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ABSTRACT We present draft genome sequences of Vibrio species (Vibrio alginolyti-
cus, Vibrio cholerae, and two Vibrio parahaemolyticus strains) that were isolated from
warm-water shrimps imported into Canada. All four isolates harbor genetic elements
associated with antimicrobial resistance (AMR), including mobile genetic elements
that can promote horizontal transfer of AMR genes.

V ibrio species are Gram-negative bacteria associated with plankton and estuary-
harvested seafood. The genus Vibrio includes more than 100 known species, a

dozen of which are known to be capable of infecting humans (1). Infections are associ-
ated with exposure to seawater or consumption of seafood containing infectious loads
of pathogenic biotypes of Vibrio species (1, 2). Globally, Vibrio parahaemolyticus is
implicated in most seafood-linked foodborne illnesses (3–5). Some Vibrio cholerae
strains express cholera toxins, particularly the serovars O1 and O139, which have been
associated with multiple pandemics to date and cause life-threatening severe diarrhea
(6). Vibrio alginolyticus is an emerging pathogen that is known to be linked to skin
infections and mild diarrhea (2).

As part of our surveillance analysis of warm-water shrimps imported into Canada,
we isolated and characterized clinically significant Vibrio species and identified a subset
of strains that exhibited multidrug resistance (MDR), defined as resistance to three or
more antibiotics. Here, we report the whole-genome sequences (WGS) of four MDR
Vibrio strains. These strains were isolated and characterized at the species level as
described previously (7) and were stored frozen at 280°C, with antimicrobial resistance
(AMR) profiles determined by the Kirby-Bauer disk diffusion method (8, 9). The antibi-
otic susceptibility test results showed resistance to up to nine different antibiotics
(Table 1). For DNA isolation, stock cultures were struck onto tryptic soy agar with 2%
NaCl (TSA-2N) (Difco BD, Franklin Lakes, NJ, USA), and single colonies were grown over-
night at 35°C on TSA-2N. Genomic DNA was extracted using the Maxwell 16-cell DNA
purification kit (Promega, Madison, WI, USA), and indexed libraries were prepared
using the Nextera XT kit and sequenced on a MiSeq instrument (2 � 300-bp paired-
end reads, v3 chemistry) according to the manufacturer’s protocol (Illumina, San
Diego, CA, USA). Sequence analysis tools were used with default settings for read
adapter trimming, quality filtering, and error correction (BBMap v38.26 [BBDuk and
Tadpole]) (https://sourceforge.net/projects/bbmap), de novo assembly (SKESA v2.3
[SVN 551987:557549M] and Pilon v1.22) (10), gene prediction (Prodigal [commit
fe80417]) (11), and summary metrics (QUAST v5.0.0 [de6973bb]) (12). AMR gene and
plasmid characterizations were predicted by in-house scripts using the Resistance
Gene Identifier (RGI) v5.0.0/Comprehensive Antibiotic Resistance Database (CARD)
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v3.0.3 (13) and MOB-suite v1.4.9 tools and database (14). Isolate details are summarized
in Table 1.

A V. parahaemolyticus strain isolated in-house from Canadian molluscan shellfish
was shown to harbor an integrative and conjugative element (ICE) belonging to the
SXT/R391 family, located on chromosome I (15). This type of mobilizing capacity is
known to be associated with adaptation and evolution (16), including acquired AMR
traits. The widespread detection of several vector systems in Gram-negative bacteria
has been reported and reviewed (17). WGS of the submitted Vibrio species with diverse
extrachromosomal elements are available for the assessment of various in silico tools
to predict phenotypic AMR detected in the Vibrio isolates using standard laboratory
procedures (8, 9) and for the advancement and improvement of WGS-based prediction
of AMR phenotypes.

Data availability. The WGS data have been deposited in EMBL/GenBank as BioProject
PRJNA645603, under the accession numbers listed in Table 1.
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