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1  | INTRODUC TION

Species are distributed nonrandomly across geographic space. 
The relationship between a species' distribution and environmen-
tal conditions is known as species' ecological niche (Grinnell, 1917; 
Hutchinson, 1957, 1978; Soberón, 2007), and the niche concept has 
received much attention and development (Chase & Leibold, 2003; 
James, Johnston, Wamer, Niemi, & Boecklen, 1984; Sax, Early, & 

Bellemare, 2013; Soberón & Nakamura, 2009). With the advance-
ment of GIS techniques and rapid digitization and mobilization of 
museum specimens, ecological niche modeling (ENM), also referred 
as species distribution modeling (SDM), is increasingly used to quan-
tify such relationships between species’ presences and environmen-
tal conditions (Peterson et al., 2011). Of the many ENM algorithms 
developed, the most widely used, by far, is Maxent (Phillips, Dudík, 
& Schapire, 2004). Maxent requires only presence data as input and 
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Abstract
Ecological niche models are widely used in ecology and biogeography. Maxent is one 
of the most frequently used niche modeling tools, and many studies have aimed to 
optimize its performance. However, scholars have conflicting views on the treat-
ment of predictor collinearity in Maxent modeling. Despite this lack of consensus, 
quantitative examinations of the effects of collinearity on Maxent modeling, espe-
cially in model transfer scenarios, are lacking. To address this knowledge gap, here 
we quantify the effects of collinearity under different scenarios of Maxent model 
training and projection. We separately examine the effects of predictor collinear-
ity, collinearity shifts between training and testing data, and environmental novelty 
on model performance. We demonstrate that excluding highly correlated predictor 
variables does not significantly influence model performance. However, we find that 
collinearity shift and environmental novelty have significant negative effects on the 
performance of model transfer. We thus conclude that (a) Maxent is robust to pre-
dictor collinearity in model training; (b) the strategy of excluding highly correlated 
variables has little impact because Maxent accounts for redundant variables; and 
(c) collinearity shift and environmental novelty can negatively affect Maxent model 
transferability. We therefore recommend to quantify and report collinearity shift and 
environmental novelty to better infer model accuracy when models are spatially and/
or temporally transferred.
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estimates species’ relative occurrence rates (Yackulic et al., 2013) 
by minimizing the relative entropy between the probability densi-
ties of species’ presences and the training background (Elith et al., 
2011). Maxent also provides a user-friendly interface (Elith et al., 
2006; Phillips & Dudík, 2008), and the publications introducing the 
Maxent algorithm to ecologists have been cited collectively tens of 
thousands of times (Joppa et al., 2013).

Maxent has been applied to a wide range of studies, including 
those related to discovering rare species (Fois, Fenu, Lombrana, 
Cogoni, & Bacchetta, 2015; Jackson & Robertson, 2011; Menon, 
Choudhury, Khan, & Peterson, 2010), conservation and invasive 
species management (Feng, Lin, Qiao, & Ji, 2015; Ficetola, Thuiller, & 
Miaud, 2007; Park & Potter, 2015a, 2015b; Roura-Pascual, Brotons, 
Peterson, & Thuiller, 2009), and disease transmission (Escobar et 
al., 2015; Gonzalez et al., 2011). Concurrently, many methodolog-
ical studies have aimed to optimize model performance. Studies 
have explored the effect of presence sample size (Hernandez, 
Graham,	Master,	&	Albert,	2006;	Jiménez‐Valverde,	Lobo,	&	Hortal,	
2009), spatial and/or environmental occurrence bias (Boria, Olson, 
Goodman,	&	Anderson,	2014;	Park	&	Davis,	2017;	Varela,	Anderson,	
García‐Valdés,	 &	 Fernández‐González,	 2014),	 various	 procedures	
of	 selecting	 pseudo‐absences	 (Barbet‐Massin,	 Jiguet,	 Albert,	 &	
Thuiller, 2012; Iturbide et al., 2015; Phillips et al., 2009), and de-
signing	a	model	training	area	that	is	ecologically	valid	(Anderson	&	
Raza,	2010;	Saupe	et	al.,	2012).	Additionally,	studies	have	explored	
the selection of predictor variables using statistical approaches (cor-
relation analysis, jackknifing, or contribution to model fit), as well 
as using knowledge about the species' ecology (Bucklin et al., 2015; 
Pliscoff, Luebert, Hilger, & Guisan, 2014; Synes & Osborne, 2011; 
Zeng,	Low,	&	Yeo,	2016).	Principal	component	analysis	has	also	been	
used to reduce the dimensionality of the environmental dataset (De 
Marco Júnior & Nóbrega, 2018).

However, a lack of consensus still exists regarding whether and 
how predictor collinearity (i.e., the linear dependence among envi-
ronmental predictor variables) should be treated in Maxent mod-
eling. Indeed, we examined recent papers citing the major Maxent 
references	(Phillips,	Anderson,	&	Schapire,	2006;	Phillips	&	Dudík,	
2008; Phillips et al., 2004) and found that ~80% of papers never 
mentioned “collinearity” or “variable correlation” (Google Scholar 
accessed	6	November	2017;	see	Appendix	S1;	Table	S1).	The	im-
pacts of predictor collinearity are well documented in classical 
linear regression models (e.g., ordinary least square estimation in 
linear regression models). For example, if two variables are highly 
correlated, it becomes difficult to separate the individual effects 
of	each	variable.	Also,	models	trained	with	correlated	variables	are	
prone to error when the correlation between variables changes in 
model transfer scenarios (Dormann et al., 2013; Meloun, Militký, 
Hill, & Brereton, 2002). Ideally, one would consider biologically 
meaningful variables over the issue of collinearity (Dormann 
et	 al.,	 2013;	 Tanner,	 Papeş,	 Elmore,	 Fuhlendorf,	 &	Davis,	 2017).	
However, the problem of collinearity is difficult to avoid in the pro-
cess of selecting biologically meaningful variables as many com-
monly applied environmental predictors are highly correlated and/

or	nonindependent	(Jiménez‐Valverde,	Nakazawa,	Lira‐Noriega,	&	
Peterson, 2009). In practice, the rule-of-thumb method in deal-
ing with collinearity is to minimize its potential effect by select-
ing variables whose correlation coefficients are below a certain 
threshold (e.g., |r| <0.7 in Dormann et al. (2013) or <0.4 in Suzuki, 
Olson, & Reilly (2008)). However, rules established for classical re-
gression models may not directly apply to Maxent modeling, and 
there are two competing views regarding the issue of collinearity 
in Maxent. Some have argued that, because Maxent can regulate 
model complexity by downplaying the importance of redundant 
variables, the algorithm is robust to issues of collinearity (Elith 
et	al.,	2011;	Phillips	&	Dudík,	2008;	Shcheglovitova	&	Anderson,	
2013). Others attest that Maxent may partially handle collinearity, 
but predictor collinearity should be minimized by the user (Merow, 
Smith, & Silander, 2013). Though both views are well represented 
in the ENM literature, to our knowledge, to date there have been 
no empirical examinations of the effects of predictor collinearity 
on Maxent models.

The influence of collinearity on regression-type models can be 
twofold: (a) the effect on model training caused by the degree of 
predictor collinearity and (b) the effect on model transfer caused by 
differences in the correlation structure of predictor variables be-
tween training and testing (or projecting) regions (i.e., collinearity 
shift). Thus, the issue of collinearity in Maxent must be considered 
from the perspective of model transfer, that is, transferring a model 
across space and/or time to different environmental conditions (Elith 
& Leathwick, 2009; Guisan & Thuiller, 2005; Peterson et al., 2011). 
When models are not transferred, collinearity effects will likely de-
pend on the mechanism that impacts the model training per se; in 
the case of model transfer, collinearity shift may become the domi-
nating mechanism. In the context of model transfer, another factor 
that influences model performance is model extrapolation, that is, 
the ability to make predictions in environmental conditions beyond 
those used in model training (Gelman & Hill, 2007). Previous stud-
ies have shown that environmental novelty is negatively associated 
with model performance (Fitzpatrick et al., 2018; Owens et al., 2013; 
Qiao et al., 2019). Therefore, environmental novelty should be con-
sidered together with collinearity shift in a model transfer scenario.

Here, we aim to clarify the effects of collinearity on Maxent 
models, especially in the context of model transfer. Specifically, our 
objectives are to (a) determine whether the performance of Maxent 
models declines in model transfer scenario compared with nontrans-
fer scenario and determine whether the commonly adopted variable 
selection strategy (i.e., remove highly correlated variables) is effec-
tive in improving Maxent model performance, (b) assess the effect 
of variable selection strategy in controlling the degree of predictor 
collinearity and assess the effect of model transfer on environmen-
tal novelty and collinearity shift, and (c) determine the effect of en-
vironmental novelty, degree of predictor collinearity, and collinearity 
shift on model transfer performance. To achieve our objectives, we 
simulated scenarios of model transfer and nontransfer, selected 
predictors with and without considering collinearity, and quantified 
model performance, degree of predictor collinearity in the training 



     |  10367FENG Et al.

region, and environmental novelty and collinearity shift between 
training and testing regions.

2  | MATERIAL AND METHODS

To address our first objective, determining whether model trans-
fer and variable selection strategy influence Maxent performance, 
we compared model performance between model transfer and 
nontransfer scenarios and between two variable selection strate-
gies that either included or excluded highly correlated predictors 
(Figure 1). To address the second objective, assessing the effect of 
variable selection strategy in controlling the degree of predictor 
collinearity and assessing the effect of model transfer on environ-
mental novelty and collinearity shift, we quantified the degree of 
predictor collinearity in the training region and quantified environ-
mental novelty and collinearity shift between training and testing 
regions, and compared them under different variable selection strat-
egies and model transfer scenarios (Figure 1). To address the third 

objective, we analyzed the relationship between model performance 
and environmental novelty, degree of predictor collinearity, and col-
linearity shift (Figure 1).

2.1 | Study system

To conduct our ENM experiments, we focused on two groups of 
mammal	 species	 from	North	America	 and	Australia	 that	 have	dis-
tinct and well-sampled distributions. We examined range maps from 
the International Union for Conservation of Nature (IUCN; http://
www.iucnr	edlist.org/)	 of	 all	 North	 American	 carnivore	 mammals	
listed in Kays and Wilson (2009) and selected only species that are 
either endemic to, or have the majority of their distributional area in, 
North	America.	We	downloaded	occurrence	records	from	the	Global	
Biodiversity Information Facility (http://www.gbif.org/; accessed on 
19	August	2016)	 and	only	 retained	 records	associated	with	verifi-
able sources (i.e., specimens and publications), to limit the inclusion 
of erroneous records. To avoid any marginal occurrences that may 
bias models (Soley-Guardia et al., 2016), we removed occurrences 

F I G U R E  1   Overview of experimental 
design

http://www.iucnredlist.org/
http://www.iucnredlist.org/
http://www.gbif.org/
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outside the IUCN range maps of each species. To reduce the spatial 
aggregation of occurrences, we adopted a systematic sampling ap-
proach (Fourcade, Engler, Rödder, & Secondi, 2014) [similar as the 
spatial	filtering	approach	(Araújo,	2006;	Boria	et	al.,	2014)]	by	which	
only	one	occurrence	is	kept	within	a	spatial	window.	A	broad	spatial	
window may be effective in reducing spatial bias but may also elimi-
nate information that holds ecological values (Fourcade et al., 2014), 
and vice versa for a small window. We used a spatial window of 30 
arc-minutes (~55 km at equator), in between those used in previous 
studies [2° and 12 arc-minutes in Fourcade et al. (2014); 10 km or ap-
proximately	5.5	arc‐minutes	in	Boria	et	al.	(2014)].To	ensure	a	base-
line of model performance, we further excluded species with low 
numbers	of	unique	occurrences	(smaller	than	15;	Papeş	&	Gaubert,	
2007). Our final dataset comprised 22 carnivorous mammal species 
(Table S2). Using the criteria outlined above, we also selected nine 
marsupial	species	in	Australia	(Menkhorst	&	Knight,	2010).

We used 19 climatic variables at 2.5 arc-minute resolution from 
the WorldClim dataset (version 1.4; Hijmans, Cameron, Parra, Jones, 
& Jarvis, 2005) as our pool of predictors, since climate has been 
shown to strongly influence the distribution of species (Parmesan, 
2006; Walther et al., 2002). Furthermore, the WorldClim dataset 
is likely the most widely used climatic dataset in ENM; thus, this 
dataset allows us to replicate common practice. Indeed, this dataset 
has been cited over 10,000 times to date (Google Scholar; accessed 
6 November 2017). We did not aim to select variables that have 
known mechanistic relationships with species’ distributions because 
such information is often unavailable or incomplete and commonly 
assumed rather than robustly established (Braunisch et al., 2013; 
Peterson	et	al.,	2011).	As	our	study	addresses	the	effect	of	collin-
earity from a methodology perspective, we aimed to mimic typical 
practices in ENM literature.

2.2 | Data partitioning and model transfer scenarios

We partitioned the occurrence data for each species in two ways 
to simulate model transfer and nontransfer scenarios. We used 
the “checkerboard2” method (using two as aggregation factor; 
Muscarella et al., 2014) to simulate scenarios where models are not 
spatially transferred; this method is an advanced random segrega-
tion approach that decreases the effect of sampling bias (Hijmans, 

2012). To simulate scenarios of model transfer across space, we 
used the “block” approach to partition our occurrence data spatially 
(Muscarella et al., 2014). For each species, we separated the occur-
rence dataset in geographic space into four sets using either the 
“checkerboard2” or “block” method, and used three sets for model 
training and one set for testing (Figure 2). These spatially segregated 
sets of occurrences (“block” partitions) are expected to vary in their 
climate compared with those based on the “checkerboard2” method 
(Muscarella et al., 2014).

We built two-decimal degree buffers (approximately 220 km at 
equator) around each species occurrence point and used them as 
training	 regions	 (Anderson	 &	 Raza,	 2010).	We	 randomly	 selected	
10,000 background points for Maxent from within the training re-
gions. We used the default Maxent parameters (version 3.3.3k), 
including default feature and regularization settings, which were de-
termined by an empirical study (Phillips & Dudík, 2008). It is possible 
that by tweaking the features and regularization parameters (Cobos, 
Peterson, Barve, & Osorio-Olvera, 2019; Muscarella et al., 2014), 
different modeling settings could all achieve best performances, and 
some of the best performances metrics may be equally good (Feng, 
Anacleto,	&	Papeş,	2016).	However,	optimizing	the	model	fully	[e.g.,	
in	ENMeval	(Muscarella	et	al.,	2014)	or	kuenm	(Cobos	et	al.,	2019)]	
was not the goal of this study and the manipulated parameters are 
not known to directly influence how collinearity or environmental 
novelty is handled. In addition, the automatically determined fea-
tures will be consistent among modeling replicates of the same 
species and thus will not affect subsequent comparisons of model 
performance. We used the same background points in model evalua-
tion (see Muscarella et al., 2014). To evaluate model performance, we 
used one threshold-independent evaluation index (i.e., area under 
the	receiver	operating	characteristic	curve;	AUC)	and	two	threshold‐
dependent evaluation indices (i.e., true skill statistic (TSS) and sensi-
tivity	with	a	5%	omission	rate	threshold).	AUC	values	can	range	from	
0 to 1, with values above 0.5 indicating models better than random 
(Swets,	1979);	TSS	values	can	range	from	−1	to	1,	with	values	above	
0	indicating	models	better	than	random	(Allouche,	Tsoar,	&	Kadmon,	
2006). Given that background points instead of absence data were 
used, omission error (false-negative rate) is expected to have higher 
importance than commission error (false positive rate), so sensitiv-
ity (proportion of known presences predicted present; 0–1 values) 

F I G U R E  2   Occurrence data partition 
schemes for model transfer and 
nontransfer scenarios. The occurrences 
of each species (e.g., Canis latrans in 
North	America,	as	shown	in	the	figure)	
are separated into four groups (to be 
used in model training and testing), either 
randomly (nontransfer scenario; left 
panel) or spatially (transfer scenario; right 
panel). The four colors represent the four 
occurrence partitions
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was included as another evaluation index (Leroy et al., 2018; Lobo, 
Jiménez‐Valverde,	&	Real,	2008;	Peterson,	Papeş,	&	Soberón,	2008).	
Using this framework, we compared model performance in transfer 
versus nontransfer scenarios in downstream analyses (see Section 
2.4). We conducted these analyses using the raster (Hijmans & van 
Etten, 2016) and dismo (Hijmans, Phillips, Leathwick, & Elith, 2017) 
packages in R (R Development Core Team, 2017).

2.3 | Manipulating the degree of predictor 
collinearity

To determine the influence of collinearity on model performance, we 
used	 two	 variable	 selection	 strategies:	 random	 selection	 (VRandom) 
and	random	selection	of	 less	correlated	variables	 (VRandomLowCor). For 
VRandom, we randomly selected a subset of predictors from a pool 
of	 environmental	 variables;	 VRandom serves as the control group for 
VRandomLowCor, as well as to represent studies that do not account for 
collinearity.	For	VRandomLowCor, we randomly selected a subset of predic-
tors that are less correlated (based on random background points) using 
the 0.7 threshold for correlation coefficient (Dormann et al., 2013).

We repeated both methods of variable selection 10 times for 
each species to account for stochasticity in variable selection. In 
each replicate, we randomly selected the same first variable for 
VRandom	 and	 VRandomLowCor. We selected up to four variables for 
VRandomLowCor, since four was the maximum number of variables that 
could be selected under the correlation threshold for most North 
American	and	Australian	species.

2.4 | Quantification of collinearity and 
environmental novelty

We calculated two indices for collinearity, the degree of predic-
tor collinearity and collinearity shift. We calculated Pearson's cor-
relation coefficient between each pair of predictors to assess the 
strength of their correlations, which is the most common approach 
in quantifying predictor correlation. To calculate the overall degree 
of collinearity across all predictors used in a model, we first obtained 
the correlation matrix of predictors in the training region (based on 
randomly selected background points used in model training; see 
Section 2.2) and calculated the mean of the absolute values of the 
upper panel of correlation matrices. We quantified collinearity shift 
of predictors by calculating the mean absolute differences between 
the upper panels of the correlation matrices of training and testing 
regions (see Feng et al., 2015).

Previous studies have shown that model extrapolation in novel 
environmental conditions can lead to decreased performance 
(Fitzpatrick et al., 2018; Owens et al., 2013; Qiao et al., 2019). 
Therefore, we quantified environmental novelty, in essence envi-
ronmental distance, between testing and training data. More spe-
cifically, we first rescaled each climatic variable for each continent 
(North	America	and	Australia)	 separately	 to	span	one	standard	de-
viation across a mean of zero, and then calculated the Euclidean dis-
tance between the environmental conditions of background points 

from training and testing datasets for each modeling replicate. We 
calculated the distance in two ways: either the mean pairwise dis-
tance between background points in training and testing datasets 
or the mean distance between testing background points and the 
centroid of training background points. The two measurements of 
distance were highly correlated (|r| = .96), and thus, we only present 
presented results associated with the latter. Our method of quantify-
ing environmental novelty is comparable to the method of calculating 
environmental similarity in mobility-oriented parity (MOP; Owens et 
al., 2013). Our calculation of distance between training and testing 
regions corresponds to the similarity between species’ accessible 
area (M) and projection region (G) in Owens et al. (2013), with the 
exception that the true extent of species’ accessible area is unknown. 
Our calculation can be considered as one scenario of using MOP, that 
is, considering all points in M rather than using a portion of points.

2.5 | Relationships between model transfer, variable 
selection, collinearity, environmental novelty, and 
model performance

We used linear mixed models (lme4 package version 1.1–15 in R; 
Bates, Mächler, Bolker, & Walker, 2015) to accomplish the three 
aims. First, we assessed the effects of model transfer scenario (non-
transfer	vs.	transfer)	and	variable	selection	(VRandom	vs.	VRandomLowCor) 
on	model	performance	(i.e.,	AUC,	TSS,	and	sensitivity),	using	model	
performance as the dependent variable, transfer scenario and vari-
able selection scheme as fixed effects, and continent and species as 
nested random effects (Table 1). Similarly, for the second aim, as-
sessing the effects of model transfer scenario on collinearity shift 
and environmental novelty, and the effects of variable selection on 
the degree of predictor collinearity, we used the degree of predictor 
collinearity, environmental novelty, or collinearity shift as depend-
ent variable, model transfer scenario or variable selection as fixed 
effects, and continent and species as nested random effects. Lastly, 
to investigate the role of degree of predictor collinearity, collinearity 
shift, and environmental novelty on model performance, we treated 
model performance as the dependent variable, degree of predictor 
collinearity, collinearity shift, and environmental novelty as fixed ef-
fects, and continent and species as nested random effects. The de-
pendent or independent variables, if continuous, were rescaled to 
span one standard deviation around a mean of zero for easier com-
parison of estimated coefficients (Gelman & Hill, 2007). Though the 
expected sample size for linear mixed models was 4,960 (31 species * 
2 transfer scenarios * 2 variable selection strategies * 10 replicates * 
4 folds cross-validations), the actual sample size was 4,928 because a 
few modeling replicates failed to meet the variable selection criteria 
in Section 2.3.

3  | RESULTS

The number of spatially unique presences used in ecological niche 
models ranged from 16 to 922 (mean = 328; median = 260.5) for the 
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22	North	America	species	and	from	21	to	191	(mean	=	101.2;	me-
dian	=	94)	for	the	nine	Australian	species	included	in	this	study	(Table	
S2).	The	performance	metrics	(AUC,	TSS,	and	sensitivity)	indicated	
that the models based on the random data partition into training and 
testing (nontransfer scenario) performed well, on average, for all 
species studied (Figure 3).

We found that transferring models led to significantly lower 
model	 performance,	 indicated	 by	 lower	 AUC,	 TSS,	 and	 sensi-
tivity values compared with the nontransfer scenario (Table 1). 
Model transfer also led to significantly higher collinearity shifts 
and higher environmental novelty (Figure 4). Excluding highly cor-
related variables led to significantly lower degree of predictor col-
linearity (Figures 4 and 5; Table 1), but had little effect on model 
performance in both nontransfer and transfer scenarios (Figures 
3 and 5; Table 1).

The linear mixed models showed that both degree of collinearity 
shift and environmental novelty had a negative effect on model per-
formance, while predictor collinearity was not correlated with model 
performance (Table 1).

4  | DISCUSSION

Despite frequent mentions in the literature, the effects of predic-
tor collinearity on Maxent models have not been well understood; 
thus, approaches toward documenting and dealing with collinear-
ity have been arbitrary. Our study clarifies whether, when, and 
how collinearity affects model performance in Maxent. First, we 
show decreased model performance in model transfer scenarios, a 
well-known phenomenon observed in many studies (Fitzpatrick et 
al., 2018; Owens et al., 2013; Qiao et al., 2019). The potential un-
derlying mechanisms are likely the degree of predictor collinearity, 

collinearity shift, and environmental novelty. To clarify the role of 
these potential mechanisms, we further showed that model trans-
fer was accompanied by considerably increased collinearity shift 
and environmental novelty, both of which were associated with 
decreased model performance. The degree of predictor collinear-
ity can be controlled by removing highly correlated variables, but 
in our study this approach did not affect model performance, pro-
viding direct evidence of Maxent's ability to regulate model com-
plexity by downplaying the importance of redundant variables. 
This finding is also confirmed by De Marco Júnior and Nóbrega 
(2018) using simulated data. However, collinearity shift and en-
vironmental novelty are expected to be independent of variable 
selection strategy and dependent on the environmental differ-
ence between the training and projecting regions. Therefore, even 
though Maxent can regulate the contribution of redundant vari-
ables, it is not immune to collinearity shift and environmental nov-
elty, which is independent of the modeling algorithm and can lead 
to lower predictive performance when models are transferred. In 
other words, the strategy of removing highly correlated variables 
does not help improve Maxent models, because (a) Maxent is able 
to regulate redundant variables and alleviate the effects of vari-
able collinearity on model training, and (b) collinearity shift and 
environmental novelty are independent of the degree of predictor 
collinearity.

4.1 | The degree of predictor collinearity versus 
collinearity shift

It is important to distinguish between the roles of degree of predic-
tor collinearity and collinearity shift. The former may impact model 
estimation, whereas the latter impacts the accuracy of model pre-
diction in the testing region. Both aspects can negatively impact the 

TA B L E  1   Summary statistics of linear mixed models. Each row represents a different model, with dependent variables listed on the left 
and predictors (fixed effects) on the right

Dependent variable

Predictors

Intercept

Variable selec-
tion (VRandom vs. 
VRandomLowCor)

Transfer scenario 
(Nontransfer vs. 
Transfer)

Environmental 
novelty

Degree of 
predictor 
collinearity

Collinearity 
shift

Environmental novelty −0.38  0.43***    

Degree of predictor collinearity 0.49** −0.85***     

Collinearity shift −0.84***  1.69***    

TSS 0.19*** 0.00 −0.07***    

AUC 0.69*** 0.00 −0.05***    

Sensitivity 0.90*** 0.00 −0.08***    

TSS 0.15***   −0.03*** 0.00 −0.02***

AUC 0.66***   −0.01*** 0.00 −0.01***

Sensitivity 0.85***   −0.03*** 0.00 −0.03***

Note: Coefficients of covariates are bolded when significant; two decimal places are kept.
***p < .001; 
**p < .01; 
*p < .05. 
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F I G U R E  3   Model performance in transfer and nontransfer scenarios. The scenarios are defined by separating occurrences randomly 
(nontransfer)	or	spatially	(transfer).	Model	performance	is	represented	by	TSS	(panel	a),	AUC	(panel	b),	and	sensitivity	(panel	c).	The	data	
are	grouped	by	study	area	(North	America	and	Australia)	and	variable	selection	strategy	(VRandom	vs.	VRandomLowCor). Bars represent 95% 
confidence intervals on the means of models grouped by continent, transfer scenario, and variable selection strategy

F I G U R E  4  Summary	of	degree	of	predictor	collinearity	(a)	in	different	variable	selection	strategy	(VRandom	vs.	VRandomLowCor) and 
collinearity shifts (b) and environmental novelty (c) under model transfer versus nontransfer scenarios. Bars represent 95% confidence 
intervals
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accuracy of classical regression models, but Maxent can balance the 
trade-off between model fit and model complexity through regulari-
zation (Elith et al., 2011); therefore, the degree of predictor collinear-
ity is not expected to affect Maxent.

Collinearity shift can occur when training and testing data are 
environmentally different. In the context of ENM, models are fre-
quently transferred to different regions and/or time points, so collin-
earity shifts are likely common in ENM applications. The magnitude 
of collinearity shift depends on the difference between training 
and testing data. But can collinearity shifts be reduced by removing 
highly correlated variables in model training? Probably not, because 
one could not predict the change in correlation between a pair of 
predictors, since two highly correlated variables will not necessarily 
experience more correlation shift than a pair of less correlated vari-
ables. From another perspective, the collinearity shift of a predictor 
set will always be predetermined when the training and testing data 
are decided in the stage of experimental design, before model train-
ing and projecting.

4.2 | Collinearity in Maxent modeling

Our results supported the view that Maxent is robust to the degree 
of predictor collinearity (Elith et al., 2011) in the context of model 
training. However, given the role of collinearity shift and the inde-
pendence between degree of predictor collinearity and collinear-
ity shift, Maxent is not totally immune to issues of collinearity. Our 
results showed that removing highly correlated variables did not 
significantly influence the accuracy of Maxent model (Table 1), re-
gardless of model transfer scenario, because Maxent can regulate 
the contribution of redundant predictors; the aspect that matters 
more in Maxent modeling is the collinearity shift in model transfer 
scenarios; therefore, we recommend to quantify the collinearity 
shift as a proxy of model accuracy (e.g., Feng et al., 2015).

While the effects of collinearity are well understood in classical 
regression models (Dormann et al., 2013), they remain inconclusive 
in	 even	 the	 most	 recent	 Maxent	 publications	 (Appendix	 S1).	 We	
think that the different roles of degree of predictor collinearity and 

collinearity shift, model transfer scenario, and difference in parame-
ter estimation between Maxent and classical regression models may 
all have contributed to the confusion of collinearity in the Maxent 
modeling community.

4.3 | Model transfer is challenging

Model transfer is essentially challenging and even risky (Gelman & 
Hill, 2007), as evidenced by the dramatically decreased model per-
formance when our Maxent models were projected to different re-
gions. Previous studies on ENM transferability mainly examined the 
negative impact of novel environments on model performance, as 
the estimated relationship between species distribution and envi-
ronmental predictors may be invalid in other, nontraining environ-
ments (Fitzpatrick et al., 2018; Owens et al., 2013; Qiao et al., 2019). 
Here, we also find a negative impact of collinearity shift on model 
performance in transfer scenarios, as the relationships between pre-
dictors in the training area do not necessarily apply in the projected 
area.

4.4 | Future research

In our study design, we selected variables based on the correla-
tion of predictors to mimic a common practice in ENM literature 
(De Marco Júnior & Nóbrega, 2018). However, generally speak-
ing, the approach of selecting less correlated predictors does not 
fully solve the collinearity issue as even a low level of collinearity 
can bias the ecological models (Graham, 2003). Moreover, this ap-
proach faces two issues: the chance of ignoring the unique contri-
butions of omitted variables and the inferential problem in deciding 
which variable to drop between a highly correlated pair (Graham, 
2003).	Alternative	 approaches	 have	been	proposed	 to	 solve	 the	
issue through the functional nature of collinearity. For example, 
the	principal	component	analysis	(PCA)	assumes	shared	contribu-
tions from correlated predictors and extracts vectors to account 
for	the	variations	of	predictors,	but	the	major	limitation	of	PCA	is	
the lack of biological interpretation of the principal components 

F I G U R E  5   Conceptual summary of 
results. Solid lines represent significant 
relationships (blue for positive effects 
and red for negative effects) supported 
by our results; dashed lines represent 
inconclusive relationships
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(Graham,	2003).	Besides	the	limitation	of	interpretability,	the	PCA	
approach, when used for future predictions, still suffers from the 
issue of collinearity shift during model transfer. This is due to the 
fact that the principal components are determined by the eigen-
structure	of	the	sample	covariance	matrix	of	the	predictors	(Abdi	
& Williams, 2010), and the collinearity shift will distort the original 
eigen-structure and hence change the principal components in a 
different spatial and temporal context.

Though we focused on Maxent in our study with the aim to cap-
ture a common practice in ENM literature, many other algorithms 
are used in ENM literature (e.g., 33; Norberg et al., 2019). The vul-
nerability to degree of predictor collinearity should vary with and 
depend	on	 the	mechanisms	 in	each	algorithm.	According	 to	com-
parisons done by De Marco Júnior and Nóbrega (2018), envelope 
algorithms are more sensitive to degree of collinearity, compared 
with more complex algorithms, such as Maxent. Comprehensive 
comparisons and evaluations of sensitivity of algorithms to collin-
earity are still rare in general and thus require more investigation. 
Nevertheless, the negative effects of collinearity shift and novel 
environments are likely generalizable to other modeling algorithms, 
because those issues are dependent on the choice of training and 
projection data, and independent of modeling algorithms.

Our experimental design reflects common practices used in 
Maxent modeling (e.g., variable selection based on correlation co-
efficients, default Maxent parameters, and widely used climatic 
dataset); thus, the results have broad implications for Maxent appli-
cations.	Also,	our	study	was	conducted	across	two	continents	with	
varied climatic regimes. The use of real landscapes makes our study 
more likely to capture the complexities that are commonplace in em-
pirical studies. It is worth reflecting on how frequently collinearity 
shift and novel environments are coupled or decoupled. In our study, 
the scenario of model transfer was the major driver of collinearity 
shift and novel environments, suggesting that the presence of col-
linearity shift and novel environments could be commonly coupled 
during the model transfer (Figure 4). This is probably true in gen-
eral simply because of the heterogeneous landscape on Earth, that 
is, different areas rarely have the same environments. However, in 
the transfer scenario, the strength of collinearity shift and environ-
mental novelty showed very weak correlation in our case (Figure S1), 
suggesting the magnitude of both is likely decoupled. In other words, 
the magnitude of change in correlation of a pair of highly correlated 
variables should depend on the modeling context, defined by pre-
dictor selection and spatial and temporal extent and resolution of 
the	 environmental	 predictors	 (Jiménez‐Valverde,	Nakazawa,	 et	 al.,	
2009).

In contrast with using data from real world, there is an increas-
ing trend of using virtual species and even virtual landscapes in 
methodological	explorations	in	ENM	(Feng	&	Papeş,	2017;	Hirzel,	
Helfer, & Metral, 2001; Leroy, Meynard, Bellard, & Courchamp, 
2016; Meynard & Kaplan, 2013; Moudrý, 2015; Qiao et al., 2016). 
Notably, De Marco Júnior and Nóbrega (2018) studied the influ-
ence of degree of predictor collinearity using virtual species that 
have defined niches, with the obvious advantage of knowing the 

species’ true distribution in model evaluation. Their study reached 
a similar conclusion on the robustness of Maxent on collinearity; 
in addition, the study had an expanded scope on multiple modeling 
algorithms and found different levels of algorithm sensitivity to 
the issue of collinearity. Similarly, future research could validate 
our findings using virtual species or using a simulated landscape 
with well-controlled environmental conditions, and examine the 
role of collinearity shift and novel environments on ENM algo-
rithms beyond Maxent, as well as explore different approaches in 
handling collinearity. Nonetheless, by basing our investigations on 
empirical data, we highlight the issues that are likely to be present 
in studies dealing with real-world systems.

5  | CONCLUSIONS

Based on our analyses, we draw the following three conclusions: (a) 
Maxent is capable of regulating contributions from redundant vari-
ables, rendering its robustness to degree of predictor collinearity in 
model training; (b) Maxent is not immune to environmental novelty and 
collinearity shifts, and we thus recommend estimation of these factors 
to better infer uncertainties when models are spatially and/or tem-
porally transferred; and (c) the strategy of removing highly correlated 
variables has little impact in Maxent model performance because of 
the way Maxent deals with redundant variables and the independence 
between degree of predictor collinearity and collinearity shift.
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