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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, known as coronavirus disease 2019 (COVID-19) 
causes cytokine release syndrome (CRS), leading to acute respiratory distress syndrome (ARDS), acute kidney and cardiac 
injury, liver dysfunction, and multiorgan failure. Although several studies have discussed the role of 5-lipoxygenase (5-LOX) 
in viral infections, such as influenzae and SARS, it remains unexplored in the pathophysiology of COVID-19. 5-LOX acts 
on free arachidonic acid (AA) to form proinflammatory leukotrienes (LTs). Of note, numerous cells involved with COVID-
19 (e.g., inflammatory and smooth muscle cells, platelets, and vascular endothelium) widely express leukotriene receptors. 
Moreover, 5-LOX metabolites induce the release of cytokines (e.g., tumour necrosis factor-α [TNF-α], interleukin-1α [IL-
1α], and interleukin-1β [IL-1β]) and express tissue factor on cell membranes and activate plasmin. Since macrophages, 
monocytes, neutrophils, and eosinophils can express lipoxygenases, activation of 5-LOX and the subsequent release of LTs 
may contribute to the severity of COVID-19. This review sheds light on the potential implications of 5-LOX in SARS-CoV-
2-mediated infection and the anticipated therapeutic role of 5-LOX inhibitors.
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Abbreviations
ACE2  Angiotensin-Converting Enzyme 2
AKI  Acute Kidney Injury
NP+   Nucleoprotein Positive
FLAP  5-Lipoxygenase Activating Protein
5-LOX/ LO  5-Lipoxygenase
COX  Cyclooxygenase
LT  Leukotriene
UPLC-MS  Ultra-high-Performance Liquid Chromatog-

raphy-Mass Spectrometry
OxPL  Oxidized Phospholipid

ALI  Acute Lung Injury
PGs  Prostaglandins
Ig  Immunoglobulin
ADE  Antibody-Dependent Enhancement
DAMPs  Damage-Associated Molecular Patterns
IFN  Interferon
IL  Interleukin
TNF  Tumour Necrosis Factor
NOS  Nitric Oxide Synthase
SARS  Severe Acute Respiratory Syndrome
MERS  Middle East Respiratory Syndrome
CoV  Coronavirus
ARDS  Acute Respiratory Distress Syndrome
AKI  Acute Kidney Injury
CCL  Chemokine
AA  Arachidonic Acid
LA  Linoleic Acid
APCs  Antigen Presenting Cells
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Introduction

In December 2019, the novel coronavirus disease 2019 
(COVID-19) was first reported as the third lethal coronavi-
rus outbreak [1], following the severe acute respiratory syn-
drome coronavirus (SARS-CoV) and the Middle East respir-
atory syndrome coronavirus (MERS-CoV) [2]. In September 
2020, COVID-19 affected 216 countries [3], areas or regions 
with almost 29 million confirmed cases and about 922,000 
deaths [4]. Characterised by crown-like glycoprotein spikes 
on their surface, coronaviruses belong to the family Corona-
viridae [5] in the order of Nidovirales [6]. SARS-CoV-2 is 
a single, positive-stranded RNA (ssRNA) virus that causes 
cytokine release syndrome (CRS), leading to acute respira-
tory distress syndrome (ARDS), acute kidney injury (AKI), 
acute cardiac disorders, and liver dysfunction [7, 8]. The 
current treatment of COVID-19 is mainly supportive; thus, 
there is a pressing need to find effective interventions [6]. In 
SARS-CoV-2-mediated ARDS, agents such as 5-lipoxyge-
nase (5-LOX) inhibitors may reduce the virus-induced direct 
cytopathic effects, by immediate action on critical immune 
cells and mediators such as interleukin-6 (IL-6), which is 
associated with the inflammatory CRS in COVID-19 [7, 9]. 
Interestingly, 5-LOX inhibitors have cardiovascular (CV), 
neuronal, gastrointestinal (GI), kidney, cerebral, and vas-
cular protective properties [10, 11]. Recent reports have 
demonstrated that COVID-19 has affected such organs [12]. 
During the CRS in coronaviruses, higher levels of circulat-
ing tumour necrosis factor α (TNF-α), IL-1 (Interleukin 1), 
IL-6, IL-8, IL-12, interferon γ [IFN-γ], and transforming 
growth factor-β (TGF-β), contribute to immune cell infiltra-
tion and multiorgan dysfunction [13–17]. SARS-CoV-2 is 
more contagious and is more likely to impact patients with 
comorbidities [18–20]. The earlier phase of both SARS-CoV 
and SARS-CoV-2 infections is commonly associated with 
acute lung injury (ALI) and the later stage is characterised 
by diffuse alveolar damage (DAD) with acute pneumoniae 
[16]. Herein, we hypothesise that using 5-LOX inhibitors in 
COVID-19 may help prevent the progression of the disease.

Clinical manifestations and stages 
of COVID‑19

COVID-19 comprises 2 overlapping pathological subsets: 
the SARS-CoV-2 triggers the first subset, while the host 
response initiates the second one [21]. The following sys-
tematic model proposes the 3 distinct stages of COVID-19, 
which might enable appropriate therapeutic interventions.

Stage 1: early stage of infection

This stage involves an incubation period with mild symp-
toms, such as fever, fatigue, dry cough, eating disorder 
(i.e., anorexia), muscle pain, and sputum production, with 
less common symptoms (e.g., headache and rhinorrhoea). 
Approximately 81% of the cases are mild or asymptomatic 
[22]. In this phase, the SARS-COV-2 viral infection tar-
gets the lung with limited involvement of inborn immune 
mechanisms (i.e., innate immunity) [23]. More than 80% of 
non-survivors and critically-ill COVID-19 patients had an 
onset of progressive lymphopaenia or reduced lymphocyte 
blood count [24, 25]. A higher number of blood neutrophils 
(also called neutrophilia) contributes to the initiation and 
progression of pulmonary inflammation in later stages. In 
relation to SARS-COV-2, Blanco-Miguez et al., have identi-
fied 9 potential proinflammatory inducing peptides (PIPS) 
that may be linked to an increase in host inflammation [26]. 
Neutrophil elastase (NE) (i.e., a cellular trap component) 
acts on these PIPS and showed homology against T-cell (T 
lymphocyte) epitopes only, suggesting that the underlying 
mechanism behind the viral proinflammatory response was 
T cell-related [27]. Furthermore, the enzymatic cleavage 
on the spike glycoproteins, the second most abundantly 
expressed transcript of the virus, produces 78% of these 
PIPS [28].

In response to SARS-CoV-2, neutrophils release inflam-
matory peptides, suggesting their association with the pul-
monary strike [26]. Neutrophils accumulate early at the 
site of inflammation followed by a sustained population of 
monocytes, macrophages, and lymphocytes. Angiotensin-
converting enzyme (ACE2) receptors mediate the SARS-
CoV-2 pathophysiology in the lungs, heart, and kidneys 
[24, 29]. At this stage, the human body needs the adaptive 
immune response to halt the progression and limit the viral 
actions [21, 30]. Migration of neutrophils and activation of 
T-cell maintain immune homeostasis and prevent the hyper 
inflammatory responses [31]. Therefore, this article aims 
at examining early therapeutic intervention by mitigating 
the overactivated host inflammatory response to attenuate 
disease severity and prevent progression.

Stage 2: the pulmonary stage (moderate‑to‑severe)

During this stage, the host intrinsic immune system triggers 
a vigorous response upon the SARS-CoV-2 infection [23]. 
SARS-CoV-2 infiltrates the lung parenchyma and proliferate 
where patients develop viral pneumoniae with or without 
hypoxia [21, 24]. Here, the disease can progress from mod-
erate-to-severe illness, with dyspnoea and a respiratory rate 
of > 22/min and  SPO2 < 94% to > 24/min and  SPO2 < 92% 
on room air. Computed tomography (CT) scan revealed 
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bilateral infiltrates or ground-glass opacities 5–8 days at the 
onset of symptoms [24]. The host inflammatory response 
is activated with a declining viral load that postulates pul-
monary involvement, leading to vasodilation, endothelial 
permeability, recruitment of leukocytes, hypoxaemia, and 
CV stress [24].

Severe COVID-19 causes 50% of lung involvement, and 
histopathological data suggest pulmonary alveolar oedema, 
inducing laboured breathing and hyperplasia of pneumo-
cytes [32]. Additionally, intestinal expression of ACE2 
causes GI symptoms, such as diarrhoea, vomiting, and nau-
sea. Cutaneous manifestations include vestibular eruptions 
on the trunk, acral erythema but with a mild disease course; 
in severe stages, livedo, necrosis, and acral ischaemia are 
associated with elevated D-dimer [33]. Mild symptoms of 
the central nervous system (CNS) include confusion and 
dizziness, while severe impairments comprise ataxia that 
is associated with encephalitis, skeletal muscle injury, and 
epilepsy, through ACE2 expression. This occurs by affect-
ing the brainstem pathway and potential for transneural viral 
transmission [34]. In this review, the proposed inhibitor 
might alleviate neuroinflammatory disorders [35].

Stage 3: systemic hyper inflammation stage

In a small denomination of patients, pulmonary immu-
nopathogenesis is exacerbated, and the host inflammatory 
response multiplies, leading to systemic hyper inflamma-
tion [24]. This exaggerated systemic inflammation can injure 
organs, especially those that have high ACE2 expressions on 
the intestine and kidneys. The damaged cells induce extreme 
inflammation in the lungs primarily mediated by the pro-
inflammatory macrophages and granulocytes [30]. Tissue 
destruction leading to pulmonary systemic hyper inflam-
mation is the leading cause of fatal respiratory disorders , 
requiring mechanical ventilation [21]. This advanced stage 
of acute illness is characterised by multiorgan failure and 
elevation of critical inflammatory biomarkers, procalcitonin, 
and D-dimer, whose elevation with lymphopaenia shows 
deteriorated consequence [24]. Elevated troponin-I and brain 
natriuretic peptide (BNP) levels are related to acute cardiac 
injury [36]. Non-survivors exhibit most of these biomarkers, 
including intravascular coagulation [22]. There is an overall 
reduced outcome with compromised immunity and comor-
bidities [24]. Vasoplegia, shock, and cardiopulmonary col-
lapse manifest [21]. Highly elevated reactive protein (CRP) 
and ferritin levels, coagulopathy, AKI and abnormal liver 
function is evidence of macrophage activation syndrome 
kind of immunopathology, associated with type I inter-
feron (IFN-1) responses and T cells hyperactivation [22, 37, 
38]. Poor survival is noted in patients with elevated plasma 
levels of IL-6 is a critical biomarker that requires further 
investigations . Studies have shown that timing of anti-IL-6 

has demonstrated an impact on tissue remodelling [22]. 
Albeit the risk of reactivating other respiratory infections 
and elevated liver enzymes, tociluzumab is currently being 
used. In this phase, judicial use of corticosteroids is made, 
while the consensus is to avoid them at early stages due to 
delayed viral clearance [21]. This review suggests that early 
mitigation of key mediators may cease progression towards 
multiorgan failure.

Role of 5‑LOX in SARS‑CoV‑2 infection

Respiratory symptoms are the most common manifesta-
tions of SARS-COV-2 infection [38, 39]. The virus infects 
alveolar macrophages and the respiratory epithelium via 
ACE2 receptors, which are highly expressed in the lungs, 
heart, vascular endothelium, and gastrointestinal tract [39, 
40]. Transmembrane protease serine 2 (TMPRS22)—a ser-
ine protease inhibitor found on various cells, especially the 
small intestine—has also been implicated in aiding viral 
entry [41, 42]. Current evidence suggests that macrophages 
play a vital role in the pathophysiology of COVID-19. 
SARS-COV-2  NP+ CD  169+ macrophages found in second-
ary lymphoid organs of COVID-19 patients suggests either 
direct uptake of the virus or virus-infected cells by the 
macrophages [38, 43]. Dysregulated iron metabolism in 
acute inflammation might contribute to 5-LOX-mediated 
activation of macrophages [43]. Cytolysis of infected cells 
triggers local inflammatory pathways, activating phospho-
lipase A2 and releasing bioactive lipids [44].

The 5-LOX enzyme in association with the nuclear mem-
brane 5-lipoxygenase activating protein (FLAP) acts on free 
arachidonic acid (AA) and leads to the formation of proin-
flammatory leukotrienes (LT). LTB4 is a potent monocyte-
macrophage and neutrophil chemoattractant, and is involved 
in T-cell migration and enhances dendritic cell activity and 
promotes their migration draining lymph nodes. It also 
increases the production of TNF-α and acts synergistically 
with IL-4 to activate B-cells (B lymphocyte). LTC4, LTD4, 
LTE4 induce tissue oedema, mucus secretion, and broncho-
constriction. LTA4 precursor is a potent eosinophil chem-
oattractant and induces neutrophil and monocyte migration 
and activation. 5-hydroxyeicosatetraenoic acid (5-HETE) , 
an intermediate in the 5-LOX pathway, is a weak activator 
of neutrophils and eosinophils . LT receptors are widely dis-
tributed on inflammatory cells, smooth muscle cells, plate-
lets, and vascular endothelium [9, 45–54].

Although 5-LOX is mainly expressed in myeloid cells 
like monocyte-macrophages, neutrophils, eosinophils and 
mast cells, synthesis of LT can occur in cells other than 
leucocytes, such as bronchial epithelial cells and fibroblasts. 
Receptors of LTB4 type 1 (BLT1) and type 2 (BLT2) are 
mainly expressed in leukocytes and spleen, respectively [49]. 
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Receptors of LTC4, LTD4, and LTE4 (CysLTs) are shown 
in various cells like interstitial macrophages and respiratory 
epithelium. The expression of some of these enzymes and 
receptors involved in the synthesis of LT  increases during 
acute inflammation [9, 47]. Fang et al., suggested a close 
association between the expression of toll-like receptors 
(TLRs) and biosynthesis of LT in activated murine mac-
rophages [46]. TLRs play an essential role in the activation 
of immune cells in response to an invading pathogen [50]. 
Moreover, Behrens et al., suggested that sustained TLR stim-
ulation might lead to macrophage activation-like syndrome 
in mice models[51]. In addition, Wang et al., showed that 
LTB4 increased macrophage expression of inflammatory 
microRNAs via its action on the BLT1 receptor in murine 
models [55].

Activation of the cyclooxygenase (COX) pathway has an 
essential role in the development of inflammation. COX–1/
COX–2 pathways lead to the formation of prostaglandins 
(PG) like PGE2 and PGI2 (prostacyclin). Metabolites of the 
COX pathway are involved in various aspects of inflamma-
tion, including cytokine release, migration of leukocyte , 
increased vascular permeability, and fever. Thromboxane 
causes smooth muscle contraction and platelet aggregation. 
PGE2 increases the production of IL-6 by leukocytes and 
might be involved in viral pathogenesis [47].

In a subset of patients, rapid viral replication induces cell 
death and release of damage-associated molecular patterns 
(DAMPs) , such as adenosine triphosphate (ATP), nucleic 
acids, and ASC oligomers. This triggers the activation of 
inflammasome and pyroptosis, leading to the recruitment of 
even more inflammatory cells [41, 56, 57]. The virus sup-
presses the release of  IFN-1 in the early stages of infection 
by various mechanisms, hindering viral clearance by T-cells 
[57]. IFN-γ is released after an initial delay and binds to IFN 
receptors on macrophages in the late phase of inflammation, 
recruiting more macrophages and releasing large amounts of 
proinflammatory cytokines [38, 39, 58]. The cytokine storm 
in COVID-19 is illustrated in Figs. 1 and 2. 

Although the exact mechanism that SARS-CoV-2 
employs to trigger the cytokine storm remains unknown, 
current preliminary reports and postmortem evidence sug-
gest  the widespread immune activation and the presence 
of high levels of cytokines IL-6, IL-7, IL-10, and TNF; 
chemokines CCL2, CCL3, CXCL10, and soluble IL-2 recep-
tor [38].

A similar cytokine profile can also be observed in sep-
sis due to other infections. Namely, SARS-CoV-2 infection 
triggers an immune dysregulation in a subset of patients, 
which forms the crux of the cytokine surge, as previously 
observed in SARS and MERS infections. Similarly, SARS-
CoV-2 can also cause a cytokine surge [30, 59].

Intermediates of the LT and PG pathways (e.g., PGH2 
and LTA4) undergo a complex mechanism of transcellular 

biosynthesis. This might provide an insight about how local 
inflammation expands into systemic involvement [47, 48, 
60].

 Regulation of 5-LOX is complex, since  studies sug-
gest that PGE2, IL-4, and IL-13 decrease the expression of 
5-LOX in monocytes, in contrast to both IL-1 and IFNγ-  
[48]. A study conducted on human synovial fibroblasts and 
mice models suggested that 5-LOX is involved in TNF-α-
induced cytokine release and that 5-LOX inhibitors inhibit 
the translocation of the nuclear factor-κB (NF-B) subunits 
p50 and p65 into the nucleus and decreased TNF-α-induced 
IL-6 and MCP-1 release [9]. Generation of  TNF-α in the 
lungs is enhanced by LTB4 [47].

Bioactive lipids and their metabolites have been shown 
to promote virus propagation in other Ccoronaviruses. A 
study done using human coronavirus 229E (HCoV-229E) 
and UPLC–MS indicates that the linoleic acid (LA)-AA axis 
and their metabolites could be vital for understanding the 
pathophysiology of SARS-COV-2 [52, 61].

Several studies have documented lymphopaenia, throm-
bocytopaenia, increased neutrophil-to-lymphocyte ratio, 
a temporary increase in inflammatory indices likelactate 
dehydrogenase (LDH) , CRP , ferritin-dimers, and coagula-
tion abnormalities, to be more marked in severe COVID-19 
patients as compared to milder cases. Levels of proinflam-
matory IL-6 significantly increased in critically-ill COVID-
19 patients, suggesting the possible role of hyper inflamma-
tion in the development of the other cellular abnormalities  
[38, 39].

Global T-cell lymphopaenia mainly involving  CD8+ T 
cells was observed in severe SARS-CoV-2 infection  . Cur-
rently, there is no evidence to suggest the direct invasion of 
T-cells by SARS-CoV-2. T-cell lymphopaenia may occur 
due to local recruitment, thereby reducing their levels in the 
systemic circulation [38]. Sustained high levels of inflam-
matory mediators might also play a role in depletion of lym-
phocytes [38, 39].

 Upregulation of exhaustion markers  such as natural 
killer G2 receptor  (NKG2A) on  CD8+ T and NK cells was 
observed in COVID-19 patients. This could indicate immune 
exhaustion due to severe sustained immune activation [25].

Weide et al., suggested that plasmin from the intrin-
sic coagulation pathway might be liable to stimulation 
of 5-LOX in humans [62]. Damage to vascular endothelial 
cells and activation of coagulation cascade by inflamma-
tory mediators or direct cell damage by SARS-CoV-2 can 
lead to    disseminated intravascular coagulation  (DIC), 
such as intravascular coagulation observed in sepsis. Plate-
lets play an essential proinflammatory role where platelet-
neutrophil aggregates are involved in the pathogenesis of 
ALI and sepsis [63]. The interactions between inflammation 
and coagulation might inflate the body’s immune response 
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Fig. 1  An illustration of the cytokine storm in COVID-19 [38, 41, 56, 70, 114, 115]
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manifold and contribute to the increase in disease severity 
[25, 64–66].

Complement activation has been established as a cause 
of ARDS due to other diseases, but whether it is involved in 
the development of ARDS in COVID-19 is yet unclear [25, 
67, 68]. Complements C3a and C5a activate the proinflam-
matory LOX pathway and may have a synergistic role in the 
development of eicosanoid surge and ARDS [69]. Recently, 
Risitano et al., showed widespread complement activation 
in lung biopsy from severe COVID-19 patients [67]. Several 
cells and metabolites of the inflammatory cascade can cleave 
C3 and C5, where C5a favours the pathway, leading to fur-
ther recruitment of inflammatory cells and mediators [62]. 
Additionally, the sustained severe inflammation observed 

in cytokine storms prevents the body’s immune resolution 
mechanisms, including resolvins and lipoxins from kicking 
in. Individuals who are deficient in lipoxins are more suscep-
tible to develop severe pneumoniae due to other infections 
[57, 70].

The infiltrating inflammatory cells release reactive oxy-
gen species (ROS) in a bid to clear the infection, leading to 
the production of oxidized phospholipids (OxPLs), which 
accumulate locally in the lungs. Furthermore, OxPLs lead 
to the recruitment of activated macrophages and release of 
TNF-α and IL-1β [45]. OxPLs were detected in the lungs 
of SARS-CoV patients, suggesting a similar mechanism 
to involve ALI in SARS-CoV-2 [38]. Destruction of alveo-
lar macrophages by SARS-COV-2 leads to a pattern of lung 

Fig. 2  A proposed model for the 
role of 5-LOX enzyme in the 
pathophysiology of COVID-19 
[48, 93, 116, 117]
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injury observed in secondary alveolar proteinosis, accumu-
lating fluid in alveolar spaces and worsening hypoxia [71]. 
In addition, innate and adaptive immune mechanisms even-
tually activate the humoural immune response. B-cells are 
activated through antigen-presenting cells (APCs), such as 
macrophages and dendritic cells along with PGs and LTs 
that possibly induce the production of non-neutralising anti-
bodies. An increase in immunoglobulin G (IgG) antibody 
titer was associated with poor outcomes in SARS-CoV-2, 
facilitating the antibody-dependent viral entry into the cells, 
thereby accentuating viral damage.  [25, 41]. Although the 
most commonly involved organ system is the respiratory 
system, involvement of the heart and kidneys have been 
reported in severe COVID-19 patients as well, but the exact 
mechanism is not yet well understood [20, 72]. Collin et al., 
suggested that metabolites of 5-LOX might play an essen-
tial role in the development of multiple organ dysfunction 
by increasing the expression of adhesion molecules CD11b/
CD18 in murine models [73]. Microvascular thrombosis also 
contributes to organ injury and decline in organ functions 
[66].

Residual lung fibrosis  has been one of the most severe 
sequelae observed in survivors of SARS-CoV infection [74, 
75]. Although evidence of long-term sequelae in COVID-
19 is unavailable till present, given the close similarities 
between SARS-CoV and SARS-CoV-2, such sequelae 
might also be observed in survivors of severe SARS-CoV-2. 
Mechanical ventilation contributes to the development of 
lung fibrosis. Virus-induced hyper inflammatory reaction-
mediated activation of growth receptors and proliferation 
of fibroblasts might be implicated in lung fibrosis and other 
organs observed in survivors of SARS-CoV [9, 38, 74]. The 
LOX pathway might play a role in pulmonary fibrosis by 
direct or indirect activation of inflammation [72, 76].

Genetic variations in the host could also be responsible 
for the increased susceptibility and severity in specific indi-
viduals as compared to others, where a similar process was 
observed in SARS-CoV [77]. Based on the current treat-
ment modalities employed in management of COVID-19, 
reducing viral loads using antivirals alone does not seem to 
prevent the worsening of disease severity and reduce mor-
tality in severe COVID-19 cases. There are complex inter-
connections between the various pathways of inflammation, 
which are not completely understood [7, 78, 79]. It might be 
pertinent to consider the vital importance of 5-LOX and the 
LT pathway in this regard [80, 81]. McCarthy et al., dem-
onstrated that using celecoxib, neuraminidase inhibitor, 
and aminosalicylate reduced the levels of IL-6 and TNF-α 
and the mortality rate on  H5N1 infected mice [47]. There 
are strong reasons to consider that 5-LOX and metabolites 
of the LT pathway play an essential role in the extension 
of inflammation from local to systemic pathways. Moreo-
ver, it is reasonable to believe that disease progression, the 

development of systemic inflammation, and the involvement 
of organs such as the heart and kidneys, follow temporal pro-
gress [70]. Given this, we hypothesise that 5-LOX inhibitors 
could be used as as an adjuvant to the antiviral treatment as 
a novel combination in the management of COVID-19 [82]. 
Introducing such a regimen early in the disease course has 
the potential to prevent disease progression from mild-to-
severe stage, avoid the development of CRS and multiorgan 
damage, long-term sequelae (e.g., lung fibrosis), and reduce 
both the need for mechanical ventilation and mortality in 
severe COVID-19 patients [76, 82].

5‑LOX and their roles in viral diseases

Leukotrienes are lipid mediators that have a pivotal role in 
homeostasis and self-defence of the body [83]. Proinflamma-
tory LT and antiinflammatory lipoxins are produced via the 
LOX pathway. They can be derived from AA, or eicosapen-
taenoic acid (EPA), or docosahexaenoic acid (DHA), with 
AA being the preferred substrate [84, 85]. Several enzymes 
mediate the LOX pathway, including 5-LOX, 12-LOX, 
12/15-LOX, 15-LOX type 2, 12(R)-LOX, and the epider-
mal LOX, where each number refers to the oxygen insertion 
position on AA [86].

Inflammatory signs associated with the recruitment of 
leukocytes to the site of infection are linked to the chemot-
actic effects of dihydroxy LTB4, which is a powerful stimu-
lant of chemotaxis on several inflammatory cells, including 
T-cells, neutrophils, and dendritic cells [87]. Similarly, the 
sulfidopeptide LTC4 and LTE4 contribute to the inflamma-
tory response by producing bronchoconstriction, smooth 
muscle contraction, and increased permeability of post-
capillary venules, leading to airway oedema and enhanced 
secretion of viscous mucus [86, 88]. 5-LOX enzymes are 
involved in the rise and resolution of some inflammatory 
conditions because they have an essential role in the pro-
duction of the specialised proresolving lipid mediators and 
proinflammatory LT [84].

The role of 5-LOX enzymes in the pathogenesis of sev-
eral infections as well as allergic reactions is well estab-
lished. For example, levels of 5-LOX and LTA4H in the 
airway are higher in patients with asthma than in those 
without asthma, with 5-LOX being the most potent LT to 
trigger the proinflammatory cascade. Moreover, the inhi-
bition of 5-LOX might suppress the production of LTB4 
[83]. Recently, 5-LOX inhibitors have been approved for 
the treatment of asthma [89]. Similarly, Shirey et al., con-
cluded that targeting the 5-LOX pathway could hold possible 
therapeutic benefits against respiratory viral infections [88]. 
Importantly, LOX enzymes are involved in different phases 
of influenzae viral infection. Different levels of 5-LOX and 
12/15-LOX were required in the pathogenic and resolution 



884 N. C. Ayola-Serrano et al.

1 3

period, respectively. Clinically, disease severity and immune 
response were due to the increase in the 5-LOX-derived 
metabolites and the reduction of 12/15-LOX metabolites 
[81]. Furthermore, patients with influenzae infections exhib-
ited higher levels of lipid mediators from the LOX path-
way with elevated levels of cytokines and chemokines [81], 
suggesting that their levels are interrelated. Ebola virus has 
shown that levels of LOX enzymes rise within one hour, 
highlighting their role in the initial immune response [90].

The role of 5-LOX enzymes  in the pathogenesis of lung 
injuries is unclear. Patients with pulmonary fibrosis show an 
increase in lung LTB4 and LTC4 levels, suggesting the con-
stitutive activation of this pathway [91]. Coronavirus spe-
cies has illustrated the vital activity of LOX enzyme as well 
as the downstream metabolites of AA via the LOX path-
way in humans [52]. An increase in LTB4 is responsible 
for the increased neutrophil migration via chemotaxis to the 
lungs in SARS-CoV infections [92].

LTs are known to fuel local inflammation in various dis-
eases. Targeted antiinflammatory drugs, especially 5-LOX 
inhibitors, may prove as crucial as antiviral drugs to modu-
late severe SARS-CoV-2 infections. The power of 5-LOX 
inhibitors in COVID-19 merits further investigations.s 

5‑LOX inhibitors

Arachidonic acid is the primary precursor of LTs that act as 
crucial promoters for cytokine release [93]. 5-LOX inhibi-
tors limit the production of LTs, affecting the production 
of proinflammatory cytokines and their deleterious effects 
as well [94]. Recent studies (not peer-reviewed), directly 
link the action of 5-LOX in the lung tissue from COVID-19 
deceased patients [95]. There is a growing body of evidence 
concerning the role of 5-LOX in COVID-19, which has been 
reported through this review. Presently, 5-LOX inhibitors 
have been widely explored as a treatment for several dis-
eases, such as rheumatoid arthritis, lupus, and asthma, but 
not as a possible treatment for the hyper inflammatory states 
of COVID-19 [96].   5-LOX inhibitors may be beneficial 
to halt the inflammatory cascade in its initial stages and 
prevent the progression to severe stages. We suggest that 
introducing 5-LOX inhibitors at the onset of the moderate 
stage of COVID-19, as illustrated by the CDC and the pul-
monologists’ international guidelines for the identification 
of phases of COVID-19, can reduce disease severity, prevent 
progression from moderate-to-severe and critical stages of 
COVID-19, and prevent the need for complex interventions. 
Subsequently,  this would reduce the need for mechanical 
ventilation, expensive and difficult to obtain drugs, and the 
mortality rate in COVID-19 patients.

Zileuton

Zileuton—the only 5-LOX inhibitor approved by the FDA—
was initially developed for asthma patients [94, 97]. It acts 
by chelating the active site of an iron component in the 
5-LOX enzyme [97]. Zileuton showed promising results as 
a potential treatment for sepsis and other cytokine-associated 
conditions by reducing multiple organ injury and dysfunc-
tion in mice. Moreover, it reduced leukocyte infiltration into 
the lungs, one of the critical characteristics of COVID-19 
[73, 98]. Recent studies suggest that zileuton is not only a 
mild 5-LOX inhibitor in humans, but also causes hepatotox-
icity, has troublesome dosing regimen, and has inappropriate 
pharmacokinetics/pharmacodynamics (PK/PD) profile [73, 
96, 97, 99, 100].

PF‑4191834

PF-4191834—primarily designed for pain and rheumatoid 
arthritis—is a novel non-redox selective 5-LOX potent 
inhibitor with a more adequate response in humans than 
that of zileuton. Studies demonstrated that PF-4191834 has 
the potential to provide all the benefits inhibiting 5-LOX in 
humans, making it a promising agent for COVID-19 [94, 96, 
97]. Due to its low activity on COX-1 and COX-2 enzymes, 
it has shown little impact on pain management [95–97]. 
According to AdisInsight, Pfizer initiated phase II trials for 
patients with knee osteoarthritis; however, the study was 
terminated due to the potential risk–benefit of PF-4191834 
that missed its primary target. It is imperative to reevaluate 
the risk assessment profile to be able to use PF-4191834 for 
the treatment of COVID-19 patient.

Firazyr® (Icatibant)

Licensed in 37 countries, icatibant—a first-in-class highly 
selective competitive antagonist of bradykinin  B2 receptor—
is indicated for the treatment of acute hereditary angioedema 
(HAE) attacks in adults and is resistant to degradation by 
bradykinin-cleaving enzymes [101–103]. COVID-19 binds 
to ACE2 to enter the host cells whose one of their activi-
ties is to hydrolyse the active bradykinin metabolite [des-
Arg973] BK (DABK). Reducing the expression of ACE2 by 
the virus impairs the inactivation of DABK. This enhances 
its signalling through the bradykinin  B1 receptor (BKB1R) 
that is highly inducible by inflammation, leading to fluid 
leakage and leukocyte recruitment to the lung. High lev-
els of inflammatory mediators through the activation of 
the BK system may increase the risk of capillary perme-
ability, ARDS, and multiple organ failure [104]. Inflam-
matory mediators such as TNF-α, IL-4, -6, -8 and -13 via 
intracellular NF-κB and mitogen-activated protein kinase 
(MAPK) signal to induce the expression of bradykinin [105]. 
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Selective BKB1R blocker could be a promising agent to 
prevent tissue inflammation and ARDS in COVID-19 [104, 
106]. Icatibant has not been used in the control of the CRS in 
COVID-19 [107]. Administration of BKB1R antagonists in 
experimental models of sepsis has prevented haemodynamic 
derangement and attenuated the risk of multiorgan failure 
[104]. Blocking the production of bradykinin receptors may 
open a new potential therapeutic window for the treatment 
of COVID-19-induced ARDS, particularly before patients 
enter the irrevocable stages.

5‑LOX inhibitors under development

BRP-187 has shown to be a potent inhibitor of LT biosynthe-
sis in-vitro and in-vivo, by blocking 5-LOX/FLAP complex 
assembly in activated human monocytes and polymorphonu-
clear leukocytes (PMNs) and an inhibitor of the microsomal 
PGE2 synthase 1 [108, 109]. AM803 (currently known as 
GSK2190915) is a FLAP inhibitor that potently inhibits the 
formation of LTB4 and is currently under investigation in 
clinical trials [108].

The molecular structure of LOX and the complex nature 
of the involvement of LT in the initiation and resolution 
of inflammation, have not been yet clearly understood. This 
could be one of the reasons that several LOX inhibitors are 
not approved for clinical use [109]. Combination of 5-LOX/
LT inhibitors that can act on upstream or downstream media-
tors of the inflammatory pathways, can be used as an effec-
tive treatment option to abort acute inflammation in various 
diseases [110].

Conclusions and recommendations

Understanding the role of 5-LOX enzymes in the pathophys-
iology of COVID-19 enables clinical researchers to develop 
novel and more effective therapeutic strategies. Current 
treatment modalities employed in management of COVID-
19 aim at reducing viral loads [111], or simultaneously tar-
geting 1 or 2 proinflammatory metabolites. For example, 
tocilizumab is a humanised monoclonal antibody that targets 
the IL-6 receptor . On the contrary, 5-LOX inhibitors act on 
the initial steps of inflammation;therefore, preventing the 
expression of multiple proinflammatory metabolites, such as 
ILs, TNF, and LTs. It is noteworthy to mention that 5-LOX 
enzymes are involved in numerous processes that intertwine 
to foment the hyper inflammatory states in SARS-CoV-2 
infection, contributing to lung fibrosis, multiorgan failure, 
and ultimately death. More importantly, such inhibitory 
strategies should be adopted in parallel with maintaining an 
adequate inflammatory response for SARS-CoV-2 eradica-
tion. In-vitro and in-vivo mouse models should be carried 
out to test the efficacy of 5-LOX inhibitors, have an in-depth 

understanding of the role of 5-LOX enzymes and if there 
are possible crosstalk with other inflammatory pathways 
in COVID-19. This review has also shed light on poten-
tial 5-LOX inhibitors that have been developed in recent 
years, which might be the silver bullet against the deleteri-
ous effects of the hyper inflammatory states in COVID-19.

PGs, 5-LOX, LTs, and thromboxanes have proinflamma-
tory actions but they are not the only molecules involved 
in the inflammatory cascade. The AA cascade and related 
metabolites show critical response in SARS-CoV-2-medi-
ated pathophysiology and poor patient outcomes, including 
multiorgan failure and deaths. In addition to the inhibition 
of 5-LOX, we should direct our attention to further test the 
proinflammatory actions of other AA-related metabolites in 
COVID-19 (e.g., LTs, PGs, and thromboxanes). We should 
also investigate the potential antiinflammatory actions of 
derivatives of unsaturated fatty acids, including resolvins, 
lipoxins, maresins, and protectins, to augment the mac-
rophage phagocytic capacity and to counteract the SARS-
CoV-2-mediated cytokine release and reduce the viral load 
[112, 113].
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