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Abstract

Background: Malignant pleural mesothelioma (MPM) is a very rare and highly aggressive cancer of the pleura
associated in most cases with asbestos exposure. To date, no really efficient treatments are available for this
pathology. Recently, it has been shown that epigenetic drugs, particularly DNA methylation or histone acetylation
modulating agents, could be very efficient in terms of cytotoxicity for several types of cancer cells. We previously
showed that a hypomethylating agent (decitabine) and a histone deacetylase inhibitor (HDACi) (valproic acid (VPA))
combination was immunogenic and led to the induction of an anti-tumor immune response in a mice model of
mesothelioma. However, VPA is not very specific, is active at millimolar concentrations and is responsible for side
effects in clinic. To improve this approach, we studied four newly synthetized HDACi, two hydroxamates (ODH and
NODH) and two benzamides (ODB and NODB), in comparison with VPA and SAHA. We evaluated their toxicity on
immune cells and their immunogenicity on MPM cells in combination with decitabine.

Results: All the tested HDACi were toxic for immune cells at high concentrations. Combination with decitabine
increased toxicity of HDACi only towards T-cell clone. A decrease in the proportion of regulatory T cells and natural
killer cells was observed in particular with VPA and ODH. In MPM cells, all HDACi combinations induced NY-ESO-1
cancer testis antigen (CTA) expression and the recognition of the treated cells by a NY-ESO-1 specific T-CD8 clone.
However, for MAGE-A1, MAGE-A3 and XAGE-1b mRNA expression, the results obtained depended on the HDACi
used and on the CTA studied. Depending on the MPM cell line studied, molecules alone increased moderately PD-
L1 expression. When combined, a higher stimulation of this immune check point inhibitor expression was observed.
Decitabine-induced anti-viral response seemed to be inhibited in the presence of HDACi.

Conclusions: This work shows that the combination of decitabine and HDACi could be of interest for MPM
immunotherapy. However, this combination induced PD-L1 expression which suggests that an association with
anti-PD-L1 therapy should be performed to induce an efficient anti-tumor immune response.
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Background
Malignant pleural mesothelioma (MPM) is a deadly
disease that develops in the pleura. It was confirmed by
Wagner’s studies that the vast majority of mesothelioma
cases are actually attributed to asbestos exposure [1].
MPM was a very rare tumor before the industrial era;
however, its incidence is increasing worldwide and is
expected to peak in the year 2020. This cancer has an
unusual molecular pathology with the loss of tumor sup-
pressor genes being the predominant pattern of lesions
[2]. Due to its resistance to all conventional therapies, the
need for developing novel therapeutic regimens is urgent
in order to cure this rare and treatment-resistant cancer.
In many cancers including mesothelioma, a hyperme-

thylation of some gene promoters, including tumor sup-
pressor genes (TSG) promoters, and overall DNA
hypomethylation have been observed [3, 4]. Likewise, a
decrease of acetylation of histones H3 and H4 was de-
scribed [5, 6]. Therefore, epigenetics based therapies
could be an interesting opportunity to improve MPM
treatment. It was shown in different cancers that the use
of hypomethylating agents in combination or not with
histone deacetylase inhibitors (HDACi) could be im-
munogenic [7–11]. It has been shown, in the laboratory
and in another team, that MPM cell death induced by
the combination of a hypomethylating agent/HDAC in-
hibitor could be immunogenic through the induction of
tumor antigen expression especially cancer testis anti-
gens (CTA) [12, 13]. Even if epigenetic drugs are effi-
cient especially as a treatment of hematopoietic cancers
such as leukemia, they display poor clinical benefits on
solid tumors. Moreover, HDACi are unspecific and toxic
to healthy cells. In addition, they have side effects such
as hematologic toxicity, decreasing the number of plate-
lets and leukocytes [14]. It is, therefore, necessary to de-
velop new epigenetic drugs that are more specific, less
toxic to healthy cells and specifically for immune cells,
and that can act in low doses.
In order to identify more potent and more convenient

HDACi for clinic, we tested four new HDACi we recently
synthetized and characterized [15, 16]. First of all, we eval-
uated the effect of these HDACi in comparison with val-
proic acid (VPA) and suberoylanilide hydroxamic acid
(SAHA), two well-known HDACi, on total lymphocytes
and on CD8+ T cell clones viability, and on some import-
ant populations of immune cells (natural killer (NK) and
regulatory T (Treg) cells). Secondly, we tested the effect of
the combination decitabine/new HDACi, in comparison
with decitabine/VPA or SAHA combinations, on cancer
testis antigens (CTA) expression, NY-ESO-1, MAGE-A1,
MAGE-A3 and XAGE-1b, at the mRNA level in a malig-
nant pleural mesothelioma cell lines. Indeed, CTA expres-
sion is associated with spontaneous antitumor immune
responses and their discovery has led to the development

of immunotherapy strategies and to antigen-specific
cancer vaccines. Following treatment with decitabine/
HDACi combinations, recognition of MPM cells by a
NYESO-1-specific CD8+ T-cell clone was assessed. PD-L1
mRNA expression, a molecule that is implicated in the
major mechanism of immuno-suppression within the
tumor microenvironment [17], was also measured. Re-
cently, it was demonstrated that hypomethylating agent
can induce interferon pathway through activation of
endogenous retroviral elements in colorectal, breast, and
ovarian cancer [10, 11]. Therefore, the effect of the combi-
nations was studied also on the mRNA expression of
MDA5 (melanoma-differentiation-associated gene 5) and
RIG-1 (retinoic-acid-inducible protein I), two essential
immunoreceptors implicated in interferon signaling path-
way and in RNA-sensing pathway.

Methods
Cell culture
The tumor cell lines used in this work were Meso96,
Meso34, and Meso45, three human pleural mesothelioma
cell lines, established from MPM patients’ effusions ob-
tained by thoracocentesis (the patient was informed and
gave signed consent). The cell lines were characterized
and cultured in our laboratory as described [18]. Cells
were cultured in Roswell Park Memorial Institute (RPMI)
1640 medium supplemented with 10% heat-inactivated
fetal calf serum, 2 mM L-glutamine, 100 IU/ml penicillin,
and 200 μg/ml streptomycin.
Lymphocytes were obtained from the clinical transfer

platform (DTC, CIC-biothérapies Nantes) of Nantes
Hospital (Nantes, France). CD8 T-cell clones used for
this study, HLA-A*0201/NY-ESO-1(157–165)-specific
CD8 T-cell clone was described previously [19].

Drugs
Decitabine (5-azaCdR) and VPA were purchased from
Sigma-Aldrich (Saint-Quentin Fallavier, France). SAHA
was from Interchim (Montluçon, France). HDACi ODB,
NODB, ODH, and NODH were synthesized by Dr.
Philippe Bertrand as described previously [15]. Structure
of the HDACi is provided as Additional file 1: Table S1.

Cell treatment
For dose-response experiments, lymphocytes were seeded
at 4 × 105 cells/well in RPMI 1640 8% HS in flat-bottomed
96-well plates, and CD8 T-cell clones were seeded at 50 ×
103 cells/well in 180 μl RPMI 1640 8% HS containing
150 IU IL-2. The treatments were carried out 24 h after
seeding by adding decitabine at 500 nM for 72 h; then,
HDACi treatments were performed for additional 48 h.
For flow cytometry experiments, lymphocytes were

seeded at 4 × 105cells/well in a flat-bottomed 96-well plate
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in 180 μl RPMI 1640 8% HS. Cells were treated with dif-
ferent HDACi for 48 h.
For tumor cell culture, 105 cells were seeded per well of

6-well plate in 2 ml of culture medium and then incubated
at 37 °C for 24 h. Cells were then treated with a combin-
ation of 0.5 μM decitabine for 72 h followed by HDACi,
VPA 5 mM, SAHA 2.5 μM, ODB 7.5 μM, NODB 2.5 μM,
ODH 2.5 μM, and NODH 25 nM for 48 h.

Cell viability test
After treatments, cell viability was measured using
CellTiter-Glo kit (Promega) according to the manufac-
turer’s protocol.

Flow cytometry analysis
The day of analysis, cells were stained in a conical-bottomed
96-well plate at 105 cells/well. The plate was centrifuged at
800×g for 1 min, and the pellets were washed using
200 μl/well of PBS containing BSA 0.1% (wash buffer).
Antibodies (see Additional file 2: Table S2) were used
at a dilution of 1/30 in the wash buffer, and then, the
plate was incubated at 4 °C for 30 min. Later, two wash-
ings were performed using the wash buffer prior to flow
cytometry analysis. All flow cytometry data were ac-
quired with FACScalibur (BD biosciences) using the
CellQuest software (BD Biosciences) and analyzed by
FlowJo software.

Real-time RT-PCR
Expression levels of the gene of interest were analyzed
using real-time PCR. Reverse transcription was performed
with the M-MLV Reverse Transcriptase (Invitrogen) using
aliquots of total RNA extracted from MPM cells NucleoS-
pin® RNA kits. All real-time PCR reactions were per-
formed using the Mx3005P QPCR Systems (Stratagen
Products, Agilent Technologies), and the amplifications
were done using the SYBR Green PCR Master Mix SAB
bioscience (Qiagen) mixed with Oligonucleotides Quanti-
Tect Primer (Qiagen). The thermal cycling conditions
were composed of 1 cycle at 95 °C for 10 min, 40 cycles at
95 °C for 30 s and 60 °C for 1 min, and 1 cycle at 95 °C for

1 min, 60 °C for 30 s, and 95 °C for 30 s. The experiments
were carried out in duplicate for each data point. All the
qPCR data were analyzed by MxPro software.

Measurement of NY-ESO-1-specific CD8+ T-cells activation
MPM cells were treated or not with decitabine 72 h/
HDACi 48 h prior to be seeded at 105 cells/well and
then co-cultured with NY-ESO-1-specific CD8+ T-cells
[19] at 5 × 104 cells/well in complete RPMI 1640
medium containing 10 mg mL−1 of brefeldin A
(Sigma-Aldrich) for 6 h at 37 °C, then washed. Cells
were stained with APC-conjugated mouse anti-human
CD8 at 1/30 for 30 min at 4 °C in wash buffer, and
PE-conjugated mouse anti-human IFN-γ monoclonal
antibodies at 1/50 for 30 min at room temperature in
permeabilization buffer. CD8 and IFN-γ expression were
analyzed using flow cytometry.

Statistical analysis
Data presented are means ± S.E.M. The unpaired t test
and one-way ANOVA test followed by Holm-Sidak’s
multiple comparisons test were used to measure the
statistical differences. Statistical analyses were performed
using GraphPad Prism 6 (GraphPad Software Inc., San
Diego, CA, USA). A P value of 0.05 or less was consid-
ered as significant.

Results
Effect of histone deacetylase inhibitors (HDACi) on
lymphocyte viability
The first step in this study was to test the toxicity of the
novel compounds, in comparison with the two HDACi
already known and used clinically (VPA and SAHA), on
lymphocytes and on activated CD8 T lymphocytes
clones. For this, we performed a cell viability assay after
48 h of treatment with increasing doses of HDACi on
cells pretreated or not with decitabine. The IC50 were
determined and summarized in Table 1, and the area
under the curve (AUC) are provided as Additional file 3:
Table S3.

Table 1 HDACi IC50 on immune cells

Lymphocytes T-CD8 clones

− Decitabine + Decitabine 500 nM − Decitabine + Decitabine 500 nM

VPA 6.75 ± 0.06 mM 3.05 ± 0.11 mM 3.80 ± 0.06 mM 0.02 ± 0.10 mM

SAHA 13.66 ± 0.05 μM 9.9 ± 0.08 μM 1.29 ± 0.05 μM 0.08 ± 0.06 μM

ODB ND ND 28.81 ± 0.05 μM 0.17 ± 0.12 μM

NODB 46.01 ± 0.06 μM 26.22 ± 0.05 μM 17.99 ± 0.05 μM 0.37 ± 0.12 μM

ODH 9.62 ± 0.05 μM 5.28 ± 0.09 μM 1.86 ± 0.05 μM 0.07 ± 0.07 μM

NODH 0.43 ± 0.06 μM 0.19 ± 0.11 μM 0.03 ± 0.05 μM 0.002 ± 0.06 μM

IC50 values were determined using GraphPad prism, Prism 6 for Windows, by curve fitting using a sigmoidal dose response model. Results are the means ± S.E.M
of three independent experiments
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In Fig. 1, we can observe that the chemotherapeutic
agents were toxic for lymphocytes and CD8+ T-lymphocyte
clones at concentrations depending on compounds. For all
tested molecules, IC50 were lower on CD8+ T-lymphocyte
clones compared to total lymphocytes and are coherent
with those we previously obtained on cancer cells [16].
Combination with decitabine did not increase drastic-
ally the toxicity of HDACi towards total lymphocytes
(Fig. 1, Table 1, and Additional file 3: Table S3). How-
ever, on CD8 T-cell clones, IC50 of HDACi were
strongly decreased in the presence of decitabine (Fig. 1,
Table 1, and Additional file 3: Table S3). With lympho-
cytes, we note that some cells persist despite being
treated with the highest concentration of compounds.
Indeed, in the presence or not of decitabine, approxi-
mately 40% of the cells survived with 5 mM of VPA
and with the highest doses of SAHA, ODH, and

NODH, and about 50–60% of the cells survived with
the highest dose of ODB and NODB.

Histone deacetylase inhibitors effect on immune cells
subpopulations
The aim of our strategy is to induce an anti-tumor im-
mune response to cure malignant pleural mesothelioma
by using combinations of epigenetic drugs including
HDACi. Therefore, it was necessary to study the effect
of these HDACi on sub-populations of lymphocytes im-
plicated in this immune response. Doses of compounds
were chosen according to blood concentrations of VPA
and SAHA measured during clinical trials [20–23] and
to induce approximately 50% of decrease of cell viability
for ODB, NODB, ODH, and NODH on total lympho-
cytes (Fig. 1). Toxicity of the compounds was tested on
natural killer cells (NK) (CD56+, CD16+), on regulatory

Fig. 1 Effect of the different HDACi, in combination or not with decitabine, on lymphocytes and T-cell clones viability. Lymphocytes (Lc) and T-
cell clones (Clone) were treated with increasing concentrations of VPA (a), SAHA (b), ODB (c), NODB (d), ODH (e), and NODH (f) for 72 h, in combination or
not with decitabine (5-aza) 500 nM (72 h pretreatment). Viability was measured using Cell Titer-Glo kit. Results are expressed as the means ± S.E.M of three
independent experiments

Bensaid et al. Clinical Epigenetics  (2018) 10:79 Page 4 of 11



T-cells (Treg) (CD4+, CD25+, CD127 low and Foxp3+),
on CD4 and CD8 naïve T-cells (CD4+, CCR7+ and
CD45RA+, and CD8+, CCR7+ and CD45RA+, respect-
ively), and on CD4 and CD8 memory T cells (CD4+ and
CD45RO+, and CD8+ and CD45RO+, respectively).
The proportion of NK cells was decreased by almost all

HDACi and more particularly by ODH and VPA (more
than 50% in comparison to the untreated lymphocytes)
(Fig. 2a, b). Then, we analyzed the effect of the molecules
on Treg cells, a subset of T lymphocytes implicated in the
inhibition of the immune response. Figure 2c, d shows
that VPA and ODH decreased Treg by approximately
95%, while the other compounds reduced the proportion
of this sub-population by 85 to 70% approximately. The
populations of naïve and memory T-cells were not
significantly affected by the different HDACi
(Additional file 4: Figure S1).

Effect of HDACi in combination with decitabine on cancer
testis antigens expression in mesothelioma cells
Cancer testis antigens (CTA) are a category of tumor an-
tigens that are highly restricted to tumors. Their expres-
sion is associated with spontaneous antitumor immune
response, and their discovery has led to the development
of immunotherapy strategies and to antigen-specific can-
cer vaccines [24]. It was demonstrated that CTA expres-
sion can be induced using combination of decitabine/
HDAC inhibitor. We and others previously demon-
strated that CTA can be induced in mesothelioma cells
using this strategy [12, 13]. Here, we aimed at evaluating
the immunogenicity of the new HDACi in combination
with decitabine. For this work, we used the mesotheli-
oma cell lines Meso96, Meso34, and Meso45, established
and characterized in the laboratory [18]. These treat-
ments were poorly toxic on Meso96 and Meso34

a b

c d

Fig. 2 Effect of HDAC inhibitors on NK and Treg cells. Lymphocytes obtained by elutriation were treated with HDACi at the following concentrations
for 48 h: VPA 5 mM, SAHA 1 μM, ODB 32 μM, NODB 8 μM, ODH 4 μM, and NODH 50 nM. a and c are examples of results obtained on natural killer
cells (NK) and regulatory T cells (Treg) using flow cytometry. b and d are graphic representations of HDACi effect on NK and Treg proportions
(respectively). Results are expressed as the means ± S.E.M of three independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001
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(Additional file 5: Figure S2). However, on Meso45,
molecules used alone induced from 10 to 60% of
decrease of cell viability. With HDACi in combination
with decitabine, the decrease of cell viability was from
60 to 90% (Additional file 5: Figure S2). Figure 3a, b
shows the effect of the new compounds in combination
with decitabine on the mRNA expression of the CTA,
NY-ESO-1 (Fig. 3a), and the recognition of the treated
cells by a CD8 T-cell clone specific of this antigen (Fig.
3b). HDACi alone have no effect on CTA expression

(Additional file 6: Figure S3). All HDACi increased
significantly the mRNA expression of NY-ESO-1 in-
duced by decitabine. This effect was associated with rec-
ognition of the treated mesothelioma cells by the
HLA-A*0201/NY-ESO-1(157–165)-specific CD8 T-cell
clone, characterized by the production of IFN-γ after
co-culture experiments. This result was not associated
with an increase of HLA molecules at mesothelioma cell
surface which demonstrated that recognition by T-cell
clone was driven by the increase of NY-ESO-1

a b

c d

e f

Fig. 3 HDACi increase decitabine-induced CTA expression in Meso96 cells and allow tumor cell recognition by CD8+ NY-ESO-1 T-cell clone.
Meso96 cells were treated with: VPA 5 mM, SAHA 2.5 μM, ODB 7.5 μM, NODB 2.5 μM, ODH 2.5 μM, and NODH 25 nM (48 h) in combination or
not with decitabine (5-aza) 500 nM (72 h pretreatment). NY-ESO-1 (a), MAGE-A1 (c), MAGE-A3 (d), XAGE-1b (e), and PD-L1 (f) mRNA were
measured using real time PCR. *p < 0.05, **p < 0.01 and ***p < 0.001. b Interferon (IFN-γ) production by NY-ESO-1-specific CD8+ T-cell clone in
response to Meso96 treated or not with the combination decitabine +/− HDACi. IFN-γ production was measured by intracytoplasmic staining of
IFN-γ and surface staining of CD8, followed by flow cytometry analysis. Lc: lymphocytes alone, +: NY-ESO-1 (157–165) peptide (10 μM), −: MUC1
(950–958) peptide (10 μM), M117: melanoma cell line that expresses NY-ESO-1, CT: untreated Meso96 cells. Results are expressed as the means ±
S.E.M of three independent experiments. § vs LC, §§p < 0.001, §§§p < 0.001; * vs CT, *p < 0.05 and **p < 0.01
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expression (Additional file 7: Figure S4). We extended
this study to the mRNA expression of other CTA,
MAGE-A1 (Fig. 3c), MAGE-A3 (Fig. 3d) and XAGE-1b
(Fig. 3e). Globally, all HDACi increased CTA induced by
decitabine. However, some differences can be observed
depending on the CTA and on the molecule evaluated.
Similar results were obtained using two additional MPM
cell lines, Meso34 and Meso45 (Additional file 8: Figure
S5 and Additional file 9: Figure S6). We also assessed
the effect of these HDAC inhibitors on the mRNA
expression of PD-L1 (B7-H1), an immunomodulatory
molecule that inhibits T cell-mediated immune response
[25]. Whereas decitabine alone did not affect the mRNA
expression of PD-L1, when combined with VPA, SAHA,
or NODH, a significant increase of PD-L1 mRNA was
observed (Fig. 3f ). In the two additional MPM cell lines,
decitabine, some HDACi alone, VPA, SAHA and ODH
in particular, and all the combinations increased PD-L1
expression (Additional file 8: Figure S5 and Additional
file 9: Figure S6).

Effect of decitabine alone and/or in combination with
HDACi on RIG-1 and MDA5 mRNA expression in
mesothelioma cells
Several works demonstrated that decitabine can in-
duce interferon-responsive genes such as melanoma
differentiation-associated antigen-5 (MDA5) and retin-
oic acid-inducible gene I (RIG-1) in different cancer
cell lines [7, 10, 11, 26]. The induction of this pathway can
lead to cell cycle arrest. In MPM cells, the treatment with
decitabine alone increased significantly the expression
of both RIG-1 and MDA5 mRNA expression in Meso34
(Fig. 4c, d) and Meso45 (Fig. 4e, f ) but not in Meso96
(Fig. 4a, b). HDACi alone induced no modifications of
RIG-1 and MDA5 expression in all tested cell lines
(Additional file 10: Figure S7). Decitabine in combin-
ation with HDACi had negligible effect on RIG-1 and
MDA5 expression in Meso96 (Fig. 4a, b); however,
RIG-1 and MDA5 expression induced by decitabine was
reduced in Meso34 (Fig. 4c, d) and Meso45 (Fig. 4e, f ).

Discussion
Malignant pleural mesothelioma (MPM) is a locally
invasive and rapidly fatal malignancy often diagnosed
30–40 years after exposure to asbestos. To date, there is
no effective therapeutic strategy against this disease;
therefore, the development of new treatment is required.
The use of epigenetic drugs represents a promising
approach to treat people suffering from MPM. The
hypomethylating drug decitabine (5-azaCdR) and HDAC
inhibitors have many positive effects either by promoting
growth arrest, apoptosis or differentiation of tumor cells
[27, 28]. In a previous work on a mice model of meso-
thelioma, we have shown that the use of these drugs

alone did not have a strong anti-tumoral effect, while
the use of the combination of decitabine/HDAC inhibi-
tors, VPA or SAHA, was efficient [12]. The use of these
FDA-approved drugs had an impact on the expression of
CTA in mesothelioma cells and induced an anti-tumor
immune response in vivo. However, these compounds
have many toxic properties, notably hematologic toxicity,
which requires the development of new HDAC inhibitors
that are less toxic to healthy cells, act at low doses and
preserve immune cells.
In this study, we aimed at characterizing the toxicity of

new HDACi, in comparison with VPA and SAHA, on im-
mune cells. Then, we studied their immunogenicity, in
combination with decitabine, on MPM cells by measuring
the mRNA expression of CTA, PD-L1, MDA5, and RIG-1.
Our results showed that toxicity on immune cells and im-
munogenicity on MPM cells of the tested molecules are
different. This study demonstrates that a careful evalu-
ation of HDACi is required to define the best combination
strategy for immunotherapy application.
All the tested molecules were toxic for immune cells.

However, whereas high doses of HDACi led to the death
of 100% of CD8 T-cells clones on total lymphocytes,
maximal toxicity depended on the molecule used. When
compared to blood concentrations reach in clinic for
SAHA, approximately 1 μM [22, 23], these results are
coherent with the hematological toxicity observed in pa-
tients. Concerning VPA, blood concentrations observed
during treatments are around 1 mM [20, 21]. At this
concentration, VPA presents weak hematological toxicity
according to our observation. Extrapolated to our new
compounds, NODH seems to be the more promising.
Indeed, this HDACi is 100 times more active to induce
histone H3 acetylation in cells than SAHA [29].
Whereas SAHA is toxic for both lymphocytes and CD8
T-cells at clinical doses measured in blood from patients
(approximately 1 to 4 μM) [30, 31], NODH at 10 to
40 nM, 100 times lower concentrations than SAHA, was
poorly toxic.
Additional analyses demonstrated that Treg and NK

cell populations were particularly affected by HDACi.
All the tested compounds reduced significantly the pro-
portion of Treg. However, VPA and ODH compounds
were the most active drugs on these cells. Epigenetic
mechanisms could be responsible for these effects. There
is no evidence of a regulation of Treg and NK cell
markers through modulation of histone acetylation.
FoxP3, a strong marker of Treg, is well-known to be reg-
ulated by methylation [32], and recent study suggests
that CD16 expression could also be regulated by methy-
lation [33]. Decitabine alone reduced moderately Treg
and NK proportion (Additional file 11: Figure S8). How-
ever, here, it is difficult to determine whether the effect
was more a toxicity or an epigenetic regulation of cell
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markers. A mechanistic study is necessary to identify
mechanisms involved.
In clinic, the effect of HDACi on Treg cell population is

not clear. Some studies mentioned a decrease of Treg cell
population following HDACi treatment [34, 35] whereas
others reported an increase of Treg number and function
[36]. In vitro and preclinical models suggest that reduction
of Treg cells by HDACi depends on the specificity and on
the dose of the molecules used [37]. According to the im-
plication of Treg cells in the inhibition of anti-tumor im-
mune response, this effect of HDACi could be beneficial
for immunotherapy strategy. NK cells are implicated in in-
nate immunity. HDACi were already described as toxic
for these particular cells [38–40], as observed in our study.
This action of HDACi could be deleterious for induction
of anti-tumor response in vivo regarding the implication

of NK cells in tumor immune-surveillance [41, 42] and
metastasis control [43]. However, on the contrary of Treg
cells, the impact of HDACi on NK cell proportion is more
moderate. Indeed, Treg cells were reduced from 65 to 95%
and NK cells were reduced from 40 to 85%.
Several studies have demonstrated the immunogenicity of

the combination decitabine/HDACi on cancer cells, notably
on mesothelioma cells [12, 13]. In this study, we showed
that all HDACi tested increased decitabine-induced CTA
expression which was associated with an increase activation
of a NY-ESO-1-specific CD8 T cell in vitro. This result was
not associated with an increase of HLA molecules at meso-
thelioma cell surface (Additional file 7: Figure S4) which
demonstrated that the recognition by Tcell clone was driven
by the increase of NY-ESO-1 expression. We previously
demonstrated that HDAC1 is in part responsible for

a b

c d

e f

Fig. 4 HDACi modulate decitabine-induced RIG-1 and MDA5 expression in MPM cells. Meso96 (a, b), Meso34 (c, d), and Meso45 (e, f) cells were
treated with: VPA 5 mM, SAHA 2.5 μM, ODB 7.5 μM, NODB 2.5 μM, ODH 2.5 μM, and NODH 25 nM (48 h) in combination or not with decitabine (5-aza)
500 nM (72 h pretreatment). RIG-1 (a, c, and e) and MDA5 (b, d, and f) mRNA expression were measured using real time PCR. *p < 0.05 and **p < 0.01
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NY-ESO-1 repression [44]. Thus, an action of all tested
HDACi on decitabine-induced NY-ESO-1 expression was
expected according to their inhibitory activity on HDAC1
(Additional file 12: Figure S9). For the other CTA tested,
there is no available information on the HDAC implicated
in their regulation. Additionally, we observed that decitabine
increased RIG-1 and MDA5 expression in Meso34 and
Meso45 whereas in Meso96 the modifications observed
were negligible. This observation is novel in the field of
MPM. RIG-1 and MDA5 are two receptors implicated in
interferon signaling pathway and viral infection response.
The increase of RIG-1 and MDA5 expression by decitabine
was described as the consequence of the induction of
endogenous virus replication and then of the activation of
the interferon signaling pathway [10, 11]. In Meso34 and
Meso45, combination with HDACi reduced induction of
RIG-1 and MDA5 expression by decitabine. Anti-replicative
effect of HDACi on viruses was already described [45] which
could explain the results obtained. Thus, immunogenicity of
decitabine could be reduced. However, induction of en-
dogenous viruses by decitabine could also be responsible for
an increase of the mutation rate in MPM cells and then to
an improve adaptability to their environment. Regarding our
previous results obtained in vivo with the combination deci-
tabine/HDACi [12], it seems that inhibition of interferon
signaling pathway induced by decitabine is not determinant
for the induction of an anti-tumor response. Moreover, re-
cent data from our laboratory has demonstrated that ap-
proximately 70% of MPM have a non-functional interferon
pathway (Achard et al., Oncotarget, 2015).
Recently, immune check point inhibitors were identified

as responsible for inhibition of anti-tumor immune re-
sponse and then appear as promising therapeutic targets
[17]. The PD-1/PD-L1 axis is of particular interest regard-
ing the impressive results observed in clinic with anti-PD-1
blocking antibody. Therefore, the impact of treatments on
PD-L1 expression in cancer cells needs to be monitored to
avoid a fail of the strategy evaluated. Indeed, several studies
demonstrated that the expression of PD-L1 can be in-
creased in cancer cells following HDACi or hypomethylat-
ing agent treatment [46]. In MPM cells, we observed that
PD-L1 was induced by the combination decitabine/HADCi.
This observation suggests that epigenetic regulation of
CTA expression and PD-L1 could be associated.
In view of our results, it seems that there is no really

more appropriate molecule when regarding immunogen-
icity. Our study suggests that the combination decitabine/
HDACi should be associated with anti-PD-L1 strategy
given that all combinations induced PD-L1 gene expres-
sion. However, NODH could be interesting regarding its
pharmacological properties. Indeed, this HDACi is active
at nanomolar concentrations and at concentrations which
induce gene expression, NODH is moderately toxic for
lymphocytes when combined with decitabine (25% of cell

death). Unfortunately, toxicity on T-cell clone should be
considered in the protocol of treatment to avoid hamper-
ing an ongoing anti-tumor immune response.

Conclusions
From our work, it seems that more careful studies are
needed on the intrinsic properties of HDACi on both
immune and cancer cells. Indeed, data obtained will be
useful to define the most appropriate combination of mol-
ecules for immunotherapy strategies. Likewise, a better
comprehension of molecular players participating in the
regulation of genes implicated in immunogenicity is re-
quired to design optimized HDACi. To date, anti-PD-1/
PD-L1 strategy needs to be considered in combination
with decitabine and HDACi for MPM treatment in order
to overcome a possible induction of PD-L1 expression.
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Additional file 10: Figure S7. HDACi modulate decitabine-induced RIG-
1 and MDA5 expression in MPM cells. Meso34 (top), Meso45 (middle) and
Meso96 (down) cells were treated with: VPA 5 mM, SAHA 2.5 μM, ODB
7.5 μM, NODB 2.5 μM, ODH 2.5 μM, and NODH 25 nM (48 h) in combination
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Additional file 11: Figure S8. Effect of decitabine on Treg and NK cells.
Lymphocytes obtained by elutriation were treated with decitabine (5-aza)
500 nM (72 h). Figure are examples of results obtained on A) natural killer
cells (NK) and B) regulatory T cells (Treg) using flow cytometry. (PDF 281 kb)

Additional file 12: Figure S9. Determination of HDAC1 inhibition
properties of ODB, NODB, ODH and NODH. Recombinant HDAC1 activity
in the presence of increasing doses of ODB, NODB, ODH and NODH were
measured using Fluor de Lys® Drug Discovery Assays (Enzo Life Sciences).
(PDF 89 kb)
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