlation dimension (34), and for this reason, we 
further test the effects of the filters on the predictability of the time 
series generating (pseudo-)random time series and applying the 
same filters to them. The number of generated random time series 
is equal to the number of subfaults in segment #1, which is the 
segment with the largest number of subfaults. We then generate 
surrogate data and calculate the average dimension on both the 
filtered random time series and the surrogate data. The result shows 
that we would not be able to reject the null hypothesis according to 
which the time series were generated by a random process (fig. S28). 
We thus consider unlikely that the filters here adopted are introduc-
ing an apparent chaotic dynamics, and we notice that, for the cases 
that pass the surrogate data test, D is typically between 3 and 4 
for all segments, independently of the chosen filter parameters 
(figs. S22 and S23).

Not all segments pass the surrogate data test. We conclude that 
SSEs on the northernmost segments of the Cascadia subduction 
zone (segments #1 and #2) result from deterministic chaos, while 
the central part (segments #3 to #5) shows ambiguous results, and 
for the southernmost portion of the fault (segments #6 to #13), we 
cannot infer deterministic chaos with the data at our disposal 
(figs. S13, S14, and S22 to S25). Our analysis implies that it should 
be possible to forecast the onset of large SSE ahead of time based on 
an explicit deterministic representation of the system dynamics or 
some machine learning algorithm that would implicitly capture it. 
Along that line, it is notable that the increase in instantaneous 
dimensionality seems to constitute a reliable precursor of the large 
SSEs (segments #1 and #2; Fig. 2 and fig. S1). The causal filter 
adopted here introduces a group delay larger than the predictability 
horizon time, implying that this approach cannot be used for real- 
time forecasting. Alternative noise reduction or forecasting techniques 
need to be investigated for this purpose, or more accurate data would 
be needed to avoid the filtering step.

In conclusion, we have shown that continuous spatiotemporal 
models of SSE evolution (20) provide insight into fault dynamics 
because, where the SNR is sufficiently high, we have shown that 
SSEs in Cascadia manifest chaotic dynamics. In other words, SSEs 
can be described as a deterministic, albeit chaotic system rather 
than as a random or stochastic process. The estimated predictability 
horizon is of the order of days or weeks that is equivalent to a 
fraction of the typical large SSE duration in Cascadia, which is the 
representative time scale of the instability. If the dynamics derived 
from the filtered time series is representative of the true underlying 
dynamics, then long-term prediction of SSEs (i.e., over a time horizon 
much longer than their duration) seems intrinsically impossible. 
This implies that for long-term predictions, a stochastic approach 
remains the best tool at our disposal, while short-term deterministic 
predictions should be achievable. As SSEs might be regarded as 
earthquakes in slow motion (18), regular earthquakes might be 
similarly chaotic and predictable. If the relation between predict-
ability horizon and event duration holds also for regular earthquakes, 
then this would imply that long-term predictions of earthquakes are 
intrinsically impossible, and the predictable horizon would be only 
a fraction of the regular earthquakes’ typical duration (10 to 100 s 
for Mw > 6 earthquakes). Furthermore, it might be possible to augment 
the capabilities of early warning systems with a forecast of the final 
magnitude while the event is still ongoing.

Table 1. Predictability horizon. Predictability horizon   t   *  =   1 _ H   for all 
segments for causally filtered time series with   EF 1/35  1/21  . The upper bound 
estimated via EVT is lowered by the upper bound estimated via NFA. 

Segment EVT NFA

#   t min  *    (days)   t max  *    (days)   t Eq.15  *    (days)   t Eq.16  *    (days) 

#1 3.5 65.0 17 ± 3 9.6 ± 2.3

#2 2.8 34.7 15.0 ± 1.8 7.5 ± 0.9

#3 3.1 34.2 19.8 ± 2.9 9.8 ± 1.5

#4 2.6 32.3 20.3 ± 2.9 10.0 ± 1.4

#5 2.9 29.7 18 ± 3 8.8 ± 1.7

#6 2.5 62.1 14.1 ± 1.4 7.1 ± 0.7

#7 2.8 50.7 19 ± 3 9.4 ± 1.5

#8 2.8 26.9 17.4 ± 2.2 8.8 ± 1.1

#9 2.4 26.3 16.3 ± 1.7 8.2 ± 0.9

#10 2.6 29.8 13.5 ± 1.1 6.7 ± 0.5

#11 2.3 22.5 15.1 ± 1.9 7.5 ± 0.9

#12 2.2 22.6 17.4 ± 2.6 8.6 ± 1.3

#13 2.7 31.3 25 ± 7 12 ± 3
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METHODS
Slip potency rate
Given a subfault (n) of a given segment (s = 1, …,13), we apply a 
low-pass filter to the slip history  [ u sn  rough (t ) ]  from (20) to obtain a 
smoothed slip history [usn(t)]. Since chaotic systems are extremely 
sensitive to initial conditions, we test several low-pass filters (details 
are provided in the “Filters” section). We then multiply the smoothed 
slip history by the area of each subfault (Asn), getting the slip potency 
for each subfault

   p  sn  (t ) =  A  sn    u  sn  (t)  (2)

The total slip potency for the s-th segment is calculated as the slip 
potency integral over the entire slipping area. In a discretized case 
where there are Ns subfaults belonging to the s-th segment, the total 
slip potency is calculated as

   P  s  (t ) =   ∑ 
n=1

  
 N  s  

     A  sn    u  sn  (t)  (3)

We also construct slip potency rate curves for each subfault

    p ̇    sn  (t ) =  A  sn  ( v  0sn   +   u ̇    sn  (t ) )  (4)

and the total slip potency rate for each segment

    P ̇    s  (t ) =   ∑ 
n=1

  
 N  s  

     A  sn  ( v  0sn   +   u ̇    sn  (t ) )  (5)

where v0sn is the long-term reference loading velocity for a given 
patch belonging to a specific segment as derived from (20).

The choice of the variable to use for the dynamics reconstruction 
is important because it can bias the correlation dimension estima-
tion. In particular, the correlation dimension can be lowered when 
using a variable strongly correlated only with a few variables of the 
system (35). Having in mind the rate-and-state formalism for friction 
(5), we hypothesize that the slip rate, and thus the slip potency rate, 
is not only more strongly coupled than the slip potency to the other 
variables of the system, but it is also coupled with more variables 
(e.g., the state variables). We find smaller values for the correlation 
dimension of the attractor  when using the slip potency as observable 
(figs. S8 to S12 and S29 to S33 and “Embedding theory” section), 
confirming our intuition that slip potency rate is a more suitable 
observable.

Filters
The effect of low-pass filters on dynamical systems’ dimension 
estimation has been extensively studied. Ideal linear low-pass filters 
introduce further equations in the dynamical system, leading to an 
increase in dimensionality (36). Finite order nonrecursive filters 
instead do not modify quantities estimated via ET, but this is not 
strictly proven for practical cases where finite time series are avail-
able (37). Proper low-pass filtering data can improve the dynamical 
system characterization (38), and we thus restrain ourselves to finite 
order nonrecursive filters, which implies that the filtered value 
usn(t) is obtained from the current and past Nb nonfiltered values, 
  u sn  rough  , according to

   u  sn  (t ) =   ∑ 
i=0

  
 N  b  

     b  i    u sn  rough (t − idt)  (6)

where dt is the data sampling rate, i.e., 1 day. First, we test an EF with 
fixed passband ripple and stopband attenuation of 1 and 60 dB, respec-
tively, and we test 10 combinations of normalized stopband and passband 

frequencies:    {    f  i  
passband  }   

i=1
  

10
   =  [7(2 + i ) ]   −1   and    {    f  i  

stopband  }   
i=1

  
10

   =  (7i)   −1  . 
We follow the MATLAB notation for which the normalized fre-
quency is unitary when it is equal to the Nyquist frequency. The 
filters are designed using the built-in function designfilt, from 
which we extract the corresponding transfer function coefficients 
  { b  i  } i=0   N  b      via the function tf. The coefficients are then used by the function 
filter to generate the smoothed signal usn(t). With the tested combina-
tions, the order of the filter (i.e., Nb) takes the following values when 
increasing i: 48, 125, 230, 363, 484, 664, 871, 1106, 1368, and 1658. 
For each designed filter, we show the filter response in figs. S34 and S35. 
The results shown in the main text are those obtained using an EF 
and the parameters adopted in (20) to automatically pick 64 SSEs from 
the dataset here studied, i.e.,   f  i  

passband  =  35   −1   and   f  i  
stopband  =  21   −1  . 

We test also a Hamming Window filter (HWF; which is a weighted 
moving average filter), commonly used in signal processing, which 
offers an easier way to tune the filter order (Nb) and its normalized 
frequency cutoff (fcutoff). We test both a variable fcutoff fixing Nb to 60 
(i.e., we use 2 months of data before the current epoch to smooth the 
signal; figs. S36 and S37) and a variable Nb fixing fcutoff to 28−1 (figs. S38 

and S39). In the first case, we vary    {    f  i  
cutoff  }   

i=1
  

10
   =  (7i)   −1  , while in the 

second case, we vary    {    N  b i   }   i=1  10   = 7i − 1 , i.e., we use data of epoch t 
and the 6 epochs before, 13 epochs before, and so on until using a 
total of 10 weeks of data. We use the MATLAB built-in function 
fir1, which adopts a normalized gain of the filter at fcutoff of −6 dB. 
We observe that reducing the cutoff frequency lets the underlying 
dynamics emerge, and we consistently observe a finite fractal di-
mension significantly smaller than what would be calculated from 
surrogate data (fig. S22). We refer the reader to the “Surrogate data” 
section for more details.

All tested filters have a constant group delay (figs. S34 to S39). 
The information on the group delay is relevant when discussing 
about the predictability horizon of the system (see Discussion). The 
effects of the EF filters on the time series are shown in figs. S40 to 
S44. For readability, the filtered time series have been shifted back 
in time of the corresponding group delay to be in phase with the 
original time series. To test whether there is any difference between 
causally and noncausally filtered time series, for the filter   EF 1/35  1/21  , we 
also construct a noncausal filter, knowing that noncausal filters cannot 
be adopted for real-time applications, because they use information 
from future epochs. We use the function FiltFiltM (https://www.
mathworks.com/matlabcentral/fileexchange/32261-filterm) to generate 
zero-phase shift (i.e., noncausal) filtered time series, and we find 
similar results to those obtained with a causal filter (figs. S13, S26, 
and S28). In all tested cases, we retrieve similar average dimensions, 
lower than those determined from nonfiltered time series (fig. S45). 
The application of a low-pass filter reduces the dimensionality of 
the system from values typically >6 to values <4.

Embedding theory
We apply two methodologies based on ET to determine the correlation 
dimension of the strange attractor, and the NFA, also based on ET, 
to estimate the metric entropy associated with the time series.

The correlation dimension is defined as (39)

https://www.mathworks.com/matlabcentral/fileexchange/32261-filterm
https://www.mathworks.com/matlabcentral/fileexchange/32261-filterm
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   =  lim  
r→0

      lim  
T→∞

     
Log(C(r, T ) )

 ─ Log(r)    (7)

where C(r, T) is the correlation integral, r is a variable threshold distance, 
T is the time series length, and we use the base-10 logarithm Log.

The construction of the correlation integral typically involves 
two parameters: the delay time () and the embedding dimension 
(m). Given a scalar time series x(t), for example    P ̇    s  (t) , its values are 
used to construct an m-dimensional vector delaying in time the time 
series of an amount  for m − 1 times

  F(t, τ, m ) = [x(t ) , x(t − τ ) , … , x(t − (m − 1 ) τ ) ]  (8)

We can now define the correlation integral as (40)

  C(r, T, w ) =   2 ─ 
 T   2 

     ∑ 
 t  2  =w

  
T
     ∑ 

 t  1  =1
  

T− t  2  
  H(r − ‖F( t  1   +  t  2  , τ, m ) − F( t  1  , τ, m ) ‖)  (9)

where we introduce a cutoff parameter w > 1 to improve the convergence 
of the classical algorithm (w = 1) toward its limit T → ∞, and H is 
the Heaviside function. Values of w~corr are recommended, where 
corr is the autocorrelation time for the specific scalar time series 
under examination (40). We calculate corr using the batch means 
method (41).

Basically, the algorithm counts how many m-dimensional vectors 
are closer than r at different times. If m ≥ 2 + 1, then F is an 
embedding function of the strange attractor (42), and we expect the 
correlation dimension to be independent of m. Figures S8 to S12 
and S29 to S33 show the  versus Log(r) curves for different m. The 
selected delay times  are chosen to emphasize the scaling region. 
For every segment, we have tested values of  = 2i + 1 days, with i 
from 1 to 6, and m = 4j, with j from 1 to 5. In the case of a stochastic 
signal, we might expect that a scaling relationship between C(r) and 
r does not hold, and larger values of  are calculated when increasing 
m, i.e.,  does not saturate. Nonetheless, autocorrelated noise in short 
time series can fool the described algorithm (24). For this reason, 
surrogate data are typically introduced, but instead of evaluating 
the plateau for , which is quite subjective, we prefer to apply the 
methodology from EVT for this calculation. Given the time delays 
retrieved from ET (see figs. S8 to S12), one accurate slip rate data 
per week might be sufficient to reconstruct an embedding for SSEs.

The second methodology derived from ET needs only the definition 
of the delay time to determine the minimum embedding dimension 
(43). The algorithm still uses the embedding function F, but it 
exploits the nearest neighbors counting in the reconstructed phase 
space to detect false neighbors when changing the embedding 
dimension m.

The following two quantities are defined

         E(m ) =   1 ─ T − mτ     ∑ 
t=1

  
T−mτ

     
‖F(t, τ, m + 1 ) −  F  n(t,m)  (t, τ, m + 1 ) ‖

   ────────────────────   ‖F(t, τ, m ) −  F  n(t,m)  (t, τ, m ) ‖    (10)

   E   * (m ) =   1 ─ T − m     ∑ 
t=1

  
T−m

  ‖x(t + m ) −  x  n(t,m)  (t + m ) ‖  (11)

where 1 ≤ n(t, m) ≤ T − m is an integer such that Fn(t, m)(t, , m) is 
the nearest neighbor of F(t, , m). From these two quantities, the 
ratio at two subsequent embedding dimensions is calculated

   E  1  (m ) =   E(m + 1) ─ E(m)    (12)

   E  2  (m ) =    E   * (m + 1) ─ 
 E   * (m)

    (13)

The quantity E1 is relevant because if the studied time series is 
the result of a dynamic process, i.e., it comes from an attractor, then 
E1(m) saturates (43). In other words, we reach a value    ̂  m    such that E1 
stops changing increasing m above    ̂  m   . The minimum embedding 
dimension will then be    ̂  m   + 1 . The second quantity, E2, is intro-
duced to check for randomness in the data. In theory, for stochastic 
time series, E1 should never saturate, but in practical cases, it can be 
unclear whether E1 is slowly increasing with increasing m or not. 
If the time series of interest is the result of a stochastic process, 
then we expect future data points to be independent from the 
previous ones. This means that E2(m) = 1 for each m. If the studied 
time series is instead the result of a deterministic process, then 
E2 is not constant, and there must exist some m values such that 
E2(m) ≠ 1.

We show in fig. S27 the results on both causally filtered (i.e., 
present values depend only on the past and the present, such that 
the statistic E2 can be used) with   EF 1/35  1/21   and nonfiltered time series 
for the example of segment #1. A minimum embedding dimension 
m ≃ 10 is detected from filtered data, implying a correlation dimension 
 ≤ (m − 1)/2 ≲ 4.5, while for nonfiltered data, E2 remains almost 
constant at unitary values. This result is consistent with the results 
from EVT, for which a  close to 1 is calculated for the nonfiltered 
time series (e.g., fig. S26).

Another quantity of interest to characterize a chaotic system is 
its metric entropy H. NFA also works using nearest neighbors in the 
phase space, and it is a powerful approach not only to estimate H 
from the short time series but also to assess the chaotic or stochastic 
nature of the time series under study (28–29). We apply here a 
first-order NFA approach (28). Being based on ET, we first embed a 
time series in a phase space of dimension m using delay coordinates 
with delay time . The idea then is to use the first half of the time 
series (training set) to learn a nonlinear map to make a prediction 
Tp time steps in the future using a local linear approximation in the 
phase space. We then use the second half of the data (test set) to test 
the learned prediction and assess the chaoticity of the time series. In 
practice, the following are the steps of the procedure:

1) Embed the time series x(t) like in Eq. 8 to create the obser-
vation F(t, , m) at time t.

2) For a given point in the test set F(t, , m), find the k nearest 
neighbors   { F  n  (t, τ, m ) } n=1  k    belonging to the training set. [We must 
have at least k = m + 1, but, as recommended in (28), to ensure 
stability of the solution, it is better to take k > m + 1. Here, we use 
k = 2m + 1.]

3) Use the k nearest neighbors in the training set [for which 
x(t + Tp) is known] to find the best local linear predictor A.

4) Use A to predict the value of x at time t + Tp in the test 
set:    ̂  x  (t,  T  p  ) .

5) Compare x(t + Tp) and    ̂  x  (t,  T  p  )  in the test set to estimate 
the root mean square error  (RMSE ) =  〈  [  ̂  x  (t,  T  p   ) − x(t +  T  p   ) ]   2  〉   1/2   
that we use as a measure of predictive error.

6) Normalize the prediction error by the root mean square 
deviation (RMSD) of the data in the test set:  ϵ =   RMSE _ RMSD  , with RMSD 
= 〈[ x(t) − 〈x(t)〉]2〉1/2.

If ϵ = 0, then the prediction is perfect; if instead ϵ = 1, then the 
prediction is as good as a constant predictor    ̂  x  (t,  T  p   ) = 〈x(t ) 〉 . For a 
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stochastic system, we expect ϵ to be independent of Tp, while for a 
chaotic system, we expect ϵ to increase when increasing Tp. We 
have tested various embedding dimensions m and delay times , ob-
taining similar results. In figs. S20 and S21, we show the results rel-
ative to m = 9 (i.e., we assume an average dimension between 3 and 
4 for the underlying attractor, as estimated via EVT) and  = 7 days. 
We show the evolution of ϵ versus Tp for all the segments using the 
same filter adopted in (20) (fig. S20), and for segment #1 varying the 
filter parameters (fig. S21). The black lines indicate the value calcu-
lated for the unfiltered time series, while the blue and red lines cor-
respond to ϵ for the various segments or filter parameters. We find 
that for the unfiltered time series, ϵ ≈ 1, confirming the dominant 
role of stochastic noise, while for sufficiently effective filters, ϵ in-
creases with Tp, as expected for a chaotic system. These graphs can 
be used to estimate the metric entropy H using the following equa-
tion, valid in the limit ϵ ≪ 1

  ϵ( T  p   ) ≈ C  e   2H T  p     N   −2/D   (14)

where N is the number of data points and D is the (average) attrac-
tor dimension (for which we use the values estimated from EVT). It 
follows that
  f ( T  p   ) = ln ϵ( T  p   ) +   2 ─ D   ln N ≈ ln C + 2H  T  p    (15)

and C and H are estimated via least square using points for which 
ϵ ≤ 0.3 (green dashed line in figs. S20 and S21) to fit Eq. 15.

Another estimate of H, which does not depend on a particular 
forecasting technique, can be obtained using the predictions to cal-
culate the rate of loss of information from the time series (29). We 
calculate the correlation coefficient () between    ̂  x  (t,  T  p  )  and x(t + 
Tp) in the testing set, which will be a function of Tp. After some 
approximations, the following relation can be derived (29)

  ln(1 − ( T  p   ) ) = c + 2H  T  p    (16)

from which we can estimate c and H. The number of points to use 
for the estimate is not strictly defined. Previous studies have used 2 
(29) or 6 (44) points for example. The resulting values of t* for all 
segments using the same EF adopted in the main text are reported 
also in Table 1.

Extreme value theory
We use recent results of EVT to overcome some of the issues en-
countered when using ET algorithms. In particular, we would like 
(i) a method to rigorously calculate a particular statistic (for exam-
ple, the attractor’s dimension) and, consequently, test whether the 
calculated quantity is the result of a random process or not, and (ii) 
a method to calculate also instantaneous properties of the attractor. 
The main idea behind the usage of EVT for the characterization of 
a dynamical system is to connect the statistics of extreme events to 
the Poincaré recurrence theorem (25, 45).

Let us consider a generic point  on a strange attractor. The in-
stantaneous dimension is a quantity that measures the density of 
neighbors in the phase space around . To calculate this density, we 
can ask ourselves the following question: What is the probability to 
visit again a region of the phase space close to (i.e., in an arbitrary 
small radius  from) ? If we had access to all the possible states of 
the system (z), then we could calculate the distances from the actual 
state under study, (z, ). Then, we would like to construct a ran-

dom variable related to (z, ) and use the second theorem of EVT 
(46) to be able to gain information about the density of neighbors 
around . The second theorem of EVT states that, given a random 
variable Z with nonvanishing probability distribution, we can set a 
threshold value q such that, for q sufficiently large, values of Z that 
exceed q (or exceedances) follow a generalized Pareto distribution 
(GPD).

For real case scenarios, we might only have one scalar time 
series, and here, we consider the univariate case. Similarly to what 
is done to characterize atmospheric flows (25), we assume that our 
observed scalar time series (i.e., the slip potency rate) approximates 
possible states of the system. The only requirement to apply this 
methodology is the observed time series to be sampled from an 
underlying ergodic system. A possible improvement would be to 
consider a multivariate case with slip potency rates and/or slip 
potencies from adjacent segments, but we defer this complication 
to future investigations. For our case of interest, to generate the pool 
of all possible z, we consider the slip potency rates of all subfaults 
belonging to the segment under examination (Eq. 4). We then select 
 to be equal to the slip potency rate at a certain epoch t and calcu-
late the distance from all other possible states that we have recorded 
at different times. Recent studies (45, 47) have shown that if we con-
struct the random variable given by the negative log distances, Z = 
− ln ((z, )), then we can use the GPD shape parameter () to cal-
culate the instantaneous dimension as

  d( ) =   1 ─ 
()    (17)

This assumes that the exceedances follow a GPD. We visually 
inspected the Q-Q plots of the exceedances versus a GPD, and dis-
crepancies between the observed quantiles and those predicted by a 
GPD are noticed especially in the high quantile of the distribution. 
This probably reflects the fact that not many extreme events have 
been observed and a longer slip history may provide better results. 
Repeating this calculation for different values of  extracted from 
the pool of values z, we can then estimate the attractor dimension by 
simply averaging over d: D = 〈d()〉. This is a very powerful result 
for two reasons. We can calculate the attractor dimension (i) with-
out the need of an embedding and (ii) simply setting one parameter: 
a threshold q on the negative log distances. Here, we have used q = 
0.98 percentile and q = 0.99 percentile of the negative log distance, 
and we have tested both L-1 and L-2 norm distances. The results are 
overall similar (green dots in figs. S13 and S14). We can now apply 
the method of surrogate data to each segment and compare the re-
constructed attractor dimensions with the one calculated from real 
data. We refer to the “Surrogate data” section for more details. We 
notice that using a threshold q = 0.99 reduces the average dimension 
to values <3. The threshold quantile q does not affect the conclusion 
that a chaotic deterministic dynamics can be successfully detected 
only for the northernmost segments. It affects though the interpreta-
tion of the total number of dof needed to explain the system. Following 
the spring-and-slider interpretation, if 3 < D < 4, then a second RS-
state variable may be needed (see Discussion). Longer time series 
will help to resolve this ambiguity, since the value of q = 0.99 may be 
too high for the amount of available data.

Another quantity of interest that can be derived is the instantaneous 
extremal index of the system (). In the main text, we have described 
the extremal index () as the reciprocal of the mean cluster size 
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(26). The instantaneous extremal index can instead be defined as 
the inverse of the persistence in the phase space, where the per-
sistence tells us how long the trajectory sticks in the proximity of a 
certain point in the phase space. In other words, while d is related to 
the density of points in a certain neighborhood of the phase space, 
i.e., how many times a certain region of the phase space is visited, 
the persistence time indicates for how long the system stays in a 
region in the neighborhood of a given state. If a state  is a fixed 
point, then we expect an infinite persistence, i.e., null . On the other 
hand, if we are studying a stochastic process, then we expect the 
persistence to tend to 0, i.e., unitary . In other words, we expect 
that at a certain epoch t, the system will be in a state , and then at a 
subsequent epoch t + t to be in a region of the phase space far from 
the one occupied at time t. Looking at the extremal index from this 
angle gives us the intuition that it can be related to the predictability 
of the system. As mentioned in the main text, in a recent study (27) 
this connection has been made explicit (see Eq. 1).

We calculate  via a maximum likelihood estimator (48). When 
we look at the calculated  (figs. S15 to S19 for noncausal filter and 
fig. S26 for causal and noncausal filter relative to segment #1), we 
see that both causally and noncausally filtered data show values far 
from 1. This already indicates that, no matter the causality or not of 
the filter, the system at the selected frequencies shows predictability 
features. We observe a different situation when performing the 
analysis on nonfiltered data (fig. S26). The values of  are now very 
close to 1, implying a predictability horizon shorter than the sampling 
time. This is consistent with the fact that, in such nonfiltered slip 
potency rate time series, the high-frequency noise dominates, which 
is a random process.

Surrogate data
The concept behind surrogate data techniques is rooted in statistical 
hypothesis testing. The method requires to state a null hypothesis, 
and, using the words in (24), “The idea is to test the original time 
series against the null hypothesis by checking whether the discriminat-
ing statistic computed for the original time series differs significantly 
from the statistics computed for each of the surrogate sets.” The 
necessity to use surrogate data derives from the intrinsic finiteness 
of the available data: It is always possible to generate the observa-
tions with a particular random process.

The null hypothesis that we test consists in assuming that the 
data can be described via a linear stochastic model. Surrogate data 
should be generated before any filtering (49); thus, we first generate 
the surrogate data from the original slip potency time series, then 
filter both the actual and surrogate data, and lastly calculate the slip 
potency rate. Since we are using slip potency rates on multiple sub-
faults, when shuffling the signal phases, we want to preserve not 
only the autocorrelation of each slip potency rate time series but 
also the cross correlations between subfaults, and we thus use a 
generalization of the phase-randomized Fourier transform algorithm 
(50). Despite the fact that filtering should not compromise the actu-
al chaotic nature of the system (37), the estimate of D might depend 
on the applied filter, and we consequently test the method on both 
causally and noncausally filtered time series for the   EF 1/35  1/21   (figs. S13 
and S14). When reducing the passband and stopband frequencies of 
the EF (which also corresponds to a reduction in the fcutoff), we increase 
its order and we witness a decrease in D (figs. S22 and S45). We 
notice that among the tested EFs, those that do not remove relatively 

high frequencies  (  f  i  
passband  >  28   −1 )  are unable to pass the surrogate 

data test even for the segments with high SNR (fig. S22). Also, an EF 
of the order larger than the average recurrence time (Nb ≳ 365 to 
425, i.e., 12 to 14 months) is unable to pass the surrogate data test. 
The   P ̇    amplitudes during the slipping phase are decreased (figs. S40 
to S44). This incapability to pass the surrogate data test may be due 
to the fact that the EF response is not flat in the low-frequency 
domain, but it has some ripples (figs. S34 and S35). Consequently, 
we have some low frequencies reduced and others amplified, and 
the SNR actually decreases. As noticed in the “Filters” section, the 
HWF offers an easier way to independently tune the filter order and 
fcutoff, and we observe a clear stabilization of D at values between 3 
and 4 for all segments when decreasing fcutoff (figs. S22 to S25 and 
S45). Moreover, we notice that when applying a 60th-order HWF, 
we would reject the null hypothesis here tested for the segments 
from #1 to #5 and not only for the two northernmost.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/27/eaaz5548/DC1
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