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During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that
superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic
resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through
direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where
superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in
hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the
system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also
performed which supports the theoretical findings.

1. Introduction

During the past decades, the increase of antibiotic resistance
has become amajor concernworldwide. Antibiotic resistance
is a type of drug resistance where a microorganism is able to
survive exposure to an antibiotic. Serious infections caused by
bacteria that have become resistant to commonly used antibi-
otics have become a principle global healthcare problem in
the 21st century. Superbugs with the drug-resistant genes
are special kinds of bacteria which can be spread by human
contact. Drug-resistant genes can be transferred between
bacteria in horizontal fashion by conjugation, transduction,
or transformation [1, 2]. Therefore a gene for antibiotic resis-
tance which had evolved via natural selection may be shared.
In 2010 the August issue of the journalThe Lancet: Infectious
Diseases, a multinational team reported the emergence and
spread of 180 cases of patients infected by bacteria carrying
the NDM-1, thus suggesting a widespread dissemination [3].
The horrible problem of NDM-1 is not its ability to attack a
person, but the fact that the resistant gene can horizontally

transfer to any other bacteria, which can change common
bacteria to superbugs.

The World Health Organization announced that the
infections caused by superbugs did not respond to conven-
tional treatments, which often induced a long-term illness
and greater risk of death. Patients have to spend more time
and money because of the bacterial resistance. It will bring
huge economic burden and higher risk of death; meanwhile
infectious patients will continuously spread superbugs to
other people by contact [4]. Therefore, the superbugs bring
not only a medical challenge, but also a serious social
problem.

The NDM-1 encoding gene is located on different large
plasmids that are easily transferable to susceptible bacteria
at a high frequency. These plasmids also harbor genes
conferring resistance to almost all antibiotics, thus making
their rapid dissemination in clinically relevant bacteria a
serious threat for therapy [5]. Scientists are afraid that,
once resistance genes are combined with certain dangerous
bacteria in a multispecies environment, the consequences
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will be very serious. Due to the superbugs with new drug-
resistant genes having just been found, there are mainly
experimental studies and testing, and the relevant documents
with mathematical models have not been given.

There are some corresponding researches for the dynamic
of other resistant bacteria, such asMRSA [6–11] and VRE [10,
12–14]. The literatures about drug resistance under different
circumstances, for instance, school, home [15, 16], hospital
[8, 9, 11, 13, 17–21], and the community environment, have
also attempted to elucidate the mechanisms. Mathematical
modeling and simulations are essential approaches to under-
stand biological phenomena. A deterministic mathematical
model was developed in papers by D’Agata et al. [8, 17] to
characterize the factors contributing to the replacement of
hospital-acquiredMRSAwith CA-MRSA and to quantify the
effectiveness of interventions aimed at limiting the spread
of CA-MRSA in health care settings. A tremendous variety
of models have been formulated recently, mathematically
analyzed, and applied to bacterial resistance. Stochastic
simulation [9, 13] and agent-based simulation [14, 18–20],
combined with hospital environment, are also established.
For social environment, researchers are using differential
equation models [22–24], stochastic simulation model [25],
and neural network simulation model [26] to discuss the
dissemination of resistant bacteria.

Opatowski et al. gave a literature review about contri-
bution of mathematical modeling to fight against antibiotic
resistance [27]. Temime et al. illustrated the influence of
mathematical models in the corresponding research work
with example of resistant bacteria and indicated that the
importance ofmathematicalmodelingwas gradually upgrad-
ing [28]. zur Wiesch et al. conducted a review on the
generation, evolution, control of resistant bacteria, and so on
[29].

The paper is organized as follows. A basic mathemat-
ical model is introduced in Section 2; the model depicts
the population dynamics of patients with one disease in
hospital environment; we analysis the stability properties of
the model, and the stability of the disease-free equilibrium
and the endemic equilibrium are also discussed. A complex
model is given in Section 3, which describes the dynamics
of population when two diseases exist in the system. When
there are 𝑚 diseases in the hospital environment, the pop-
ulation dynamics is studied in Section 4. Numerical result
and parameter analysis are derived in Section 5. The model
is analyzed using stability theory of differential equations.
Positive equilibrium points of the system are investigated and
their stability analysis is carried out. Moreover, the numerical
simulation of the proposed model is also performed by
using fourth-order Runge-Kutta method which supports the
theoretical findings.

2. The Basic Model

Patients suffering from a certain disease who enter the
hospital are divided into two categories: infected patients and
susceptible patients. Here, 𝐼 stands for infected patients, who
suffer from the certain disease and are also with bacterial
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Figure 1: A compartmentmodel of antibiotic resistance in a hospital
setting. See text for description and equations.

resistance; 𝑆 stands for susceptible patients, who suffer from
the certain disease but are without bacterial resistance. The
rate of hospital admissions per day is 𝛼, 𝑝 (0 < 𝑝 <

1) represents the transfer rate from susceptible patients to
infected patients, the cure rate of susceptible patients is 𝛽,
and 1/𝛽 is the average length of stay. 𝑘 (0 < 𝑘 < 1) is
the resistant strength coefficient; the cure rate of infected
patients is reduced to 𝑘𝛽 because of bacterial resistance.
Here, the smaller the value of 𝑘 is, the lower the cure rate of
infected patients is, which also means longer average length
of stay in hospital. The death rate of patients is 𝜇; we assume
that bacterial resistance has no effect on mortality but the
cure rate and these bacteria are transmitted between patients
in hospital via direct contact between patients, through
contamination of the institutional environment, or with the
inadvertent help of human vectors.

The model shown in Figure 1 considers the dynamics of
patients with bacterial resistance in hospital environment
where a single disease exists. The basic system is described
by the following set of ordinary differential equations:

̇𝑆 = 𝛼 − 𝑝𝑆𝐼 − 𝜇𝑆 − 𝛽𝑆,

̇𝐼 = 𝑝𝑆𝐼 − 𝜇𝐼 − 𝑘𝛽𝐼.

(1)

2.1. Steady State Analysis. One of the most important con-
cerns about any infectious disease is its ability to invade a
population. An equilibriumpoint is a point at which variables
of a system remain unchanged over time. System (1) possesses
the following equilibria.

The model has two types of equilibrium points:

(1) The disease-free equilibrium (DFE) is given by
𝐸
0
(𝑆
0
, 0) = (𝛼/(𝜇 + 𝛽), 0).

(2) The endemic equilibrium is given by 𝐸∗(𝑆∗, 𝐼∗) =

((𝛼𝑝 − (𝜇 + 𝛽)(𝜇 + 𝑘𝛽))/(𝜇 + 𝑘𝛽)𝑝, (𝜇 + 𝑘𝛽)/𝑝).

It is obvious that the endemic equilibrium exists if and
only if 𝛼𝑝 > (𝜇 + 𝛽)(𝜇 + 𝑘𝛽).

2.2. Stability of DFE

2.2.1. Local Stability of DFE. To discuss the local stability
of equilibrium points we compute the variational matrix of
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system (1).The signs of the real parts of the eigenvalues of the
variationalmatrix evaluated at a given equilibriumdetermine
its stability. The entries of general variational matrix are
given by differentiating the right-hand side of system (1). The
matrix is given by

𝐽
∗
= (

−𝑝𝐼 − 𝜇 − 𝛽 −𝑝𝑆

𝑝𝐼 𝑝𝑆 − 𝜇 − 𝑘𝛽

) . (2)

Define

𝑅 =

𝛼𝑝

(𝜇 + 𝛽) (𝜇 + 𝑘𝛽)

. (3)

We get Theorem 1 about the stability of disease-free
equilibrium as follows.

Theorem 1. When 𝑅 < 1, 𝐸
0
will be locally asymptotically

stable and the endemic equilibrium does not exist.

Otherwise, 𝐸
0
is not stable and the endemic equilibrium

exists.

Proof. It is easy to calculate the characteristic equation of 𝐸
0

which is

(𝜆 + 𝜇 + 𝛽) (𝜆 − 𝑝𝑆
0
+ 𝜇 + 𝑘𝛽) = 0. (4)

So𝜆
1
= −𝜇−𝛽 < 0, and𝜆

2
= 𝑝𝑆
0
−𝜇−𝑘𝛽 = 𝑝𝛼/(𝜇+𝛽)−𝜇−𝑘𝛽.

Considering 𝑆0 = 𝛼/(𝜇 + 𝛽) and the defining 𝑅 as that
in (3), then when 𝑅 < 1, the eigenvalues has negative real
part, which follows that the disease-free equilibrium 𝐸

0
is

locally asymptotically stable under this condition. Otherwise,
the DFE is unstable and the endemic equilibrium exists.

Biological Meanings. Here, 𝑅 is the basic reproduction num-
ber, which is “the expected number of secondary cases
produced, in a completely susceptible population, by a typical
infective individual” [30]. The condition 𝑅 < 1 has obviously
biological meanings. The drug resistance has the possibility
to be extinct in these populations only if the infection rate of
drug resistance is small enough. At this moment, the resistant
strength coefficient plays a minor role on the dissemination
of drug resistance.

2.2.2. Global Stability of Disease-Free Steady State

Theorem 2. Define 𝑅 as that in (3); then when 𝑅 ≤ 1,
the disease-free equilibrium 𝐸

0
will be globally asymptotically

stable.

Proof. To prove the global stability of the disease-free equi-
librium, we use the method of Castillo-Chávez et al. [31].

Set 𝑋
𝐺

= 𝑆, 𝑍
𝐺

= 𝐼, and rewrite system (1) in the
following form:

̇𝑋
𝐺
= 𝐹 (𝑋

𝐺
, 𝑍
𝐺
) ,

̇
𝑍
𝐺
= 𝐺 (𝑋

𝐺
, 𝑍
𝐺
) ,

(5)

in which 𝐺(𝑋
𝐺
, 0) = 0.

Represent𝐸
0
by𝑈
0𝐺
= (𝑋
∗

𝐺
, 0). According to the theorem

inCastillo-Chávez et al. [31], in order to get the global stability
of 𝐸
0
, system (1) should satisfy three conditions as follows:

(1) 𝐸
0
is locally asymptotically stable.

(2) For ̇𝑋
𝐺
= 𝐹(𝑋

𝐺
, 0), 𝑋∗

𝐺
is globally asymptotically

stable.
(3) 𝐺(𝑋

𝐺
, 𝑍
𝐺
) = 𝐴

𝐺
𝑍
𝐺
− 𝐺(𝑋

𝐺
, 𝑍
𝐺
), 𝐺(𝑋

𝐺
, 𝑍
𝐺
) ≥ 0,

where 𝐴
𝐺
= 𝐷
𝑍𝐺
𝐺(𝑋
∗

𝐺
, 0) is an𝑀-matrix.

For system (1), the first condition has been proven in
Theorem 1. Since 𝐹(𝑋

𝐺
, 0) is a limiting function of ̇𝑋

𝐺
=

𝐹(𝑋
𝐺
, 𝑍
𝐺
), that is, lim

𝑡→∞
𝑋
𝐺
= 𝑋
∗

𝐺
, so the second condition

is easy to get.
Now we compute 𝐴

𝐺
and 𝐺(𝑋

𝐺
, 𝑍
𝐺
) as follows:

𝐴
𝐺
= 𝑝𝑆
0
− 𝜇 − 𝑘𝛽,

𝐺 (𝑋
𝐺
, 𝑍
𝐺
) = 𝑝𝐼 (𝑆

0
− 𝑆) = 𝑝𝐼 (

𝛼

𝜇 + 𝛽

− 𝑆) .

(6)

For system (1) we get that 𝑆 = 𝛼/(𝜇 + 𝛽 + 𝑝𝐼), so 𝑆 < 𝑆
0. So

𝐺(𝑋
𝐺
, 𝑍
𝐺
) ≥ 0 is always established. Then we conclude that

the disease-free equilibrium 𝐸
0
is globally stable if 𝑅 < 1. The

proof is completed.

2.3. Global Stability of the Endemic Steady State. Now let us
discuss the stability of 𝐸∗. About the local stability for the
disease steady state, we have the followingTheorem 3.

Theorem 3. Define 𝑅 as that in (3). Then when 𝑅 > 1, the
endemic equilibrium 𝐸

∗ is globally asymptotically stable.

Proof. The two equations of system (1) constitute a planar
system as follows:

̇𝑆 = 𝛼 − 𝑝𝑆𝐼 − 𝜇𝑆 − 𝛽𝑆 = 𝑃 (𝑆, 𝐼) ,

̇𝐼 = 𝑝𝑆𝐼 − 𝜇𝐼 − 𝑘𝛽𝐼 = 𝑄 (𝑆, 𝐼)

(7)

in which (𝑆, 𝐼) ∈ 𝐷 = {(𝑆, 𝐼) | 𝑆 ≥ 0, 𝐼 ≥ 0}.The stability of𝐸∗
is determined by the value of 𝑝

1
, 𝑞 in characteristic equation

𝑞 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑃

𝜕𝑆

𝜕𝑃

𝜕𝐼

𝜕𝑄

𝜕𝑆

𝜕𝑄

𝜕𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑝𝐼 − 𝜇 − 𝛽 −𝑝𝑆

𝑝𝐼 𝑝𝑆 − 𝜇 − 𝑘𝛽

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

𝑝
1
= −(

𝜕𝑃

𝜕𝑆

+

𝜕𝑄

𝜕𝐼

) = 𝑝𝐼 + 𝜇 + 𝛽 − 𝑝𝑆 + 𝜇 + 𝑘𝛽

= 𝑝 (𝐼 − 𝑆) + 2𝜇 + (1 + 𝑘) 𝛽.

(8)

When𝑅 > 1, 𝑞(𝐸
0
) = (𝜇+𝛽)(𝜇+𝑘𝛽)−𝛼𝑝 < 0, the disease-

free equilibrium 𝐸
0
is unstable. It is easy to verify 𝑞(𝐸∗) =

𝛼𝑝 − (𝜇 + 𝛽)(𝜇 + 𝑘𝛽) > 0 and 𝑝
1
(𝐸
∗
) = 𝛼𝑝/(𝜇 + 𝑘𝛽) > 0, so

the endemic equilibrium 𝐸
∗ is locally asymptotically stable.

Because𝐷 is a positive invariant set in system (1), to prove
𝐸
∗ is global steady in set 𝐷 is equivalent to proving that no
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periodic orbit of system (1) exists in𝐷. We choose the Dulac
function 𝐵(𝑆, 𝐼) = 1/𝐼, to evaluate the following expression
𝜕(𝐵𝑃)/𝜕𝑆 + 𝜕(𝐵𝑄)/𝜕𝐼 = −𝑝 − 𝜇/𝐼 − 𝛽/𝐼 < 0. So no periodic
orbit of system (1) exists and 𝐸∗ is globally asymptotically
stable in set𝐷.

Biological Meanings. When 𝑅 > 1, it means once the patients
with drug resistance enter the hospital, the drug resistance
will be epidemic. Ultimately the number of patients without
drug resistance and patients with drug resistance will be
stable in (𝜇 + 𝑘𝛽)/𝑝 and

𝛼𝑝 − (𝜇 + 𝛽) (𝜇 + 𝑘𝛽)

(𝜇 + 𝑘𝛽) 𝑝

. (9)

3. Bacterial Resistance Spread between
Patients with Two Diseases

In this model, we assumed that the patients in the hospital are
divided into four compartments:

𝑆
1
is the population size of patients infected in disease 1
without bacterial resistance at time 𝑡.

𝑆
2
is the population size of patients infected in disease 2
without bacterial resistance at time 𝑡.

𝐼
1
is the population size of patients infected in disease 1
with bacterial resistance at time 𝑡.

𝐼
2
is the population size of patients infected in disease 2
with bacterial resistance at time 𝑡.

There are two diseases that exist in the hospital environ-
ment; disease 1 and disease 2 are not infectious, so we assume
that the hospital did not take the isolation precautions. Each
kind of patients is divided into infected patients with bacterial
resistance 𝐼

1
, 𝐼
2
and susceptible patients without bacterial

resistance 𝑆
1
, 𝑆
2
. Patients infected with disease 𝑖 (𝑖 = 1, 2)

enter the hospital with the rate 𝛼
𝑖
.The cure rate of susceptible

patients is 𝛽
𝑖
, and 1/𝛽

𝑖
is the average length of stay. 𝑝

𝑖
(0 <

𝑝
𝑖
< 1) represents the transfer rate from susceptible patients

to infected patients, 𝑘
𝑖
is the resistant strength coefficient,

and the cure rate of patients 𝐼
𝑖
is reduced to 𝑘

𝑖
𝛽
𝑖
because of

bacterial resistance. The death rate of patients with disease
𝑖 (𝑖 = 1, 2) is 𝜇

𝑖
; we also assume that bacterial resistance has

no effect on mortality but affects the cure rate. Individuals
enter the hospital in one of these states and exit via death
or hospital discharge. Figure 2 shows an expanded form of
system (1), in which two diseases exist, called disease 1 and
disease 2.

Based on the horizontal of the bacterial resistance
between patients, the model is built as follows:

̇𝑆
1
= 𝛼
1
− 𝑃
1
𝑆
1
𝐼
1
− 𝑃
2
𝑆
1
𝐼
2
− 𝜇
1
𝑆
1
− 𝛽
1
𝑆
1
,

̇𝑆
2
= 𝛼
2
− 𝑃
1
𝑆
2
𝐼
1
− 𝑃
2
𝑆
2
𝐼
2
− 𝜇
2
𝑆
2
− 𝛽
2
𝑆
2
,

̇𝐼
1
= 𝑃
1
𝑆
1
𝐼
1
+ 𝑃
2
𝑆
1
𝐼
2
− 𝜇
1
𝐼
1
− 𝑘
1
𝛽
1
𝐼
1
,

̇𝐼
2
= 𝑃
1
𝑆
2
𝐼
1
+ 𝑃
2
𝑆
2
𝐼
2
− 𝜇
2
𝐼
2
− 𝑘
2
𝛽
2
𝐼
2
.

(10)

𝜇1I1𝜇1S1 k1𝛽1I1𝛽1S1

𝜇2I2𝜇2S2 k2𝛽2I2𝛽2S2

P1S1I1

P2S2I2

P2S1I2

P1S2I1

𝛼1

𝛼2

S1

S2

I1

I2

Figure 2: The extended model, in which two diseases exist in
hospital setting.

3.1. Steady State Analysis. System (10) has two possible steady
states.

(1) The disease-free equilibrium is given by 𝐸
0
(𝑆
0

1
, 𝑆
0

2
,

0, 0) = (𝛼
1
/(𝜇
1
+ 𝛽
1
), 𝛼
2
/(𝜇
2
+ 𝛽
2
), 0, 0).

(2) The endemic equilibrium is given by
𝐸
∗
(𝑆
∗

1
, 𝑆
∗

2
, 𝐼
∗

1
, 𝐼
∗

2
).

In this section, we analyze the steady states of the model.
Define

𝑅
1

0
=

𝑝
1
𝛼
1

(𝜇
1
+ 𝛽
1
) (𝜇
1
+ 𝑘
1
𝛽
1
)

,

𝑅
2

0
=

𝑝
2
𝛼
2

(𝜇
2
+ 𝛽
2
) (𝜇
2
+ 𝑘
2
𝛽
2
)

.

(11)

3.2. Stability of DFE

3.2.1. Local Stability of DFE

Theorem 4. If 𝑆0
1
, 𝑆
0

2
, 𝐼
0

1
, 𝐼
0

2
≥ 0, then the solutions are

nonnegative and remain bounded in the positive cone of 𝑅4.
If 𝑅1
0
+ 𝑅
2

0
< 1, then the disease-free steady state 𝐸

0
is locally

asymptotically stable. If 𝑅1
0
+ 𝑅
2

0
> 1, then 𝐸

0
is unstable.

Proof. It is easy to see that the solutions remain in the positive
cone if the initial conditions are in the positive cone. Let 𝑇 =
𝐼
1
+ 𝐼
2
+ 𝑆
1
+ 𝑆
2
. Then

̇
𝑇 = 𝛼

1
+ 𝛼
2
− 𝜇
1
𝐼
1
− 𝑘
1
𝛽
1
𝐼
1
− 𝜇
2
𝐼
2
− 𝑘
2
𝛽
2
𝐼
2
− 𝜇
1
𝑆
1

− 𝛽
1
𝑆
1
− 𝜇
2
𝑆
2
− 𝛽
2
𝑆
2

= 𝛼
1
+ 𝛼
2
− (𝜇
1
+ 𝑘
1
𝛽
1
) 𝐼
1
− (𝜇
2
+ 𝑘
2
𝛽
2
) 𝐼
2

− (𝜇
1
+ 𝛽
1
) 𝑆
1
− (𝜇
2
+ 𝛽
2
) 𝑆
2
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≤ 𝛼
1
+ 𝛼
2

−min {𝜇
1
+ 𝑘
1
𝛽
1
, 𝜇
2
+ 𝑘
2
𝛽
2
, 𝜇
1
+ 𝛽
1
, 𝜇
2
+ 𝛽
2
} 𝑇.

(12)

Thus, the solutions remain bounded in the positive cone of
𝑅
4 and the system induces a global semiflow in the positive

cone of 𝑅4.
To determine the stability of the disease-free steady state

𝐸
0
, we use the results in van den Driessche and Watmough

[32]. Reorder the components of 𝐸
0
as 𝐼0
1
= 0, 𝐼

0

2
= 0, 𝑆0

1
=

𝛼
1
/(𝜇
1
+ 𝛽
1
), and 𝑆0

2
= 𝛼
2
/(𝜇
2
+ 𝛽
2
). Set

F =(

𝐹
1

𝐹
2

𝐹
3

𝐹
4

)=(

𝑃
1
𝑆
1
𝐼
1
+ 𝑃
2
𝑆
1
𝐼
2

𝑃
1
𝑆
2
𝐼
1
+ 𝑃
2
𝑆
2
𝐼
2

0

0

),

V = 𝑉
−
− 𝑉
+
=(

𝑉
1

𝑉
2

𝑉
3

𝑉
4

)

=(

𝜇
1
𝐼
1
+ 𝑘
1
𝛽
1
𝐼
1

𝜇
2
𝐼
2
+ 𝑘
2
𝛽
2
𝐼
2

𝑃
1
𝑆
1
𝐼
1
+ 𝑃
2
𝑆
1
𝐼
2
+ 𝜇
1
𝑆
1
+ 𝛽
1
𝑆
1
− 𝛼
1

𝑃
1
𝑆
2
𝐼
1
+ 𝑃
2
𝑆
2
𝐼
2
+ 𝜇
2
𝑆
2
+ 𝛽
2
𝑆
2
− 𝛼
2

).

(13)

Then

𝐹 = (

𝜕𝐹
1

𝜕𝐼
1

𝜕𝐹
1

𝜕𝐼
2

𝜕𝐹
2

𝜕𝐼
1

𝜕𝐹
2

𝜕𝐼
2

) =(

𝑝
1
𝛼
1

𝜇
1
+ 𝛽
1

𝑝
2
𝛼
1

𝜇
1
+ 𝛽
1

𝑝
1
𝛼
2

𝜇
2
+ 𝛽
2

𝑝
2
𝛼
2

𝜇
2
+ 𝛽
2

). (14)

Similarly,

𝑉 = (

𝜇
1
+ 𝑘
1
𝛽
1

0

0 𝜇
2
+ 𝑘
2
𝛽
2

) . (15)

Therefore,

𝐹𝑉
−1

= (

𝑅
1

0

𝑝
2
𝛼
1

(𝜇
1
+ 𝑘
1
𝛽
1
) (𝜇
2
+ 𝑘
2
𝛽
2
)

𝑝
1
𝛼
2

(𝜇
1
+ 𝑘
1
𝛽
1
) (𝜇
2
+ 𝑘
2
𝛽
2
)

𝑅
2

0

)

(16)

which implies that the spectral radius of the matrix 𝐹𝑉−1 is

𝜌 (𝐹𝑉
−1
) = max {0, 𝑅1

0
+ 𝑅
2

0
} . (17)

If 𝑅1
0
+ 𝑅
2

0
< 1, then 𝜌(𝐹𝑉−1) < 1. By Theorem 2 in van den

Driessche andWatmough [32], we know that the disease-free
steady state 𝐸

0
is locally asymptotically stable. 𝐸

0
is unstable

if 𝑅1
0
+ 𝑅
2

0
> 1.

Remark 5. The case when 𝑅1
0
+ 𝑅
2

0
< 1 corresponds to the

situation that there are no drug resistance strains prevailing in
the hospital. Define 𝑅 = 𝑅1

0
+𝑅
2

0
, where 𝑅 is the reproduction

number of system (10).

3.2.2. Global Stability of Disease-Free Steady State. Let

𝑅 = 𝑅
1

0
+ 𝑅
2

0
. (18)

Theorem 6. Define 𝑅 as that in (18); then when 𝑅 ≤ 1,
the disease-free equilibrium 𝐸

0
will be globally asymptotically

stable.

Proof. To prove the global stability of the disease-free equi-
librium, we use the method of Castillo-Chávez et al.

Set 𝑋
𝐺
= (𝑆
1
, 𝑆
2
), 𝑍
𝐺
= (𝑅
1
, 𝑅
2
), and rewrite system (10)

in the following form:

̇𝑋
𝐺
= 𝐹 (𝑋

𝐺
, 𝑍
𝐺
) ,

̇
𝑍
𝐺
= 𝐺 (𝑋

𝐺
, 𝑍
𝐺
) ,

(19)

in which 𝐺(𝑋
𝐺
, 0) = 0. Represent 𝐸

0
by 𝑈
0𝐺

= (𝑋
∗

𝐺
, 0).

According to the theorem in Castillo-Chávez et al. [31], in
order to get the global stability of 𝐸

0
, system (10) should

satisfy three conditions as follows:

(1) 𝐸
0
is locally asymptotically stable.

(2) For ̇𝑋
𝐺
= 𝐹(𝑋

𝐺
, 0), 𝑋∗

𝐺
is globally asymptotically

stable.
(3) 𝐺(𝑋

𝐺
, 𝑍
𝐺
) = 𝐴

𝐺
𝑍
𝐺
− 𝐺(𝑋

𝐺
, 𝑍
𝐺
), 𝐺(𝑋

𝐺
, 𝑍
𝐺
) ≥ 0,

where 𝐴
𝐺
= 𝐷
𝑍𝐺
𝐺(𝑋
∗

𝐺
, 0) is an𝑀-matrix.

For system (10), the first condition has been proven in
Theorem 1. Since 𝐹(𝑋

𝐺
, 0) is a limiting function of ̇𝑋

𝐺
=

𝐹(𝑋
𝐺
, 𝑍
𝐺
), that is, lim

𝑡→∞
𝑋
𝐺
= 𝑋
∗

𝐺
, so the second condition

is easy to get.
Now we compute 𝐴

𝐺
and 𝐺(𝑋

𝐺
, 𝑍
𝐺
) as follows:

𝐴
𝐺
= (

𝑝
1
𝑆
0

1
− 𝜇
1
− 𝑘
1
𝛽
1

𝑝
1
𝑆
0

2

𝑝
1
𝑆
0

1

𝑝
2
𝑆
0

2
− 𝜇
2
− 𝑘
2
𝛽
2

) ,

𝐺 (𝑋
𝐺
, 𝑍
𝐺
) = (

(𝑝
1
𝑅
1
+ 𝑝
2
𝑅
2
) (𝑆
0

1
− 𝑆
1
)

(𝑝
1
𝑅
1
+ 𝑝
2
𝑅
2
) (𝑆
0

2
− 𝑆
2
)

) .

(20)

From system (10) we get that 𝑆
1
= 𝛼
1
/(𝑝
1
𝐼
1
+𝑝
2
𝐼
2
+𝜇
1
+𝛽
1
), so

𝑆
1
< 𝑆
0

1
. In the same way we get that 𝑆

2
< 𝑆
0

2
. So 𝐺(𝑋

𝐺
, 𝑍
𝐺
) ≥

0 is always established. Then we conclude that the disease-
free equilibrium 𝐸

0
is globally stable if 𝑅 ≤ 1. The proof is

completed.

3.3. Stability of the Endemic Equilibrium

Proposition 7. Define 𝑅 as that in (18); then the endemic
equilibrium 𝐸

∗
(𝑆
∗

1
, 𝑆
∗

2
, 𝐼
∗

1
, 𝐼
∗

2
) is locally asymptotically stable.

We only numerically investigated the system’s behavior
around the interior feasible equilibrium point 𝐸∗and provide
the necessary numerical proof in the next section.
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Theorem 8. No periodic orbit of system (10) exists in

Ω = {(𝑆
1
, 𝑆
2
, 𝐼
1
, 𝐼
2
) | 𝑆
1
≥ 0, 𝑆
2
≥ 0, 𝐼
1
≥ 0, 𝐼
2
≥ 0} . (21)

Proof. If a periodic orbit of model (10) in Ω exists, its
projection onto some two-dimensional subspace of𝑅4 should
also be periodic. Therefore, we have to investigate if any
periodic solution exists or not in an all two-dimensional
subspace.There are six different two-dimensional subsystems
of (10).

For the subsystem,

̇𝑆
1
= 𝛼
1
− 𝑃
1
𝑆
1
𝐼
1
− 𝑃
2
𝑆
1
𝐼
2
− 𝜇
1
𝑆
1
− 𝛽
1
𝑆
1
,

̇𝑆
2
= 𝛼
2
− 𝑃
1
𝑆
2
𝐼
1
− 𝑃
2
𝑆
2
𝐼
2
− 𝜇
2
𝑆
2
− 𝛽
2
𝑆
2
.

(22)

We choose the Dulac function 𝐵
1
= 1/𝑆

1
𝑆
2
, to evaluate

the following expression:

𝜕 (𝐵
1
̇𝑆
1
)

𝜕𝑆
1

+

𝜕 (𝐵
1
̇𝑆
2
)

𝜕𝑆
2

= −

1

𝑆
1
𝑆
2

(

𝛼
1

𝑆
1

+

𝛼
2

𝑆
2

) < 0. (23)

For the other five subsystems, we choose the Dulac
functions

𝐵
2
=

1

𝑆
1
𝐼
1

,

𝐵
3
=

1

𝑆
1
𝐼
2

,

𝐵
4
=

1

𝑆
2
𝐼
1

,

𝐵
5
=

1

𝑆
2
𝐼
2

,

𝐵
6
=

1

𝐼
1
𝐼
2

.

(24)

Similarly

𝜕 (𝐵
1
̇𝑆
1
)

𝜕𝑆
1

+

𝜕 (𝐵
1
̇𝑆
2
)

𝜕𝑆
2

= −

1

𝑆
1
𝑆
2

(

𝛼
1

𝑆
1

+

𝛼
2

𝑆
2

) < 0,

𝜕 (𝐵
2
̇𝑆
1
)

𝜕𝑆
1

+

𝜕 (𝐵
2
̇𝐼
1
)

𝜕𝐼
1

= −

𝛼
1

𝑆
2

1
𝐼
1

−

𝑝
2
𝐼
2

𝐼
2

1

< 0,

𝜕 (𝐵
3
̇𝑆
1
)

𝜕𝑆
1

+

𝜕 (𝐵
3
̇𝐼
2
)

𝜕𝐼
2

= −

𝛼
1

𝑆
2

1
𝐼
2

−

𝑝
1
𝑆
2
𝐼
1

𝑆
1
𝐼
2

2

< 0,

𝜕 (𝐵
4
̇𝑆
2
)

𝜕𝑆
2

+

𝜕 (𝐵
4
̇𝐼
1
)

𝜕𝐼
1

= −

𝛼
2

𝑆
2

2
𝐼
1

−

𝑝
2
𝑆
1
𝐼
2

𝑆
1
𝐼
2

1

< 0,

𝜕 (𝐵
5
̇𝑆
2
)

𝜕𝑆
2

+

𝜕 (𝐵
5
̇𝐼
2
)

𝜕𝐼
2

= −

𝛼
2

𝑆
2

2
𝐼
2

−

𝑝
1
𝐼
1

𝐼
2

2

< 0,

𝜕 (𝐵
6
̇𝐼
1
)

𝜕𝐼
1

+

𝜕 (𝐵
6
̇𝐼
2
)

𝜕𝐼
2

= −

𝑝
1
𝑆
1

𝐼
2

1

−

𝑝
1
𝑆
2

𝐼
2

2

< 0.

(25)

Now, using the Bendixson-Dulac negative criterion, no
periodic solution in these two dimensions can exist. There-
fore, the solution of (10) in 𝑅4 also cannot oscillate persis-
tently.

4. Bacterial Resistance Spreads between
Patients with 𝑚 Diseases

There are 𝑚 diseases that exist in the hospital environment;
because these diseases are not infectious, we assume that the
hospital did not take the isolation precautions. Each kind
of patients is divided into infected patients with bacterial
resistance 𝐼

𝑖
and susceptible patients without bacterial resis-

tance 𝑆
𝑖
(𝑖 = 1, . . . , 𝑚). Patients infected with disease 𝑖 (𝑖 =

1, . . . , 𝑚) enter the hospital with the rate 𝛼
𝑖
. The cure rate

of patients without bacterial resistance is 𝛽
𝑖
, and 1/𝛽

𝑖
is the

average length of stay. 𝑘
𝑖
is the resistant strength coefficient;

the cure rate of patients 𝐼
𝑖
is reduced to 𝑘

𝑖
𝛽
𝑖
because of

bacterial resistant. The death rate of patients with disease
𝑖 (𝑖 = 1, . . . , 𝑚) is 𝜇

𝑖
; we also assume that bacterial resistance

has no effect on mortality but the cure rate. Each person may
come into contact with an infected type; individuals enter the
hospital in one of 𝑆

𝑖
(𝑖 = 1, . . . , 𝑚) states and exit via death or

hospital discharge.
The patients in the hospital are divided into 2𝑚 com-

partments, based on the horizontal of the bacterial resistance
between patients; the model is built as follows:

̇𝐼
𝑖
=

𝑚

∑

𝑗=1

𝑝
𝑗
𝑆
𝑖
𝐼
𝑗
− (𝜇
𝑖
+ 𝑘
𝑖
𝛽
𝑖
) 𝐼
𝑖
,

̇𝑆
𝑖
= 𝛼
𝑖
−

𝑚

∑

𝑗=1

𝑝
𝑗
𝑆
𝑖
𝐼
𝑗
− (𝜇
𝑖
+ 𝛽
𝑖
) 𝑆
𝑖
,

(26)

for 𝑖 = 1, . . . , 𝑚, where 𝑥 = (𝐼
1
, . . . , 𝐼

𝑚
, 𝑆
1
, . . . , 𝑆

𝑚
). The inci-

dence, 𝑝
𝑗
, depends on individual behavior, which determines

the amount of mixing between the different groups.
The DFE for this model is 𝑥

0
= (0, . . . , 0, 𝑆

0

1
, . . . , 𝑆

0

𝑚
),

where 𝑆0
𝑖
= 𝛼
𝑖
/(𝜇
𝑖
+ 𝛽
𝑖
).

Linearizing (26) about 𝑥 = 𝑥
0
gives

𝐹 = [𝑆
0

𝑖
𝑝
𝑗
] ,

𝑉 = [(𝜇
𝑖
+ 𝑘
𝑖
𝛽
𝑖
) 𝛿
𝑖𝑗
] ,

(27)

where 𝛿
𝑖𝑗
is one if 𝑖 = 𝑗, but zero otherwise. Thus,

𝐹𝑉
−1
= [

𝑆
0

𝑖
𝑝
𝑗

(𝜇
𝑖
+ 𝑘
𝑖
𝛽
𝑖
)

] . (28)

𝐹 has rank one, and the basic reproduction number is

𝑅
0
=

𝑚

∑

𝑖=1

𝑆
0

𝑖
𝑝
𝑖

𝜇
𝑖
+ 𝑘
𝑖
𝛽
𝑖

. (29)

That is, the basic reproduction number of the disease is the
sum of the “reproduction numbers” for each group.
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5. Numerical Result and Parameter Analysis

5.1. Numerical Results. The stability and instability of the
equilibrium points of the system are studied using the linear
stability approach. For further analysis of the steady state of
equilibrium points and the parameter effects of 𝑝

1
and 𝑝

2
, we

illustrate some key numerical solutions in system (10).
When the parameter values are fixed at 𝛼

1
= 4, 𝛼

2
= 6,

𝜇
1
= 0.06, 𝜇

2
= 0.06, 𝑝

1
= 0.004, 𝑝

2
= 0.002, 𝛽

1
= 0.2, 𝛽

2
=

0.15, 𝑘
1
= 0.7, and 𝑘

2
= 0.5, we can calculate the equilibrium

points as

𝐸
0
= (19.0476, 37.5000, 0, 0)

𝐸
∗
= (16.9873, 32.3503, 2.6222, 7.4905) .

(30)

The basic reproduction number is 𝑅 = 1.1436, and
as seen in Proposition 7 the equilibrium point 𝐸

∗
=

(16.9873, 32.3503, 2.6222, 7.4905) is locally asymptotically
stable.

The numerical proof of Proposition 7 is as follows.
For the interior equilibrium point 𝐸

∗
=

(16.9873, 32.3503, 2.6222, 7.4905), the Jacobi matrix is

𝐽
∗
=

[

[

[

[

[

[

−0.2355 0 −0.0679 −0.0340

0 −0.1855 −0.1294 −0.0647

0.0255 0 −0.0971 0.0340

0 0.0255 0.1294 −0.0453

]

]

]

]

]

]

. (31)

The eigenvalues of 𝐽∗ are 𝜆
1
= −0.0175, 𝜆

2
= −0.2261,

𝜆
3
= −0.1397, and 𝜆

4
= −0.1801, and all the real parts of the

eigenvalues are negative. Hence, the Routh-Hurwitz criteria
are satisfied.

Therefore, 𝐸∗ = (16.9873, 32.3503, 2.6222, 7.4905) is
locally asymptotically stable.

5.2. Role of Parameter 𝑝
1
in Model (10). 𝑝

1
(0 < 𝑝

1
< 1)

represents the conversion rate from susceptible patients to
infected patients. Therefore, as 𝑝

1
plays a major role in the

outcome of themodel, we will discuss its effect on the system.
The following initial values are used: 𝑆

1
(0) = 60, 𝑆

2
(0) = 80,

𝐼
1
(0) = 4, 𝐼

2
(0) = 0, and the parameters except 𝑝

1
are 𝛼
1
= 4,

𝛼
2
= 6, 𝜇

1
= 0.06, 𝜇

2
= 0.06, 𝑝

2
= 0.001, 𝛽

1
= 0.2,

𝛽
2
= 0.15, 𝑘

1
= 0.7, and 𝑘

2
= 0.5.

In order to clearly show population dynamics for each
case, two numerical results are given in the following for
different values of 𝑝

1
.

(a) 𝑝
1

= 0.001. In this case, the basic reproduction
number is 𝑅 = 0.7973 < 1 and so the equilibrium
𝐸
0
= (19.0476, 37.5000, 0, 0) is locally asymptotically stable

(Figure 3). Both of the infected patients are extinct, and there
are only susceptible patients. In the wide range 0 < 𝑝

1
<

0.0028, the behavior of the system is qualitatively the same.

(b) 𝑝
1
= 0.005. In this case, the basic reproduction number

is 𝑅 = 1.2590 > 1 and so the interior equilibrium 𝐸
∗
=

(15.5828, 29.0286, 4.4097, 12.3220) is locally asymptotically
stable (the proof is provided above).The system tends toward
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Figure 3: Evolution of the system populations for 𝑝
1
= 0.001.
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Figure 4: Evolution of the system populations for 𝑝
1
= 0.005.

the coexistence equilibrium (Figure 4). When increasing 𝑝
1

is from 0.0028 to 1, there is only quantitative change, and
the system’s qualitative behavior remains the same. Four
populations can coexist.

5.3. Role of Parameter𝑝
2
inModel (10). Besides the parameter

𝑝
1
, we are also concerned about the role of parameter 𝑝

2
. The

initial values are 𝑆
1
(0) = 60, 𝑆

2
(0) = 80, 𝐼

1
(0) = 4, and 𝐼

2
(0) =

0, and the parameters except 𝑝
2
are 𝛼
1
= 4, 𝛼

2
= 6, 𝜇

1
= 0.06,

𝜇
2
= 0.06, 𝑝

1
= 0.004, 𝛽

1
= 0.2, 𝛽

2
= 0.15, 𝑘

1
= 0.7, and

𝑘
2
= 0.5.
We describe the influence of 𝑝

2
on the system under two

different situations.

(a) 𝑝
2

= 0.001. In this case, the basic reproduction
number is 𝑅 = 0.8027 < 1 and so the equilibrium
𝐸
0
= (19.0476, 37.5000, 0, 0) is locally asymptotically stable

(Figure 5). Both of the infected patients are extinct, and there
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Figure 5: Evolution of the system populations for 𝑝
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= 0.001.
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Figure 6: Evolution of the system populations for 𝑝
2
= 0.002.

are only susceptible patients. In the wide range 0 < 𝑝
2
<

0.0016, the behavior of the system is qualitatively the same.

(b) 𝑝
2
= 0.002. In this case, the basic reproduction number

is 𝑅 = 1.1436 > 1 and so the interior equilibrium 𝐸
∗
=

(16.9873, 32.3503, 2.6222, 7.4905) is locally asymptotically
stable (the proof is provide above). The system tends toward
the coexistence equilibrium (Figure 6). When increasing 𝑝

2

from 0.0016 to 1, there is only quantitative change, and
the system’s qualitative behavior remains the same. Four
populations can coexist.

5.4. Role of Parameter 𝑝
1
and 𝑝

2
in Model (10). In the

following section, we discuss the effect of 𝑝
1
and 𝑝

2
together,

while maintaining the other parameters fixed at 𝛼
1
= 6,

𝛼
2
= 8, 𝜇

1
= 0.06, 𝜇

2
= 0.06, 𝛽

1
= 0.2, 𝛽

2
= 0.15,

𝑘
1
= 0.7, and 𝑘

2
= 0.5. The resulting image is shown in
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Figure 7: Changing 𝑝
1
and 𝑝

2
while maintaining the other param-

eters and the initial values fixed.

Figure 7, in which two different regions were obtained after
500 time steps, which are indicated by different colors.

In region A, four populations coexist. In region B, both of
the infected patients are extinct, and there are only susceptible
patients. As shown in Figure 7, for a fixed𝑝

1
, as the value of𝑝

2

gets smaller, the possibility of coexistence will also be smaller,
even becoming impossible.

6. Discussion

Two steady states were obtained from the model described
in system (10): in the first state, there are only susceptible
patients and both of the infected patients are extinct; in
the second state, four populations coexist. Among these two
cases, only the first is a favorable outcome for humans.
As the result shown above, fix one transfer rate, as the
value of another transfer rate gets smaller; the possibility of
coexistence will also be smaller, even becoming impossible.
Meanwhile, the basic production number is determined
by the value of transfer coefficients and resistant strength
coefficients. Because the resistant strength coefficients are
difficult to control, horizontal transfer coefficients are the key
parameters that not only can affect the basic reproduction
number but also can be controlled by human.There are some
papers about how to reduce acquisition of antimicrobial-
resistant bacteria [10, 33, 34], such as improving hand
hygiene, designing of an efficient sentinel hospital surveil-
lance system, and controlling the connections and number of
connections that a given hospital has with other hospitals. In
the following work, we will try to add some control measures
in the model.
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