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a b s t r a c t 

Quantum field theory (QFTh) simulators simulate physical systems using quantum circuits that 

process quantum information (qubits) via single field (SF) and/or quantum double field (QDF) 

transformation. This review presents models that classify states against pairwise particle states |𝑖𝑗 ⟩, given their state transition (ST) probability 𝑃 |𝑖𝑗 ⟩. A quantum AI (QAI) program, weighs and 

compares the field’s distance between entangled states as qubits from their scalar field of radius 

𝑅 ≥ |r 𝑖𝑗 |. These states distribute across ⟨𝑅 ⟩ with expected probability ⟨𝑃 dist ribut e ⟩ and measurement 

outcome ⟨𝔐 ( 𝑃 dist ribut e ) ⟩ = 𝑃 |𝑖𝑗 ⟩. A quantum-classical hybrid model of processors via QAI, classifies 

and predicts states by decoding qubits into classical bits. For example, a QDF as a quantum field 

computation model (QFCM) in IBM-QE, performs the doubling of 𝑃 |𝑖𝑗 ⟩ for a strong state predic- 

tion outcome. QFCMs are compared to achieve a universal QFCM (UQFCM). This model is novel 

in making strong event predictions by simulating systems on any scale using QAI. Its expected 

measurement fidelity is ⟨𝔐 (  ) ⟩ ≥ 7∕5 in classifying states to select 7 optimal QFCMs to predict ⟨𝔐 ⟩’s on QFTh observables. This includes QFCMs’ commonality of ⟨𝔐 ⟩ against QFCMs limita- 

tions in predicting system events. Common measurement results of QFCMs include their expected 

success probability ⟨𝑃 success ⟩ over STs occurring in the system. Consistent results with high  ’s, 

are averaged over STs as ⟨𝑃 dist ribut e ⟩ yielding ⟨𝑃 success ⟩ ≥ 2∕3 performed by an SF or QDF of certain 

QFCMs. A combination of QFCMs with this fidelity level predicts error rates (uncertainties) in 

measurements, by which a 𝑃 |𝑖𝑗 ⟩ = ⟨𝑃 success ⟩ < ∼ 1 is weighed as a QAI output to a QFCM user. The 

user then decides which QFCMs perform a more efficient system simulation as a reliable solu- 

tion. A UQFCM is useful in predicting system states by preserving and recovering information for 

intelligent decision support systems in applied, physical, legal and decision sciences, including 

industry 4.0 systems. 
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Specifications table 

Subject area: Computer Science 

More specific subject area: Decision sciences, statistical mechanics, energy, physics and astronomy: quantum computing, communications, particles 

and statistical physics 

Name of the reviewed methodology: Universal Quantum Field Computation Model (UQFCM) 

Keywords Quantum simulator; Quantum field theory (QFTh); Transition probability; Success probability; Qubit; Quantum 

field computation model (QFCM); Universal QFCM; Quantum Fourier transform (QFT); Quantum artificial 

intelligence (QAI) 

Resource availability: Resources available to validate the review method are: 1- P. B. Alipour, T. A. Gulliver, Quantum field lens coding 

and classification algorithm to predict measurement outcomes, MethodsX, Elsevier, 10 (2023) 102136, Ref. [7] . 

doi: 10.1016/j.mex.2023.102136 . In this review, Ref. [7] is used to compare its findings with other method 

articles published on quantum simulation models that simulate QFThs in different fields of science employing 

cutting-edge methodologies to observe and predict any physical system event. Other supportive research articles 

used in this review: doi: 10.2139/ssrn.4239321 distributed in Elsevier e-Journals e.g., Comp. Theo. 6 (2023) 10; 2- 

P. B. Alipour, T. A. Gulliver, Dataset for Quantum Double-field Model and Application, Mendeley Data, Elsevier 

(2022) V2 + , doi: 10.17632/gf2s8jkdjf, Refs. [10] and [11] . 

Review question: 1. On what classical and quantum scales the observable universe can be simulated and measured as a universal 

method using computers? 

2. What are the notable quantum simulation methods or computation models used in simulating quantum field 

theories and their related sciences? 

3. What limitations of quantum simulation models are reviewed? 

4. What common parameters can be extracted to use and measure system states by comparing models’ strengths 

and limitations? 

5. Can there be a universal QFCM (UQFCM) developed to make a strong prediction of a system state through QAI 

simulation models? 

6. Can a trained QFCM be embedded in other simulation models simulating physics and make strong predictions? 

1. Method details 

1.1. Introduction 

1.1.1. Problem statement and solution 

Simulating the complete physics of our universe on any scale has been a major challenge among scientists. The simulation problem
begins when one wants to study events occurring in a thermodynamic system. The idea to simulate this system on the smallest possible
scale, not smaller than the Planck length 𝜆P ≈ 10 −35 m [2 , 7-9] , was proposed by R. Feynman [1 , 27] , as a quantum simulation model.
Questions were raised and discussed around the possibility of building a universal computer capable of simulating the universe 
and answer fundamental questions about the physics of matter [1] . This requires measuring the forces that define matter and its
constituents, existence, behavior and properties quantified within the observable universe. This measurement emphasizes on the 
statistical mechanics and thermodynamics describing the physics of matter as heat, work, temperature, and their relation to energy, 
entropy, properties of matter and radiation [1 , 2] . This measurement problem raises the question on, how to accurately observe and
predict events in a thermodynamic system on a targeted scale, i.e., on a quantum or classical scale? On the smallest measurable
quantity is the quantum scale, 𝜆P , which requires a quantum simulation computation model to compute and visualize the physics of
events occurring between particles in the system. 

Among current solutions, [54] proposes quantum computers as universal quantum simulators that require addressing their circuit 
design limitations affecting the Hamiltonian (system’s total energy). Examples to observe this change in energy are the spin-type 
and Heisenberg models programmed and mapped to a quantum circuit under thermodynamic laws [51 , 52] . A universal simulator
requires an effective local Hamiltonian obeying the algebra of Pauli matrices, then encoded into qubits (quantum information, or
QI) by a quantum circuit [54] . The reason is, Hamiltonian models of physical interest can be expressed in locally interacting spins,
e.g., Ising and Heisenberg models [38 , 40 , 54] . The fidelity and probability for measuring spin type Hamiltonians, range from an open
system exhibiting disorder in noisy channels, to models that use photons, sampled and slave particles [7 , 26 , 52] . In [52] , shuffling
the photons’ positions can detect multi-entangled photons with random probabilities. This requires the measurement of disorder in 
channels as entanglement entropy (EE). Particle entanglement can be predicted by measuring EE, and certified with high fidelity
when determined [52] , see Fig. 2 . However, models like [7, pp. 3–8] propose using slave particles in implementing quantum registers
to count sampled particles and their entanglement in the system. Here, the circuit simulates double-valued probabilities of spin,
particle state occupation or their possible entanglement. 

A universal simulator must preserve information under thermodynamics in an open system, compared to a closed system that
eliminates external noise sources with no information loss. Hybrid quantum-classical simulators can be used to supply QI to
the user, by which predict the next system state and retrieve previous particle states (events) over time. This is an evolution-
ary Hamiltonian of the thermodynamic system. Same studies [7 , 52 , 54] propose the simulation of a desired Hamiltonian using
trapped ions and super-conducting quantum circuits. Certain method objectives must be met to validate such model solutions as
follows. 
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Fig. 1. An imaginary plot projected relative to predictive advances made in HEP, methods and technology. This plot includes the required compu- 

tational resources needed for observations and qubit computation scale on quantum devices. The plot summarizes experimental organizations and 

the expected future of their technology, according to [15] . 

 

 

 

 

 

 

 

 

 

1.1.2. Method objectives and models 

The current solution known to simulate and predict system events should achieve the following research goal (4th objective) and
objectives (first three objectives): 

1. Employ models as the 1st objective, which is a quantum field theory (QFTh) simulation method. The method simulates QFTh to
construct physical models that measure e.g., particle interactions. 

2. Compare models’ limitations and strengths as the 2nd objective. 
3. Visualize events, their probabilities and predict them reliably to determine system efficiency, and suggest alternative energy paths 

to achieve a desired Hamiltonian [7] (target state) of the system. 
4. The goal is to achieve a universal QFCM (UQFCM) for the strongest system state prediction ( Fig. 1 ) based on the results of model

comparisons from the 1st through 3rd objectives. 

Notable models targeting the three objectives in simulating QFTh as discussed in this review are: 

• Conformal field theory (CFT), as a strongly-coupled theory [16 , 40] . Examples for CFT are: 
○ A quantum double field (QDF) algorithm, called a QF lens coding algorithm (QF-LCA) [7–12] . 
○ A universal quantum algorithm (UQA) [38] listed for simulating open systems with expected success probability ⟨𝑃 success ⟩

rates, when quantum-assisted on noisy intermediate-scale quantum (NISQ) devices [42] . From the four objectives, this 
qualifies as a QFCM, but not as a UQFCM. 

• Quantum Fourier transformation (QFT) [7–12] , 
• Basis light-front quantization (BLFQ) [3–5 , 46] , 
• Discrete light-cone quantization (DLCQ) [3] , 
• Adiabatic quantum optimization (AQO) [40] , 
• Adaptive quantum optics (AQOpt) [51 , 52] : entangled photons resolve the time reversal of events as information is preserved 

under thermodynamics between subsystems as indistinguishable states. 
• One-dimensional Gaussian (1DG), as a nearly optimized algorithm for generating a ground state (GS) of a free QFTh [18] that 

can correspond to a classical field of free particles, Section 3. 
• Lattice quantum field theory (LQFT) [5 , 14 , 16] , 
• Hardy’s nonlocality theory (HNT) to predict entanglement by measuring EE for a particle pair interaction at a large distance 

[37] . This model improves the success probability in demonstrating nonlocality for 𝑛 -particle HNT. Simulating this success 
prevents the vanishing of ⟨𝑃 success ⟩ → 0 as 𝑛 grows compared to previous models of the same study [37] . 

• Quantum tunneling for QFTh (QFTh-QT) [12 , 17] . 
• QFCM for high energy physics (HEP) [13] . 
• QDF for any QFCM is followed by 
• Quantum artificial intelligence (QAI) [7 , 44 , 45] , to classify states, train and predict for a QFCM. 
• Newly emerging QFCMs that achieve an improved prediction model or a UQFCM as the 4th objective, or research goal. 

This solution includes addressing potential errors and uncertainties in measurements from a targeted system for any thermody- 
namic or statistical mechanical reason to observe in the universe. For this solution, the I/O data from QFCMs are stored as a simulation
model database (SMDB). A QFCM program accesses and analyzes the stored QFCMs’ measurement data for a UQFCM. See, Graphical
Abstract and Table 2 examples. 

Any simulation model has limitations and strengths in simulating events, and an expected measurement outcome ⟨𝔐 ⟩. An intelli-
gent decision (support) simulator (IDS) [7-11 , 57] , reports these outcomes as worst-/best-case scenarios relative to an event simulated
or observed from the system. A human observer via IDS, can target a desired ⟨𝔐 ⟩. In this paper, a “desired outcome ” is a specific tar-
get state (TS) defined by the observer as a desired Hamiltonian [7, pp. 3, 10 and 25–29]. This “desired Hamiltonian, ” is the expected
3 
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Fig. 2. An example of fidelity between the experimental and the TS (specified by the experiment to attain) with confidence values shown from the 

AQOpt model [52] ; (a) Certifies entanglement in the hopping Hamiltonian, which consists of equal-strength nearest-neighbor interactions between 

all modes in simulating the superfluid, and a set of 20 randomly chosen long-range Hamiltonians; (b) Certifies entanglement in the Haar random 

transformation (SF transform shown in Table 1 ), corresponding to a Hamiltonian with random long-range interactions, and a possible built-up of 

longer-range entanglement. For both measurement outcomes, a higher saturation indicates a stronger presence of multi-photon entanglement [52] . 

Note: fidelity is scaled from min-to-max between [ 0 , 1 ] , scaled down from [ 0 , ∞] for compatibility reasons, compared to other QFCMs. Other QFCMs’ ⟨𝔐 (  ) ⟩ could be greater for a set of models as, ⟨𝔐 (  ) ⟩ ≥ 7∕5 , selecting on average 7 QFCMs that might perform this task more efficiently for a 

desired Hamiltonian. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

total energy of the system to observe in favor of system efficiency, performance, reliability, and 𝑃 success . A strong prediction of particle
(energy) states and their state transition (ST) in that system, produce the desired ⟨𝔐 ⟩. This expected outcome can have a high fidelity
in measurement,  → ∞. The range of this fidelity can be readjusted for the expected fidelity measurement ⟨𝔐 (  ) ⟩ = max  → 1 . This
is plotted in Table 1 ’s graph and Fig. 2 , for a model’s measurement preference based on its ⟨𝔐 (  ) ⟩. The greater the  and 𝑃 success ,
the lesser the cost of resources to conduct an experiment and trials required to attain the expected TS. 

The solution to a UQFCM is to simulate physical systems on any scale using QAI with strong prediction results over ⟨𝔐 (  ) ⟩, core-
lated to ⟨𝔐 ⟩ = ⟨𝑃 success ⟩ ≥ 2∕3 results, performed by specific models [7-9 , 45] . This presents a high  in distinguishing and classifying
particle states based on their distance-based classifiers [7 , 28-30] . Classifiers measure distance between data points and assign weights
to a class to generate energy scores. An energy score is exemplified by [55] , and discussed towards the end of this section. 

From classifiers, QFCMs are selected to present an optimal universal measurement of QFTh observables. This includes QFCMs 
commonality of measurement outcome, as in limitations to predict system events based on ⟨𝑃 success ⟩ over STs. The probability dis- 
tribution of particle states in the system, 𝑃 dist ribut e yields ⟨𝑃 success ⟩, according to Eq. (3) , Section 1.3. The results of measuring these
probabilities are classified by a QFCM algorithm to determine  in conducting quantum measurements. Consistent results of QFCMs 
with high  → ∞, are averaged over STs as ⟨𝑃 success ⟩ ≥ 2∕3 performed by a QDF, or a single field (SF) transformation model. An SF
transformation can obey a QFT or its inverse, QFT 

–1 , as discussed in Section 2. However, a QDF can denote both, QFT and QFT 

–1 , in
its DF transformation [7–9] . One of which, is measuring entanglement between a pair of particles by QDF and QFT models, aka cor-
related particles [7-9 , 45] . Albert Einstein called this correlation, “a spooky action at a distance, ” a property known as entanglement
[46] . If one state is known, the entangled state can be predicted with a ⟨𝑃 success ⟩ = 1 , given no information loss occurs. This informa-
tion is retrievable by pairwising with other particles. For example, by projecting photons between a particle pair in a communication
channel [7 , 45 , 46 , 52] , a readout can be made from the correlated (entangled) particles. 

Information loss is an issue during teleportation (under decoherence versus noise) of an unknown state [9, Secs. 2.2, 4.2, 5.1],
where different models, such as QDF, address the retrieving or reconstruction of information between the teleported states and their
fields through a QFT, CFT or QDF transformation. This is achieved by entangling more particles with the pair, e.g., photons projecting
on their entangled state within the quantum circuit. For example, these models simulate and predict phase transitions (PTs) from
classical (CPT) to quantum (QPT) as Bose-Einstein condensate (BEC) in Einstein-Podolsky-Rosen (EPR) traps [7–9] . The simulation 
from e.g., Fig. 15 , shows particle trapping from a lattice model to observe their entanglement and predict the event based on measuring
EE for a desired Hamiltonian [7–11] , as the 3rd method objective. 

1.1.3. Review method: a QFCM case study 

This paper reviews methods developed to simulate QFTh and application in different fields of science using quantum circuits that
process qubits via SF, QDF, QFT and QFT 

–1 . The type of field transformation is listed in Table 1 in its corresponding column. This table
provides a detailed summary list on strengths and limitations for each QFCM. For example, on the limitations, a gradual improvement
of fidelity by the model to predict high error rates (uncertainties) in ⟨𝔐 ⟩ is not listed. Instead, a combination of QFCMs with QDF is
proposed by weighing their ⟨𝔐 ⟩ = ⟨𝑃 success ⟩ < ∼ 1 as a QAI suggestion to its user. The QFCM user, then decides which QFCMs perform
a more efficient system simulation and measurement outcome. 
4 
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Table 1 

Comparison of QFCMs, their measurement data, strengths, limitations, and expected measurement outcomes relative to fidelity. Bottom shows the 

table’s graph between the average of the ⟨𝑃 success ⟩’s and  ’s lower bounds, given index value 𝔫 of the table, which reflects the summary of models’ 

strengths and limitations. 

( continued on next page ) 

5 



P.B. Alipour and T.A. Gulliver MethodsX 11 (2023) 102366 

Table 1 ( continued ) 

( continued on next page ) 
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Table 1 ( continued ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The review method is quantitative at the early processing steps of data measure based on ⟨𝔐 ⟩ recorded from a quantum system
(event), e.g., an ST or PT describing the system’s state. A QFCM estimating ⟨𝑃 success ⟩ is the target of its success probability in measure-
ments, by which the model is classified, given its prediction accuracy. At the output stage, model validation is the review’s next step.
For example, validate the correctness of the claims made by the selected model from its code results on a quantum device. Depending
on how consistent the model under review is in producing the expected results describing the system, the ⟨𝔐 (  ) ⟩ is evaluated rela-
tive to uncertainty measure and error rates. For instance, data loss and uncertainty increase are expected for a system’s state under
decoherence [7-9 , 37 , 52] , e.g., an AQO program running on a D-Wave device [40] . However, the mitigation process to address data
loss as a solution in reconstructing or retrieving data, can be satisfied by other models, such as QDF [7–9] and AQOpt [51 , 52] , which
discuss this ⟨𝔐 ⟩. 

The methods of control, at the high-level of models’ review, are qualitative. This is determined after the elimination, combination of
one or more models, and substitution . For instance, a selected QFCM is qualified for a UQFCM after reviewing the model’s fidelity in
estimating ⟨𝔐 ⟩ = ⟨𝑃 success ⟩. In fact, will this model review from its quantitative data contribute to a high ⟨𝔐 (  ) ⟩ ∈ ( 0 , ∞) ? Will it require QAI

methods to class and rate it as being more efficient in measurements compared to other QFCMs? The answer lies in a QAI program [7 , 44-46]
that classifies models for its user, based on their ⟨𝔐 ⟩’s relative to  . This model review’s flow is presented by a models’ control process
in Table 4 . The physical controls involved for observing system’s I/O data, are simulated by system model components as particle
controllers. For example, for an ion trap, photonic probes and sensors are used [7–9] . This includes any physical material needed
to study particle thermodynamics. The study’s information is used by the QAI program to simulate worst-/best-case scenarios of a
particle contributing its energy to the system’s Hamiltonian. The particle’s quantum mechanics evaluates ⟨𝑃 success ⟩ of the particle state, 
by which, the next system state is predicted. This is achieved by measuring ⟨𝑃 dist ribut e ⟩ from the sum of particle states averaged over
time where ⟨𝑃 success ⟩ is yielded. These cases are simulated by QFCM algorithms written in e.g., QASM (quantum assembly language),
executed on a quantum device in a lab environment where data is generated, such as IBM-QE and QInspire [33 , 49 , 50] . 

Quantum state measurements are handled by QFCMs, as in a QASM simulator, collapsing the state of a qubit, according to the
probabilities predicted by quantum mechanics. The interpreted data are the classical information delivered to the user by a QAI
program. The program suggests the user to choose a more efficient outcome (a desired Hamiltonian) in simulating and predicting
a system state. This is a solution offered by the UQFCM that monitors system’s output, which must satisfy all four objectives on
a quantum or classical scale. In this case, data points are compared as the model’s control method. This is a well-known method
by QAI/AI models as a distance-based classification [30] , given the weight of data point representing classical bits and qubits per
measured I/O. Table 1 lists this case as id #10-12. 

Simulators from [12 , 37 , 40] for specific QFTh cases satisfy values of ⟨𝑃 success ⟩ > 1∕2 . A QDF model as QF-LCA from [7–11] , satisfies
values of ⟨𝑃 success ⟩ ≥ 2∕3 for any QFTh. The QAI program can group and select these simulators (as an index set in Table 1 ) for the
user to choose. This solution contributes to research method’s novelty in strong prediction and measurement fidelity estimates by a
UQFCM. For example, to validate ⟨𝔐 ⟩-data obtained on system’s classical and quantum states, a quantum-classical hybrid model is
proposed to run on NISQ, or on quantum-assisted devices [7-12 , 18 , 38 , 42-44 , 53] , and photonic processors [52] . A quantum assisted
algorithm [38] follows a UQA structure, and employs NISQ technology to reduce the quantum circuit depth and complexity when
simulating open systems. 

The problem with models like [38] and [53] , despite their high fidelity in determining a quantum state e.g., entanglement, is
requiring ancilla (extra) qubits to store partial results and obtain entanglement. For example, in [53, p. 6], circuits for different
QF transformations require unitary-and-projective measurement operators. This is obtained by implementing ancillary gates that 
perform irreversible logical operations. This is a limitation, which requires different circuit configurations and ancilla qubits to 
preserve information ( Table 1 , id #1). To avoid this limitation, a QFCM needs to physically store information and train its algorithm
for a desired Hamiltonian. For example, a QF-LCA [7] simulates a system by classifying its states, and predicts its next state with a
7 
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high ⟨𝑃 success ⟩ and  . The method is exchanging particle states within a QDF, with a fixed number of ancilla qubits. Instead, an extra
qubit in [7 , 9] is used within the QDF when required, given the QDF’s circuit configuration [7, pp. 17–23, 28]. This demonstrates
model’s strength in doubling the probability space for an ⟨𝔐 ⟩ = ⟨𝑃 success ⟩ ≥ 2∕3 . From this ⟨𝔐 ⟩, and after state classification by a
QAI program, an energy path can be rerouted to a suggested efficient path for a desired Hamiltonian. This includes EE measure to
determine entangled particles, which contributes to quantifying QI against information loss in the system. 

Physical data reconstruction from a damaged repository can be simulated by QFCMs based on EE measure determining entan-
glement. Other areas to simulate data recovery are in forensics, law, presenting accurate medical information prior to a patient’s
treatment, and forgery detection concerning valuables, certificates, passports, etc. In cancer research, DNA molecule reconstruction 
can benefit from this method. Strategies to predict virus and bacterial attacks [55] , can employ quantum tomography (qubit recon-
struction) [51 , 52] , to prevent an infection spread in the human body. By having a list of selected QFCMs to combine, e.g., [7 , 52] , the
output method can then provide vital information, and reconstruct qubits in saving human lives. After an energy state classification
of a targeted system, the QAI program provides its user, a set of decisions to choose as the most efficient route possible to reconstruct
system states (events), for/or against, a system’s ⟨𝔐 ⟩. 

The QAI [7] for [55] , can provide an IDS information from simulating interactions of spike ( ) protein (of COVID-19) with a
number of medical herbs [55] . This information would denote the energy changes (STs) of a protein’s residue relative to an interaction
at different time intervals [55, Fig. 2]. The binding between the -Protein site, and the human  -Receptor site, can determine the
entanglement level between the two sites. In this method, given no information loss strategies, an atomic energy state is predicted
by knowing the other entangled state from a photon readout of the two sites. The virus and the  sites’ entanglement level, can
determine COVID-19’s growth and spread. By measuring EE, the binding reaction on the atomic level to the binding of the virus in
the host can be determined. The STs, by their classical and quantum data weights and distances, are compared via QAI as energy
scores. Quantum field distances between pairwise sites are measured to determine which treatment or drug is the most effective
without causing side effects on COVID-19. The QDF model is a suitable example to theoretically represent this distance-based field
interaction analysis [7, pp. 26–29]. As a proposal, a QDF option creates entangled states by projecting photons between unaffected 
sites against the -Protein, and predict its next state. This is by spatially creating defensive chains of entangled  sites, so to prevent
the -Protein’s lock-to-penetrate cells and spreading. The predicted -Protein state as information is shared, to program cells and 
defend against next targets. 

The following sections present method details from the early QFCMs to current models, as a preamble to evaluate QFCMs, propose
and reach a UQFCM, according to the research goal (4th objective), as outlined. 

1.2. Past, present, and future simulation models 

This section answers the 1st review question and objectives on what classical and quantum scales the universe can be simulated 
and measured as a universal method using computers. 

On the Basic Physics lecture held at Caltech University in 1963 [1] , R. Feynman addressed questions on what the constituents
of the universe are in form, size, color, source, state, etc. as observables to our level of observation. Feynman’s response was that,
observation, reason, and experiment make up the scientific method . The application of this method requires finding a computer
simulation of physics. According to Feynman , to make a simulation of nature, it should be quantum mechanical, as it is complex
in representing the mechanics of the universe’s constituents [16 , 27] . Intrigued by this concept, Feynman published a paper in 1982
[27] on simulating physics and probabilities using computers . This paper defined the probability of a diffusing particle from 𝑁-interacting
particles appearing at a position 𝑥 1 , 𝑥 2 , … , 𝑥 𝑁 

in state space 𝑆, at time 𝑡 , [27, Section 3]. This concept satisfied solutions to the wave
function Ψ( 𝑥, 𝑡 ) in quantum mechanics which describes a particle’s quantum state in a quantum system. The probability that the
particle’s position 𝑥 will be in the interval 𝑥 1 ≤ 𝑥 ≤ 𝑥 𝑁 

, is the integral of the density over the interval 

𝑃 𝑥 1 ≤ 𝑥 ≤ 𝑥 𝑁 ( 𝑡 ) = ∫
𝑥 𝑁 

𝑥 1 

|Ψ( 𝑥, 𝑡 ) |2 d 𝑥 (1) 

where 𝑡 is the time at which the particle was measured. For example, finding this particle at a certain point in a certain state, is the
probability of success 𝑃 success = 1 or 100% probability on the prediction simulated for the particle’s quantum system and position.
This is also known as probability 𝑃 of 1 for finding the particle in state space 𝑆. 

Prior to Feynman’s paper [27] , comparisons within the electromagnetic (EM) spectrum in the 1920s were presented in form of
a basic classification of particles, fields and waves for all matter [1] . However, in quantum mechanics, elementary particles were
redefined to a many-level elementary classification of matter, with forces that move and cause their interaction on a quantum scale.
This representation opposed the classical observation of massive scales defined in Newtonian physics [1] . Relation to other fields of
science, such as in chemistry [16] , QAI algorithms [29-31 , 44 , 45] are required to plot a detailed observation and quantification of
energy and matter in the system [1] . Among which, is the study of a spin Hamiltonian in LQFThs [5 , 16] , nuclear magnetic resonance
(NMR) [26] , BEC with ground states as a quantum phase transition (QPT) [7-9 , 25] , and other related QFCMs [3 , 4 , 21] . QFCMs are
compared and discussed on the overall product of their limitations, strengths in prediction, and their efficiency when it concerns
system performance, Section 1.3. 
8 
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Quantum field theory (QFTh) [2] , defines the concepts of particles and fields, dating back to photons as the quanta of the EM field
in the 1900s by Max Planck [2] . Different interpretations were presented, such as QFTh by Dirac in 1927 [2, Chap. 1]. QFTh concepts
were adapted to thermodynamic laws [2, Chap. 2], by using quantum computational methods to simulate thermodynamic systems 
and events [7-12 , 23] . Among which are systems in condensed matter physics, e.g., BEC [25] , in HEP, e.g., the Hadron Collider (LHC)
[13 , 15-28 , 48] , in chemistry and nuclear physics, NMR [16] . To predict new matter forms and system states, the system’s PT or ST
is simulated and observed on quantum and classical scales. A preview of these models is exemplified in Section 1.1. This is not a
prerequisite, but nice to have, in order to validate the selected models, their measurement results and methods. The prerequisite
for this review is to focus on the key measurement parameters, 𝑃 dist ribut e and ⟨𝑃 success ⟩, where ⟨𝑃 success ⟩ yields from 𝑃 dist ribut e , see
Eqs. (3)–(5) . These key parameters are common and visible in all these models with results, as listed in Table 1 . 

Examples of simulating QFTh, are not limited to HEP or condensed matter physics in trapping particles relative to system efficiency
solutions. By observing QFThs, quantum properties of particles as energy states, STs or events, can be predicted and used to reconstruct
and retrieve data in case of loss. For instance, in law and forensics, reconstructing damaged documents, DNA evidence, etc., due to
some accident, becomes vital to identify and classify events from the crime scene for solving a case. Detecting forged from genuine
documents, requires a physical reconstruction of a damaged sample of the evidence and replicate the whole evidence by predicting
what was the actual fragments of the lost information. For this, a micro-/nano-scale 3D printer [36] can be used, as discussed in
Section 4. This printer operates on damaged evidence after the quantum state of the evidence’s field associated to its sample has been
measured. The output state from this QF association denotes the missing picture for reconstruction. The printing process is useful in
reconstructing damaged or lost data, for also tracking forged banknotes, passports, and the reconstruction of damaged DNA. After
DNA sampling, parts of the DNA code can be printed as strands of molecules to reprogram, see Section 4.2. In medicine, this is needed
to detect cancer cells and treat patients based on DNA information, such as predicting which cells are about to get damaged. Any
related field in detecting diseases, can benefit from QFTh simulators to determine negative growth, potential cell mutations, etc., see
COVID-19 in Section 1.1. Other examples are in quantum encryption-decryption algorithms based on superposition and entanglement 
between particles observed under a QFT, SF or QDF transformation [7–9] . Decoding qubits from a field transformation into classical
bits is useful to design security systems in need of robust encryption over a communication channel. The model choice to retrieve the
expected data from a noisy channel, based on e.g., QDF and AQOpt simulators [7 , 52] , becomes vital in designing a secured channel.
In industry 4.0 systems [57] , an example from these simulators is to perform an efficient system based on refrigeration/combustion
event, as in a heat engine. In this engine, particles that do not participate in the thermodynamic event can be predicted via QAI
(Section 1.1). New energy paths are suggested over the channel for these particles to participate. The path is then rerouted to produce
a desired Hamiltonian cycle (recycling an efficient heat engine), with the least negative impact to the environment. This has been
explored in the proposed QDF simulation model from [7–9] , which can be applied to QF annealing methods for AQO solutions
[40 , 59] . 

To improve the computational performance of qubits and classical bits, hybrid models are proposed to simulate events on quantum-
classical processors [18 , 43 , 44] . Efficient integration of hybrid processors and compilers are required to import or migrate resources
(libraries) from classical to quantum computers, and decode qubits back to classical bits. This includes manufacturing efficient hybrid 
computers that simulate this process and predict efficient ⟨𝔐 ⟩’s for a desired Hamiltonian (3rd objective, Section 1.1). For example,
consider a vehicle with a self-driving option. This vehicle has a human driver who chooses an AI/QAI program to assist or make critical
decisions on the road. Any latencies must be avoided in case of autonomous instant decisions are made for the driver (technology not
present yet). A hybrid simulator can take QFCM predictions on the quantum scale from a QDF between the road’s particle (body) field
𝐵, associated to the vehicle’s field 𝐴 . To anticipate motion, photons project between the vehicle’s sensor field particle 𝑎 , and the road’s
particle field 𝑏 . A photon readout is made measuring the entanglement level or superposition between 𝑎 and 𝑏 , so to predict motion
within the QDF. There are two pairwise particles interacting, and a photon superposing between 𝑎 and 𝑏 which has a frequency sum
(time difference) or energy states |𝑖𝑗 ⟩, measuring their entanglement [7-11 , 58] . Hence, the pair’s probability space is doubled over
their distance |𝐫 𝑖𝑗 |, and state distribution. This is only possible when the particles interact on an interaction length-based scalar limit|𝜅2 |𝜚 ≤ 2 , from Eq. (2) . From this readout and Eqs. (2)–(4) , the following probability is predicted with high fidelity 

⟨𝔐 (  ) ⟩( 𝐴,𝐵 ) = max  = 𝑃 dist ribut e 
yields 
⟶ ⟨𝑃 success ⟩( 𝑎,𝑏 ) ≥ 

1 
3 
( 2 ) 

|||𝜅2 |||𝜚 (𝐫 𝑖𝑗 )⟶ 1 
2 
( 2 ) = 1 . 

Compared to the hybrid model, a purely classical AI system will need enormous computational power, circuit depth and complexity
to satisfy this outcome. This is unreliable for making real-time autonomous decisions on critical routes. However, the QFCM makes
advanced predictions in the hybrid model based on its trainable algorithm to reach ⟨𝑃 success ⟩ → 1 per decision with max  , Eq. (3) .
This compensates any latency processing. From there, the actuation of the command to maneuver the vehicle by the classical system
is executed. 

In astronomy, simulating blackholes in form of a thermal BEC microscopic blackholes on a quantum scale [9, p. 3 as refs. 21-26],
can achieve predictive advances in observing the universe on a macro-scale, its past, and future. A BEC experimental model [9, refs.
59–65], via a thermal BEC black hole, can provide information to predict how a pair of excited state (ES) and GS particles entangle
on a scale of 𝜆P . A QF-LCA via QDF [7–11] , proposes a QAI method based on the model’s EE measure to make strong predictions of
new black holes formed in the universe. This can help to hypothesize the reason for the universe’s expansion [56] . 

Fig. 1 displays an imaginary plot projection on such predictive models in some areas of science and technology, including exper-
iments conducted on QFThs, such as LHC, and laser interferometer gravitational-wave observatory (LIGO). The plot shows where 
in-demand devices for users require greater performance in processing massive amounts of data available on the internet and media,
such as Google and IBM [12 , 15 , 22-24] . Nowadays, devices are hybridized between the quantum mechanical and classical computa-
9 
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tion models [18 , 43 , 44] , as discussed earlier (or see Graphical Abstract, step 5). For example, Q-Kit is an efficient hybrid simulator for
large scale quantum simulations using 20–40 qubits, with reasonable time cost (average of 26 minutes) of computation and resources.
Another model is a QAI simulator using a hybrid CPU-FPGA method on current NISQ devices [44] . This information processing de-
mands a growing integration of qubit computation using qubit gates, such as T-gates. Each gate performs a single-qubit operation

around the 𝑧 -axis of the qubit’s Bloch sphere, aka the 
4 
√

𝑍 gate [15] . For instance, fault-tolerant quantum computers will compile all
quantum programs down to just the T-gate and its inverse [33] . 

What remains as a two-part question from [27] , relevant to current quantum simulators is: What type of computer is needed to
simulate physics, by which simulate physics on any scale as a universal simulator? 

Note that , the simulation of “physics on any scale ” denotes classical and quantum scales. However, the laws of physics break
down at a distance smaller than 𝜆P ≈ 10 −35 m ( 𝜆P is the smallest unit on the quantum scale). 

The answer, relative to the advances made in the design and manufacturing of quantum computers, Fig. 1 , is to study the pos-
sibility of developing a UQFCM from reliable and efficient QFCMs simulating physics e.g., [7-11 , 51-54] . A universal computer can
then be introduced to simulate the universe. To achieve this, a UQFCM must perform with high fidelity in measurement results by
distinguishing quantum and classical states. For example, a particle in a GS is distinguished from sublevels of GS, ES, and predict its
next state with a great ⟨𝑃 success ⟩. An example of “predictive advances ” in Fig. 1 , is the data produced by LHC experiments categorized
in four levels [48] , classified and simulated by a QFCM. This example is illustrated by steps 1 and 7 of the Graphical Abstract via an
SMDB. The four levels at CERN’s dataset portal to access and publish are [48] : 

• Level 1 data provides more information on published results in publications, such as figures and tables. 
• Level 2 data includes simplified data formats for outreach and analysis training, e.g., the basic four-vector event-level data. 
• Level 3 data comprises reconstructed collision data and simulated data, together, with analysis-level experiment-specific software 

to perform full scientific analyses using the existing reconstruction. 
• Level 4 data covers basic raw data (if not covered as level 3 data) with reconstruction and simulation software to produce new

simulated signals, or, the re-reconstruction of collision and simulated data. 

CERN’s open data portal focuses on the release of event data from levels 2 and 3, whereas LHC collaborations provide small
samples of level 4 data [48] . A QFCM can import any level data to the SMDB, and simulate events based on the focused measurement
of ⟨𝑃 success ⟩. The results are permissibly published from the SMDB to any CERN level. Notably, the results must satisfy the three
objectives in simulating QFTh, Section 1.1. In this case, simulate events from LHC data recorded at CERN. This is a dataset out of
many QFTh experiments conducted by laboratories publishing their data online. A UQFCM via SMDB, supplies a predictive model of
events based on ⟨𝔐 ⟩ = ⟨𝑃 success ⟩ → 1 with max  , see Eq. (3) . In collaboration with CERN’s data levels, QFCM measurement results can
be compared to level 3 data outputs, and give more focus on the events of CERN as predictive events. These events are compared with
all four levels. This has been proposed as one of UQFCM’s strengths in Table 1 , id #12. The following section discusses Table 1 results.

1.3. Review method: measurement data analysis 

Measurement results are reviewed based on a QFCM’s measurement parameters used to simulate events. From Eq. (1) , the proba-
bility density for a diffusing particle found in a narrow interval, in its function form is 𝜚 ( 𝑥 ) , where its units in space 𝑆 are the inverse of
length in 𝑑-dimensions. From the latest findings [7–9] , to scale a particle’s QF during particle interactions or diffusion in the system,
the product of this scalar and 𝜚 ( 𝑥 ) , can be expressed as 

|||𝜅2 |||𝜚 ( 𝑥 ) = 𝑃 ( 𝑥, 𝑥 + d 𝑥 ) = |Ψ( 𝑥, 𝑡 ) |2 d 𝑥, (2) 

where 𝜅 is an interaction length-based scalar [7–9] . Scalar 𝜅 measures the particle’s QF on any length scale, and 𝜚 ( 𝑥 ) relates to
measuring areas under the continuous-time probability distribution of particle states 𝑃 dist ribut e in the system. For greater variations, 
followed by a Δ in finding the particle, the interval range changes to greater distances of 𝑥 + Δ𝑥 up to ±∞, returning a 𝑃 of 1 within
that range. This denotes that the particle exists and possibly found within that range. 

For a pairwise particle, from [7–9] , a photon field (light source) projects photons onto the particle pair’s space relative to 𝜆p .
This can cause the pair’s interaction, diffusion, or entanglement within a QDF between their sites i and j . Each particle site has an
ST probability occurring at its joint field point ( 𝑎, 𝑏 ) , i.e., 𝑖 𝑎, 𝑏 or 𝑗 𝑎,𝑏 in the QDF, which occupies S from Eq. (1) or (4) . The pair’s
ST probability is denoted by 𝑃 |ij ⟩ = 𝑃 success ∈ [0 , 1] with a density range of |𝜅2 |𝑒 ( 𝑥 ) ≤ 2 , [7, p. 7]. In this case, 𝑒 ( 𝑥 ) takes the form
𝑒 = 𝑒 ( k 𝑖𝑗 ) or 𝜚 ( 𝐫 𝑖𝑗 ) , where 𝐤 is the wavevector of a projecting photon from its field measured in m 

–1 , and 𝐫 is a pairwise field position
vector measured in m, relative to 𝜆P between the pair. Scalar 𝜅 applied to a QF, transforms the field by the pair’s interaction through
wave propagation and scattering between field points (a QDF projection). This field ranges between the upper and lower bounds of
the scalar, |𝜅2 |𝑒 ∈ [ 0 , 2 ] , as proven in [7–9] . The bounds of scalar k rewrite the ST probability in Eq. (3) , or see [7, pp. 5–7]. The
measurement outcome from k (product) operations can be observed after a Hadamard gate H in a quantum circuit. For example, a
SWAP gate [41] , in a QDF circuit [7] , obeys the same principle as shown in Fig. 12 . The exception from a QDF circuit, compared
to other models, is that qubits can be recovered after SWAP due to entanglement and superposition between pairwise particles. This
measurement fidelity of quantum states is specific to distance measure between states. For example, if a QFCM consistently performs
𝑃 dist ribut e of states computed from 𝑒 ( 𝑥 ) in finding the particle, the greater 𝑃 success and  by this model in distinguishing and predicting
particle states in the system. The overall result of probability measurement outcomes is presented with variations observed between
10 
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QFCMs’ outputs, to possibly propose a UQFCM. A QFCM’s  , can be determined from its ⟨𝔐 (  ) ⟩ range as 

⟨𝔐 (  ) ⟩𝑆 = lim 

min  → 0 
max  → ∞

 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
max  = 

{ 

𝑃 dist ribut e 
𝑦𝑖𝑒𝑙𝑑𝑠 
⟶ 𝑃 success ≤ 1 

for 𝜚 ( 𝑥 ) ⟨∞, as 𝑡 ⟩0 
} 

∈ ( min  , ∞) 

min  = 

{ 

𝑃 dist ribut e 
𝑦𝑖𝑒𝑙𝑑𝑠 
⟶ 𝑃 success < 1 

for 𝜚 ( 𝑥 ) ⟨∞, as 𝑡 ⟩0 
} 

∈ ( 0 , max  ) , 

(3) 

where the model’s minimum fidelity in measurement, min  , converges between nonzero values less than maximum fidelity, max  , 
and near 0 in being effective to predict measurement outcomes. This denotes some QFCMs are unreliable in predicting events,
compared to those with max  in measuring a particle or system state probability from state space 𝑆 in Eq. (1) . The condition
for  = max  , is to get the model’s fidelity arbitrarily close to a finite value, as 𝑃 dist ribut e yields ⟨𝑃 success ⟩ → 1 , to determine the
next state of the system. Latest theoretical models, such as HNT [37] , improved the 𝑃 success in Hardy’s nonlocality. Its correlation
to entanglement between particle pairs, was compared to their previous works with a vanishing 𝑃 success , as 𝑛 grew to its limit. This
improvement was achieved by using basis transformation and interaction on a particle pair. In comparison, a QDF transformation
[7–9] is needed to double such probabilities. The proof of the QDF theory [9] , represents the measurement of distance between two
events or particle states. The proof, results in doubling the pair’s probability space to predict their next ST occurrence. This includes
the simulation of Bell’s Inequality by measuring EE, and discussions around locally hidden variables to distinguish particle states and
entanglement [7–9] . The QDF model [7] , argues max  is true for its ⟨𝔐 ⟩’s. Both works, [7] and [37] , use minimally 𝑛 ≥ 3 particles
to prove their ST (or, QPT ↔ CPT) measurement results. One, [37] , proves improvement in  and ⟨𝑃 success ⟩ results. The other, [7] ,
based on measurement data analysis, proves ⟨𝑃 success ⟩ doubles with max  in any case. These models can be selected to input their
measurement results for developing a UQFCM, relative to their strengths and limitations. 

Measurement fidelity is important, and is highlighted from Section 1.1 as follows: the greater the  and 𝑃 success , the lesser the cost
of resources to conduct an experiment and trials required to attain the expected TS. A QFCM simulating with this performance, is a
strong candidate to be selected for a UQFCM. 

The following part answers the 2nd review question on presenting notable quantum simulation models used in simulating 
QFThs. 

This section reviews selected QFCMs listed in Table 1 . QFCMs simulating QFThs [2 , 18] and QFTs [7 , 12 , 23] , are compared to the
QDF model [7–10] . This model selection is made on the basis of model limitations e.g., uncertainties [17 , 26-28] , error rates and
strengths as 𝑃 success (see, Section 2), for projecting reliable predictions of the final system state, Eq. (1) . For example, depending on
the model’s choice in Table 1 , for a strong prediction outcome, devices like D-Wave can be used to run the AQO model [40] . However,
current model results indicate QFCMs run their codes on IBM-QE [33] , or, QInspire devices, while QX 26, 31, 34 qubit simulators run
on a classical supercomputer called Lisa [49 , 50] . These devices are suitable for current advances made by QFCM developers using
IBM-QE and QInspire platforms. This is due to ease of access, available quantum devices to run codes, open resourcefulness of Qiskit
packages (libraries), online help to debug code, and timely code execution with results from trials. Of course, quantum computers
can run codes suitable to their processors’ configuration, e.g., Spin-4 or Stramon-5 quantum computer from QInspire [49] . A code
configuration example for certain quantum processors is shown in Figs. 12 and 13 , or see [7 , 10 , 11] . 

In Table 1 , rows id #2 and #10, hybrid models are added, such as 1DG for generating a GS of a free QFTh [18] , CPU-FPGA method
on NISQ computers [44] as a QAI model, and Q-Kit [43] . In Table 1 , id #12, interactive simulators as a quantum game [46] can
engage a QFCM user to simulate a decision-making quantum system or IDS [57] as e.g., a QDF game [7 , 9] . For example, visualize a
quantum-classical game (system) participant as Alice, Bob or Eve [7 , 9] , who exchanges information to achieve a ⟨𝑃 success ⟩ ≥ 2∕3 in
winning a prize (a TS), as a desired Hamiltonian (3rd objective). Once achieved, this is considered a strong predictive QFCM. Another
strong model is AQO [40] , added to row id #7.i, but for only detecting maximum entanglement through measuring its entropy
for ion traps (a spin Hamiltonian, Section 1.1). This is added to compare model’s strength in achieving high 𝑃 success ’s for a closed
quantum system as opposed to any other system by e.g., QDF models. As a limitation, AQO for small success probabilities requires
improvements due to the increase of decoherence in an open system, as a problem observed on a D-Wave device [40] . In contrast,
id #7.ii adds a random number of successful outcomes in determining entanglement applied to current models, e.g., AQOpt by [52] .
In AQOpt, a photonic processor can reach ⟨𝑃 success ⟩ = 1 in detecting multi-photon mode entanglement by its single-photon detectors 
from the output. By detecting how many photons are in a disordered channel (which built up disorder due to thermodynamic laws
[51] ), the photons’ positions were shuffled. As a result, entanglement was maintained between subsystems. In this case,  remains
high for this outcome, representing full information of previous and current particle states ( Fig. 2 ). Hence, any retrieval of particle
states as past events is possible, in order to find, recreate, or reconstruct system events in a disordered quantum system. However, in
Fig. 14 , this time-event reversal process employs a QDF model based on high fidelity and ⟨𝑃 success ⟩ ≥ 2∕3 selection. Compared to the
shuffling of photon positions in [52] , the QDF via superposition of pairwise particles, doubles the probability space of their states on
the ⟨𝔐 ( 𝑃 dist ribut e ) ⟩ = 𝑃 |𝑖𝑗 ⟩ results. This simulation outcome presents a more deterministic picture [7 , 8] compared to [52] , in simulating
random photonic events relative to EE (uncertainty) measure. One can argue for a desired Hamiltonian (3rd objective), or TS, which
model is more confident in fidelity and ⟨𝑃 success ⟩ results to witness or achieve a specific experimental outcome? The answer could be
an AQOpt outcome, as in Fig. 2 , a QDF outcome [7] , as in Figs. 13–16 , or QFT/QFT 

–1 , as in Fig. 11 . 
11 



P.B. Alipour and T.A. Gulliver MethodsX 11 (2023) 102366 

Fig. 3. (a) Hybrid model of quantum-classical hardware and code. The compiled code provides instructions to perform by processors on their 

associated registers. The quantum processor sends the measurement results back to the classical processor [18] . (b) A client-server framework for 

simulating QFTh representing quantum communication and GS generation servers. These servers simulate massive scale bosonic QFTh. The output 

from the server is an approximation for the free-field GS [18] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The significance of measurement results listed in Table 1 and their averages’ graph, is to gauge the model’s ability in determining
system states on any scale. For example, using quantum-classical hybrid processors [11] , Fig. 3 , can show how the system evolves
over time in a QFCM simulation. The UQFCM must at least satisfy the exponential trendline on the average minima of 𝑃 success ’s shown
in the graph, according to id #12’s data model control. Table 4 illustrates this model control mechanism. Generally, each quantum
simulator employing one or more QFCMs, should in its code check and see if it meets the expected measurement outcome and fidelity
for a simulated event. An event can be observed as superposition, entanglement, interaction, etc., between particles in their GS,
ES, or energy sublevels. By determining this ST, as an event occurring between their states, the next system state can be predicted.
Specifically, to see if the 𝔐 ’s hit and match the ⟨𝑃 success ⟩ < ∼ 1 of the ⟨𝔐 ( 𝑃 dist ribut e ) ⟩ on that event, e.g., presents an ST of GS → ES among
other interacting particles as the next system state. Hence, this model is reliable to apply, as it can contribute to a decision suggested
by an IDS to the user [7–11] . This suggestion can be in any form of predicting events reliably, as a strong prediction outcome based
on ⟨𝑃 success ⟩ results, which determines the model’s ⟨𝔐 (  ) ⟩. 

The collected data from QFCMs (their 𝔐 ’s) are described under “data to measure ” column of Table 1 . This column, highlights
where the QFCM suggests efficient ways for simulating events. For example, id #8 shows a QDF method to reroute energy paths as the
updated data to analyze. As a result, more accurate models are developed to assist users to decide on the most efficient energy path
to improve system efficiency. This can be validated by Table 1 ’s graph, showing an average measurement fidelity of ⟨𝔐 (  ) ⟩ ≥ 7∕5
points. This result can be interpreted as 7 optimal QFCMs (graph bars) over 5 less (or the least) optimal QFCMs, ⟨𝔐 (  ) ⟩ ≥ 1 . 4 , in
classifying states. From the result, the IDS selects efficient QFCMs to predict ⟨𝔐 ⟩’s for the UQFCM user. 

This review proposes the possibility to develop a UQFCM in a decision flow model diagram (see, Graphical Abstract), based
on model comparisons to address each question raised in the review’s specifications table. Conclusions are drawn from the review’s
observations from literature, summary measurements and analysis. In summary, a UQFCM gives a more focused method of measuring
physical systems by presenting a unified solution to their prediction problems. The study and development of technologies from the
physical world on an industrial scale can be cost effective when a UQFCM is achieved, as it improves system design, state control and
performance of those technologies. 

Section 2 presents QFCM limitations and model examples on how to address them. Section 3, compares a select set of QFCMs,
discussing their strengths, limitations, expected measurement outcomes and fidelity from Table 1 . This section lists the summary of
its findings in Table 4 , which contains a model control process that achieves a UQFCM. Finally, Section 4 explores some practical
12 
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examples that can hypothetically employ QFCMs, for a UQFCM, from Table 4 . This section also presents a new algorithm to simulate
measurements of a discussed example for a UQFCM, and model’s future scope based on its findings. 

2. Method limitations 

This section answers the 3rd review question on quantum simulation model limitations 

The current method limitations in the development of a UQFCM are: 

• A low expected ST probability, or a weak prediction of a measurement outcome, is noticed in a QFTh system. This measure of ST
probability as ⟨𝑃 success ⟩ relates to the prediction of the final system state relative to a given input (see Table 1 , columns 𝔐 and⟨𝔐 ( 𝑃 ) ⟩). 

• The scattering of states is partially observed in the Hamiltonian among interacting particles, relative to their (preparation of)
initial states [28] . This is significant in observing the evolution of a thermodynamic system from its initial state, to current, and
final state(s), in a predictive QFCM. This is by determining the value of 𝑃 success described in Table 1 , as the ability to simulate the
Hamiltonian. 

• The fidelity of measuring the GS and ES, can be very low as the system evolves, due to system noise and uncertainty. Relative to
system model steps, 𝑃 dist ribut e is measured compared to ⟨𝑃 success ⟩ in predicting the final system state, according to Eq. (3) . 

• The selected QFCM cannot adapt to other models. Is there a way to improve measurement limitations and prediction level by
combining the model with other QFCMs, for a high ⟨𝑃 success ⟩ and ⟨𝔐 (  ) ⟩? 
Feynman in [27] , was concerned about simulation limitations on an isolated part of nature with 𝑁 variables that could require

a general function of 𝑁 variables. If a computer simulates by computing this function, then doubling the size of nature ( 𝑁 → 2 𝑁 )
would require an exponential growth in the size of the simulating computer. Thus, a QFCM needs to compute the 𝑃 of configurations
relative to this computational limit. The exponential growth of ( 𝑁 → 2 𝑁 ) results in 𝑃 of events approaching 2 − 𝑁 → 0 [26–28] . This
𝑃 → 0 result is avoided by satisfying its complement 𝑃 ′ = ⟨𝑃 success ⟩ → 1 using current QFCMs that reconfigure and process qubits (QI)
and classical bits in a hybrid model, see e.g., Fig. 3 . This processing is part of an I/O data control mechanism in Table 4 . Higher layers
of prediction are developed based on the recorded ST probability data and its distribution focused using QF lenses, and distance-based
classifiers [7-10 , 29-31] , Section 1.1. From Eq. (2), a QAI program weighs and compares the focused field (lens) distance 𝑑 between
pairwise states as qubits observed from their scalar field of radius 

𝑅 ≥ 

|||𝐫 𝑖𝑗 ||| ∶ ⟨Ψ2 𝑑 2 
⟩
= 

|||𝜓 𝑖𝑗 𝐫 𝑖𝑗 
|||2 . 

These |𝑖𝑗 ⟩ states distribute across ⟨𝑅 ⟩ with a 𝑃 dist ribut e , and ⟨𝔐 ( 𝑃 dist ribut e ) ⟩ = 𝑃 |𝑖𝑗 ⟩ for their expected output, decoded into classical
bits, or see Table 2 . Furthermore, a QDF coding model proposed by [7–10] , addresses Feynman’s exponential growth problem about 𝑁 ,
by transforming a quantum SF to a QDF via 𝜅 from Eq. (2) . This is achieved by measuring the fields’ superposition and entanglement,
aka EE, [7] . Here, the uncertainty is reduced in measuring 𝑁 → 2 𝑁 across ⟨𝑅 ⟩∕ |𝐫 𝑖𝑗 |, to the point of ⟨𝑃 success ⟩ of the system state as 

⟨𝑃 success ⟩ ⟨𝑅 ⟩ |||𝐫 𝑖𝑗 |||−1 ⟶
⟨ 
𝑃 𝑁 𝑆 

⟩ 
= ∫

1 

0 ∫
𝑁 

0 
𝑁 𝑆 ( 𝑎, 𝑏 ) 𝑁 d 𝑎 d 𝑏 = 

{ 1 
3 
, 
2 
3 
, 1 

} 

, 𝑁 𝑆 ( 𝑎, 𝑏 ) ∈ { 1 , 2 , 3 } . (4) 

This equation is a quantum operation against the exponential growth 2 − 𝑁 → 0 , or, with a ⟨𝑃 success ⟩ ≥ 2∕3 as a discrete solution

between pairwise field points ( 𝑎, 𝑏 ) ∈ 𝑆 in their joint pdf 𝑁 𝑆 ( 𝑎, 𝑏 ) ≥ 2 . These points are correlated, depending on a particle pair
interaction exchanging QI between these points [7–10] . Their joint pdf for a QDF is 𝑁 𝑆 ( 𝑎, 𝑏 ) = 2 , and a 3 rd field carrying the QI
about the particle pair, returns an average value of 𝑁 in Eq. (4) integral. For an SF transformation obeying a QFT, prior to a QDF, is
𝑁 𝑆 ( 𝑎, 𝑏 ) = 1 with a ⟨𝑃 success ⟩ = 1∕3 . There is no 4 th or 𝑁 th field point for the joint pdf beyond ( 𝑎, 𝑏 ) . The reason is, for a set of pairwise
interactions of 𝑁 ≥ 2 , a possible entanglement or superposition between these points (particles) denotes one particle pairing up to
𝜇𝑎,𝑏 = ( 𝑁 

2 − 𝑁 )∕2 particle pairs interacting in the simulation model [7] . This conforms to the 𝑃 success relative to error rates observed
and corrected on 𝑁 to 𝜇𝑎,𝑏 qubits. Examples are reported in QF annealing readout models [59 , 60] , and 𝜇𝑎,𝑏 degrees of freedom in
programmable spin Hamiltonian architectures [40, Section 2]. Entanglement entropy between pairwise spins of two subsystems, is 
measured as a function of their coupling over interaction length 𝐿 . This measure determines the probability of particles entangled
between the subsystems. Length 𝐿 via 𝜅 from Eq. (2) , depending on the degree of entanglement, can scale to entanglement length
𝐿  which provides QI on the system state [7, pp. 5–7]. From [7-11 , 39 , 40] , EE is determined between pairwise particles for two
possible cases, “Cases 1 and 2, ” as listed in Table 2 . These lists are extracted from [7, Table 4], given the number of sampled particles
between two subsystems of a heat engine (thermodynamic system), see Section 4.1. The bottom plot of Fig. 13 shows the expected
measurement outcome ⟨𝔐 ( 𝑃 , 𝜓 𝑖𝑗 ) ⟩ for all cases of particle sampling and interactions in the system. In the plot, the 𝑃 dist ribut e of particle
states yield ⟨𝑃 success ⟩, according to Eq. (3) , for all cases in Table 2 . 

In Table 2 , the expected measurement result, ⟨𝔐 ( 𝑃 , 𝜓 𝑖𝑗 ) ⟩ = ⟨𝑃 success ⟩ → 1 is consistent with ⟨𝔐 (  ) ⟩𝑆 = max  from Eq. (3) in
measuring states under a 𝜅-based QDF transformation by Eq. (2) . This transformation doubles the state probability output relative
13 
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Table 2 

Measurement data on an SMDB from a QF-LCA [7] . The SMDB lists predicted probabilities from the input of an SF to a DF (or QDF) transformation of a 

group of qubit pairs for an ⟨𝔐 ( 𝑃 , 𝜓 𝑖𝑗 ) ⟩ of their energy state. The states are 0 for a GS, 1 for an ES, 2 for a quantum state, such as superposition as 0 and 

1 (within m sideband levels of GS [7, Example 4.B]), and 3 for a complement pair condition. For example, in binary b ( 𝑖𝑗 ) for a 𝑃 |ij ⟩ as in the rightmost 

column, denotes superposition, entanglement, or a classical state for a particle (qubit) pair. If 𝑃 |ij ⟩ ≥ 2∕3 for b ( 01 ) = 1 or b ( 10 ↔ 0 𝑚 0 𝑛 ) = { 0 , 2 } , then 

its complement on both outcomes 𝑃 ’ |ij ⟩ ≤ 1∕3 is b ( 11 ) = 3 , according to Fig. 13 ’s lower graph results. Consult Fig. 13 (b)’s EE scaling graph for the two 

cases. The associated probabilities to each energy state, as classified and predicted in an experiment, is weighted according to energy state profiling 

via QAI [7 , 31] . The classification for a combination of pairwise spins between particles is determined by particle pair’s level of entanglement 

measured by 𝐿 (interaction length) scaling the Hamiltonian (e.g., Ising model [7-11 , 40 , 60] ) as EE scaling [7] . This is determined by measuring the 

expected magnetization ⟨𝑀⟩, which classifies pairwise particle spins in e.g., QDF lattice traps ranging from the least, 𝑀 = 0 , to the highest level 

of magnetism between particles ( Fig. 15 (a)). This includes the expected outputs measured from the dynamics of the QDF circuit as distance-based 

data points [7, pp. 25-29], according to the code used for a QDF circuit in Figs. 12 and 14 . 

 

 

 

 

 

 

to input in particle position and energy from the QDF circuit. Notably, the reversible time and information preservation are true for
both, the QDF and AQOpt, in retrieving previous system states (events) relative to variational thermodynamics of the Hamiltonian
[7-9 , 51 , 52] . These models are in agreement between the deterministic and random results (semi-/non-deterministic [9] ), id #7,
compared to id #8 in Table 1 . However, a QDF model (QF-LCA) achieves the doubling of 𝑃 ’s in its spatial transform, giving a
more deterministic picture of STs compared to AQOpt [51 , 52] . An AQOpt, simulates events based on randomness with 𝑃 ’s yielding
from ⟨𝑃 ⟩, to locate photon pairs and their entanglement. This model measures with high fidelity in certifying entanglement
dist ribut e 

14 
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Fig. 4. A state generation step illustration. A state is prepared with amplitudes according to the orange points (step lines). Then, an inequality 

against the blue points (the curve) is tested. The success probability is ≥ 70%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

after a number of trials, hitting the right 𝑃 success ≈ 1 from 𝑃 dist ribut e , as its TS. However, SF and QDF can be applied to AQOpt under
randomness if unitary gates transform where photons entangle [52] , Section 1.2. One subsystem against another subsystem benefits 
from randomness due to photons shuffling positions (superpositions) between subsystems, as if all were entangled. Thus, the missing
information in one subsystem disappears to the other subsystem [51] , and so the information is preserved. In comparison, QF-LCA
returns ⟨𝑃 success ⟩ = 1∕3 with max  denoting subsystems’ information is preserved. Even in case of data loss due to decoherence, the
superposition between particle pairs preserves their information within the QDF [9, Section 2]. 

The following section discusses a select set of QFCMs’ strengths and limitations, and compares them in measurement and perfor-
mance in simulating systems relative to their classical and quantum limits. The random version of models, given their limitations,
such as [50 , 51] , are not presented, but will be part of QFCMs’ future scope to include when ⟨𝔐 ⟩’s are aligned to consistent ⟨𝑃 success ⟩’s
and not just ⟨𝔐 (  ) ⟩. 
3. Model comparisons 

This section answers the 4th review question on listing common parameters that can be extracted to use and measure system
states by comparing models’ strengths and limitations. 

To achieve a UQFCM, comparisons should be made between the selected QFCMs employed in Section 1.2, classifying model
strengths and their limitations to simulate QFThs. The limitations raised in Section 2 are noticeable relative to efficiency and expecta-
tions on ST probability and prediction factors of each method employed by a QFCM [5-12 , 18] . Limitations over system efficiency and
state predictions, can be determined by QFCMs that simulate a quantum system from QFT and spin transformation operators. These
operators describe an experimental event expected to occur from the simulated system. For example, in [18] , complex methods were
introduced and used to mimic classical and QFTs by their algorithms. The complexity for processing basic functions were analyzed.
Examples are eigenvalues associated with the state (vector) GS, i.e., near GS | ̃𝐺 ⟩ shown in Fig. 3 , and ES of the Hamiltonian in
executing a quantum circuit. From there, the program sends QI to a classical processor as a hybrid code to analyze quantum mea-
surement results comprehensive to a human. Their research, [ 18 ], involved the generation of different bounds of GSs through hybrid
algorithms. This is needed to classify and determine particle states from a classically generated GS (from a free-field GS state), as a
multidimensional Gaussian state in Fig. 4 . This was measured relative to particle mass, as opposed to waves, i.e., wavelet simulation
through a wavelet algorithm [18] . 

In comparison, from [7-9 , 12] , a universal approach is proposed to simulate QFT and QDF measurements. This was by focusing
ST probabilities and their distribution based on kinetic and potential operators. A QDF algorithm, QF-LCA, makes consistently strong
predictions via 𝑁 𝑆 ( 𝑎, 𝑏 ) acting on 𝑁 in Eq. (4) from a continuous solution. This is only in case of some or all of the QI are exchanged
at field points 𝑎 and 𝑏 , as 

⟨𝑃 success ⟩ ≅ 1 
3 

× 𝑁 𝑆 ( 𝑎,𝑏 ) ∈ [ 1 , 3 ] 
⟶

{ 2 
3 

→ ⋯ → 1 
} 

, (5) 

which denotes a quantum particle space in probability doubles and grows in 𝑃 success for determining the next system state. This is a
DF computation method that decodes from its QDF circuit, a classical state, for making strong predictions based on the QDF’s kinetic
and potential operators [7–12] . These QFCMs are compared at the end of this section, and their I/O data control with other QFCMs
in Table 4 , to choose from for a UQFCM. 

In Fig. 4 , 𝑃 success ≥ 0 . 7 reflects the success probability of observing future system states, given the analyzed data in the QFCM’s
simulation comparisons for [18] , from Table 1 . As discussed above, [18] simulated the quantum physics for a massive scalar bosonic
QFTh. This work introduces a client-server framework for simulating a QFTh on a quantum computer. The model discusses the metric
in use to measure the algorithm’s time complexity, as well as its runtime and error rates. Different examples of QFCMs benefiting
from this model and other hybrid types, e.g., QF-LCA [7] , with results, are given in Secs. 1.2, 1.3, 2, Tables 1 and 4 . 
15 
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Table 3 

Simulating QFThs using different QI methods as discussed in [16] . The lattice and conformal truncation methods are com- 

pared. The tools for using existing QI tools simulate QFThs describing the physics of lattice and quantum 𝑁-body models. 

Without the lattice, the authors could use methods in quantum chemistry to simulate conformal truncation. 

Treatment Starting point Existing toolbox in QI 

Lattice regularization Usually-free theory Quantum many-body physics 

Conformal truncation Strongly-coupled theory (CFT) Quantum chemistry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In [16] , the algorithms work for general Hamiltonians with sparsity. The model makes direct analysis of the conformal truncation
of the Hamiltonian by measurement. The quantum chemistry method to describe this Hamiltonian was implemented based on the 
CFT, as shown in Table 3 . This review finds CFT to suggest from a distinct light-matter interaction regime, the interaction is manifested
in coherent oscillations of energy between matter and a photonic subsystem. CFT is a starting point to implement the QI building
block as a simulation tool in quantum chemistry. Examples of this tool can be explored to simulate QF formations between particles
that entangle at different magnetic moments, which exhibit different energy states. Lattice models are some examples that require
the measurement and programming of spin Hamiltonians [40 , 60] . Another example is the strongly interacting Rydberg atoms which
are in a high energy state (of the hydrogen atomic model). A Rydberg state can be used to combine BEC and Rydberg atoms at near
absolute zero temperatures and simulate a new state of matter, e.g., an exotic state called a Rydberg polaron. A recent study [56] ,
discussed limitations on how to incorporate gravity into QFTh, where excited Rydberg atoms enabled the measurement of gravitating
properties of the vacuum. This can give information to simulate and predict the vacuum energy and the expansion of the universe in
QFTh. All these examples can be classified and predicted by a UQFCM through a QAI program, model control, and selection process
(see Table 4 or Section 1.3). 

To validate the method proposed in [16] , the study firstly performs some numerical experiments in IBM-QE [33] . The study sec-
ondly discusses quantum simulation with/without noise and treatment about noise mitigation in most measurements. The experiments 
are performed by a quantum simulator backend called qasm_simulator (an IBM QASM simulator) [33] , on a quantum device
ibmq_armonk . The quantum programming language was QASM in Qiskit as an open-source SDK platform working with quantum
computers. The encoding was made into a three-qubit matrix. This review concludes that the study opened a novel approach to solve
QFTh simulation algorithms on quantum devices. 

With the aid of quantum devices, the measurement results can contribute to the development of a UQFCM. The method is an explicit
form of Hamiltonian for a given conformal truncation problem imported in a quantum setting. An analog of Qiskit.chemistry is
an existing package in the IBM-QE environment. Examples of this package are functions and operators imported for experimentation
with chemistry domain problems, such as determining GS and ES energies of molecules. An operator from a core.Hamiltonian 
class can be used to map e.g., a FermionicOperator to a qubit operator. The molecule’s energy state is computed at its dipole
moments, such as its nuclear repulsion energy. The molecule data results can be used to classify GS and ES energies, such as using
classifiers by other QFCMs via QAI, see Section 1.1, or [7] . 

This review finds [16] presented ideas for preparing states and observe the Hamiltonian’s real-time evolution in experiments. This
included ideas about analog quantum simulations. For example, Fig. 5 shows the algorithm’s prediction level compared to the actual
expected results between the classical and quantum Krylov dimensions. Krylov subspaces are used in algorithms to find approximate
solutions to high-dimensional state space, and observe the Hamiltonian’s time evolution. This observation was simulated in [16] . 
The study discussed digital and variational simulations, yet, analog simulation was not explored, Table 1 , id #1. This is required for
a UQFCM to mimic all possible event scenarios expected in a thermodynamic system being measured on its classical and quantum
energy spectra i.e., the statistical mechanical limit of 𝑁 particles [32] . However, this paper discussed how the analog representation
of their code could be achieved. 

In the analog simulation, the paper proposes encoding quantum states into some physical models made by, for instance, Rydberg
atoms. A general universal application to this model is limited to a specific range of particles in a specific environment. Some defined
examples are, 2D conformal Hamiltonian models of 𝑁 particles with local interactions in a lattice (between lattice sites) [16] , or see
lattice sites in a QDF [7–10] ). Through the paper’s error mitigation program, as an optimizer, a 0 . 26% error rate was reduced after
20 , 000 measurements conducted on a noisy quantum circuit by an IBM quantum computer [16] . 

In [5] , the effect of gate errors from an LQFTh-based model was shown and discussed to perform the optimal use of energy
for a quantum state. This was determined by simulating quantum gates in IBM QASM simulator (Qiskit). For example, minimum-
energy and maximum fidelity strategies are used to approximate the odd and even parity GSs ( Fig. 6 ). The optimization level is
determined by studying the rotation angle of quantum gates. This includes where and when the maximizing of angles is needed to
achieve optimization as the optimal choice or strategy. In this model, a hybrid quantum-classical LQFTh workflow is proposed. The
flow shows that interpolating operator constructions are optimized in auxiliary small-scale quantum calculations. These calculations 
are used to study isolated bound states, and increase the precision at fixed statistics. This accelerates principal large-scale LQFTh
calculations on classical computers. The principal classical calculations are robust to noise that enters quantum computer calculations. 
The systematic uncertainties that arise from matching between the two calculations were measured at different physical volumes, 
e.g., lattice spacings and truncations on the gauge field space from the quantum calculation. 

An example of minimum-energy strategy is preparing three qubits in a GS, Fig. 6 (a). This is denoted as |𝑞 1 𝑞 2 𝑞 3 ⟩ = |000 ⟩ by acting on
a variational ansatz quantum gate 𝑈 ( 𝛽𝜋+ ) . This operation consists of a sequence of single qubit rotation gates and entangling two-qubit
16 
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Fig. 5. (a, b) Classical and quantum simulations using different Krylov space dimensions, taking maximum scaling of dimension (matrix truncation) 

of 16. In the quantum simulation, the space span of the dimensions was diagonalized; (c) the algorithm’s variational version behaved better than 

the exact version of this sample; (d) the relative error rate is very small, indicating that in these trials, the quantum implementation can achieve an 

efficient method of measurement sampling and prediction. 

 

 

 

 

 

 

 

 

 

gates, here on |𝑞 1 𝑞 2 ⟩. This is followed by applying |𝑃 𝑘 ⟩ as a 3-qubit Pauli string on |𝑞 1 𝑞 2 ⟩. When followed by measurement gates, the
minimum-energy strategy is obtained. For implementing a maximum fidelity strategy, the circuit in Fig. 6 (b) estimates the overlap
of quantum energy states. This is expected to occur in a QPT or a quantum vacuum state (lowest possible energy, or, zero-point field
[2, p. 8]), by implementing different quantum gates, such as a Hadamard gate [ 𝐻]. A Hadamard gate can be used to convert a qubit
from a clustering state to a uniform superposed state. 

The results of the measurements of energies, with and without noise, based on the minimum energy and maximum fidelity
strategies, are presented in Fig. 7 . These results correlate to the claims made in this study as an effective and efficient way of
measuring quantum energy states during STs. 

The research by [37] used IBM-QE devices to simulate nonlocality in Hardy’s context. Its method improves success probability⟨𝑃 success ⟩ > 0 . 1 in demonstrating nonlocality for an 𝑛 -particle HNT, compared to their previous studies where ⟨𝑃 success ⟩ → 0 , as 𝑛 grew.
Their measurement results are affected due to gate errors at decoherence times in the simulation, if not optimized. In their findings, EE
is measured to determine the correlation between nonlocality and entanglement. An optimization solution to [37] via [3–5] methods 
Fig. 6. (a) Minimum-energy strategy quantum circuit implemented; (b) quantum circuit to implement maximum fidelity. This circuit uses quantum 

gates for a Hadamard-overlap test to achieve maximum fidelity. In this circuit, quantum states from a GS state are prepared for a probable QPT 

using SWAP, [ 𝐻], and measurement gates. SWAP is performed using CNOT, [ 𝐻], and measurement gates. The colored rotation gate on an ancillary 

qubit denotes the rotation about the 𝑧 -axis by an angle −π∕2 . 
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Fig. 7. Effective energy functions compared as energies are converted into lattice units of a rescaled Hamiltonian. These functions are computed 

from correlation functions with optimized and unoptimized interpolating operators, with and without the effects of noise in the quantum device. 

Solid bands (labels) encompass 100 curves from multi-shot measurements in the quantum simulation with and without noise. Left image shows the 

effective energy functions and their asymptote, while the right image shows the excited state values (ES contamination to allow a GS dominance at 

earlier 𝑡 ’s) in each function, on a logarithmic scale. 

Fig. 8. Quantum simulation of the light-front QFTh at different stages of complexity including resource requirements. Discrete light-cone quantiza- 

tion (DLCQ) is considered to be a special case of BLFQ that employs a plane-wave basis, and may be useful in the fault-tolerant quantum computing 

regime [3] . The rightmost (DLCQ) stage is separated due to classical preprocessing used in BLFQ to obtain approximations using fewer quantum 

resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can be applied. For example, IBM-QE devices are recalibrated for specific rotation gates and transformations. This addresses gate errors
to achieve accurate quantum prediction results. In comparison, a QDF model [7] can be employed to improve success probabilities
in the HNT context. For example, while Table 1 lists the strengths and limitations for HNT and QDF, a QAI program can address HNT
limitations through the I/O model control process for a UQFCM. One QAI method would be classifying the ⟨𝑃 success ⟩’s of QDF and
HNT. Then, a hybrid of QDF and HNT ⟨𝔐 ( 𝑃 ) ⟩’s at decoding makes a strong prediction in the HNT (see Table 4 , Secs. 1.2 and 1.3). 

In [3 , 4] , a quantum algorithm was presented for QFTh simulation in the light-front formulation. The study demonstrated how
existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. For example, in [3] ,
an efficient Hamiltonian formulation of QFTh was proposed by using the framework of basis light-front quantization (BLFQ) for
solving QFTh problems. This required the calculation of hadronic spectra, mesons and their light-front properties. Fig. 8 shows a
fault-tolerant quantum computing model that simulates QFTh involving observations of energy emissions coming from particles in 
LHC experiments. 

In Fig. 9 , and its corresponding table results, such as fractional errors expressed as percentages in estimates of various observables
were calculated in the GS. The observables are pion mass squared 𝑚 

2 
𝜋
, mass radius squared ⟨𝑟 𝑚 ⟩2 and decay constant 𝑓 𝜋 . These were

obtained from 8192 samples per term on the IBM Vigo chip, with and without measurement error mitigation. Classical sampling
from the exact 𝑃 dist ribut e achieved values ( 0 , 0 . 9] for direct encoding, and less than 44% for compact encoding. The observables are
constant as physical units, otherwise are measured values. The constant terms are different between direct and compact encodings. 
Hence, direct and compact entries in the “no constant ” rows, correspond to different physical observables, and not to be compared.
For example, for 𝑚 

2 
𝜋
, the exact 𝑚 

2 
𝜌

is used for normalization, where 𝑚 

2 
𝜌

is the mass of the rho-meson squared as the second lowest
eigenvalue of the light-meson BLFQ. A similar study prior to [3 , 4 , 47] was conducted gaining minimally ⟨𝑃 success ⟩ > 1∕3 for specific
cases based on BLFQ. The summary of the model’s limitations and strengths is listed in Table 1 , id #5. 

In [22–24] , IBM-QE devices were used to code and simulate QFTh and QFTs in their proposed methods. The focus of these studies
was on simulating condensed matter, spin Hamiltonian, potential wells, quantum circuits, and thermodynamic system models. These 
IBM-QE devices are employed to compute and compare SF transformation models for QFCMs, such as [7–12] . A QDF example from
Section 1 is to implement a 𝜅-based SF to a QDF transformation from Eq. (2) in a quantum circuit. This is achieved by observing
multiple particle interactions and compute their level of entanglement within their QDF [7] . In [12] , potential barriers are involved
to perform a QFT compatible with an SF-to-QDF transformation, as discussed next. 

From [12 , 13] , Fig. 10 (a) shows a single-step quantum circuit implemented for two qubits in case of QFT and its inverse QFT 

− 1 using
[ 𝑈], rotation gates, and [ 𝐻] gates. The equivalent labelled blocks have quantum circuits and gates shown for each corresponding
image. Fig. 10 (b) shows the implementation for a three-qubit simulation which includes the evolution of the Hamiltonian tunneling
in a quantum multi-well between barriers. 
18 
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Fig. 9. Stepwise Hamiltonian plot based on fractional errors expressed as percentages in estimates of various observables calculated in the GS 

obtained. The results are reflected in the table above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of low fidelity over a number of steps are apparent for a free particle, as shown in Fig. 10 (a), which denotes more
uncertainty in predictions in case of trapped in a single well. This, however, compared to QDF from [7] , is predicted with ⟨𝑃 success ⟩ ≥
2∕3 , given by Eq. (4) , as a solution to such classical cases. Note that in [7] , the QDF circuit partially benefits from Figs. 2 and 10 design
to satisfy both QFT, its inverse QFT 

− 1 , and [12] , in its design and implementation of potential and kinetic energy operators. 
In [7 , 8] , a double-field computation (DFC) model, as a QF-LCA, simulates quantum observations on particle states and their

distribution as lens products. These products are delivered through quantum lenses over distance 𝑑 in a system, see Eq. (4) . The
implemented DFC algorithms make strong ST predictions in the system for both classical and quantum cases. The analyzed dataset
with validated measurement outcomes in Table 2 , predicted the system’s final state relative to its input state. This study satisfies the
conditions and solutions required for Eq. (1) , by projecting the expected ⟨𝔐 ( 𝑃 ) ⟩’s from Eqs. (3)–(5) . This required the inclusion of
[12] ’s simulation model, while improving its solution to simulate QFThs. This novel method is doubling the ST probability under a
QFT, by implementing the QFT as a 𝜅-based SF to a QDF transformation. 

Earlier QFCMs discussed for [3-6 , 12-18 , 22-28] , collectively satisfy Eqs. (1)–(5) , but not on doubling the values of the ST probability
space and its correlation to the system’s pending ST or PT. The combination of model strengths, e.g., implementing a maximum fidelity
strategy on performing a QDF transform with models [12 , 16] , can achieve a UQFCM with high  ’s in predicting strong ⟨𝔐 ( 𝑃 ) ⟩’s for
a system. This requires a merging of common measurement parameters that all QFCMs share, as presented in Eq. (4) and Section 1.1.

The QDF model develops a method to implement a QF-LCA as a DFC method for two QDF systems [7–9] . The systematic review
on the QF-LCA in simulating the two systems, is presented in [7 , 8] . The encoding and decoding layers of this model from Figs.
12 and 13 , principally obey Fig. 3 (a). The relationship between a quantum processor and registers on one side, and the classical
decoder at the post-observation side, are the same as Fig. 3 (a). However, the QDF model doubles the ST probability space by covering
all quantum-classical information of the system state from a 𝜅-based SF-to-QDF transformation, see Eqs. (2) and (4) . The classical
information is transmitted to the QDF from the SF using quantum gates. These gates are used to simulate energy operators in the QDF
circuit from Fig. 13 , similar to Fig. 10 . These operators act on QDF qubits [7, p. 18]. Consequently, the number of processing steps
is reduced between pairwise particle interactions and entanglement under a 𝜅-based QDF transformation, see Fig. 12 , Eqs. (2)–(4) .
This expected outcome shows a significant difference between QFCMs and the QDF that generates a consistent ⟨𝔐 ( 𝑃 ) ⟩’s in all cases
of particle sampling and interaction in the system, see Fig. 13 (b). The ⟨𝑃 success ⟩ correlates to ST probabilities of 2/3 and near values
of 100%, making the QDF model reliable in uncertainty and error estimates under decoherence. Therefore, this model is less prone to
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Fig. 10. Single-step quantum circuit performs a QFT and its inverse QFT –1 by implementing kinetic and potential energy operators using quantum 

gates. The theoretical and experimental results are shown in Fig. 11 . (a) implements a step-well potential for a two-qubit system (upper Fig. 11 re- 

sults). (b) is for a three-qubit system where the particle tunnels through barriers. The particle is confined in the well in a specific state, yet reaching 

great predictions of showing where it is situated after 10 steps (lower Fig. 11 results). 

Table 4 

Comparison of discussed models’ ranging from the least to the most certain models in predicting system states relative to their 

measurement fidelity  . Graphical Abstract gives a 3D representation of this graphical table. Each model is listed corresponding 

to their 𝑃 distribute and 𝑃 success . The substitution, elimination and suggestion of a QFCM occurs at the model control stage (id #12 

from Table 1 ) under the “decision layer ” for the user or machine to decide as an IDS decision step. The model control includes QAI 

classification of states by an IDS decision for a UQFCM decision (outcome). After model control, a UQFCM decision is reached. 

Otherwise, the model control steps need to reiterate based on user’s decision, given the IDS output from the previous step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

error correction upon entanglement measurement via EE measures. The classical compiler and interpreter, mostly deal with quantum 

tunneling and teleportation scenarios in QDF simulations based on EE from [7] , or see Eq. (4) . 
In summary, the QDF model presents measurements for predicting particle energy states. This model is used to determine an ST

contributing to a system’s PT on any scale, obtaining ST probabilities of 𝑃 ≥ 2∕3 . This is a significant statistical indicator of a thermal
event expected to occur. In this system, an interaction length-based scalar 𝜅, applied to a QF, transforms the field by a pairwise
particle interaction via a QDF projection, see Eq. (2) . The QDF model and its results on doubling the 𝑃 have been evaluated in [7 , 11] .

Graphical Table 4 , lists QFCMs as input, and their ⟨𝔐 ( 𝑃 ) ⟩’s summary as the output to compare. The expected output, given the
range of uncertainties in determining energy states based on a model’s energy operators, e.g., [7–12] , lists more certain QFCMs
following their input method. This is shown in the graphical abstract as an 8-step QFC algorithm that achieves a UQFCM. An IDS
classifies QFCM ⟨𝔐 ⟩’s (outputs) using QAI. This includes supportive QFCMs’ data from Table 1 delivered to the user by a QAI program
to make a decision. This is achieved by concurrent processing of models’ datasets relevant to a quantum experiment. As part of the
model control process, one QFCM is chosen or switched to another, so to achieve maximum fidelity. In worst cases, the choice is
a combination of QFCMs for the same range of fidelity as indicated in Table 4 , 5th column. Then, reliable predications of energy
states can be made by implementing the 8 QFC algorithm steps. Further decisions are made to reroute energy paths to achieve a
certain ⟨𝔐 ⟩ efficiently. This expected outcome is exemplified in Section 4 as future work currently developed and validated by [7 , 11]
results. 
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Fig. 11. Top-to-bottom) 𝑃 distribute results are for single, double, and multi-well potentials, respectively. The probability of locating the particle and 

tunneling point in a specific state, increases to a significant degree, compared to top and middle well-potential cases (heat maps). These measurements 

were conducted with high fidelity satisfying the expected measurement outcome. 

 

 

 

 

The UQFCM decision flow shows where model comparisons are made. QFCMs as input and their comparisons as output are
controlled at the IDS step to decide whether a UQFCM outcome can be achieved. The selected models by IDS are [3-5 , 7-14 , 17-
19 , 23 , 29-31 , 36 , 38 , 47-54 , 59 , 60] . The more its SMDB and encoders use classifiers from a QAI classification system, the more the
IDS identifies a hybrid of classical and QFCM at decoding to make a strong prediction. QAI classifiers from all compared models, if
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Fig. 12. QDF circuit components and I/O functions corresponding to Table 2 data; (a) Circuit I/O, initialization, encoding, decoding, addition and 

measurement layers as labelled and presented in [7] ; (b) plots as labelled represent the same outcomes as labelled in [7, Fig. 5]. For instance, (b)B 

results denote a quantum outcome having the swap gate implemented compared to (b)A as discussed in [7, p. 28], by reconfiguring the circuit 

in its full adder function (sub-circuit) from full_adder(1) to run two iterations as full_adder(2) . The optimized outcome is (b)C - F 

as discussed on the same page in [7] . Examples of such circuit configurations for a specific measurement outcome and objective result are listed 

in Table 1 ; (c) QDF circuit reconfigured with no SWAP gate satisfies a classical outcome compatible with the QDF circuit configuration in upper 

Fig. 13 . These results are represented under the two cases from Table 2 , and the graph from Fig. 13 (b). 

 
not suitable for a desired Hamiltonian, can then access open-source datasets to propose a QFCM added to the QFCM list for more
comparisons, see Section 1.2. A hybrid model can then lead to a UQFCM after simulating the model’s ⟨𝔐 ⟩. 

Future work with the graphical abstract and conclusions, answers the 5th review question on: 
- the possibility to achieve a UQFCM in making a strong prediction of a system state using QAI, and for the 6th review question 

to have: 
- a trained QFCM embedded in other simulators to simulate physics and make strong predictions. 
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Fig. 13. Upper figure a) is the QDF circuit design compatible with QFT and QFT − 1 design from Fig. 10 or its equivalent QDF circuit in Fig. 12 (a), 

showing a QDF transformation via scalar 𝜿 in the circuit, Eq. (2) . Here, the energy operators extend to include the magnetic state between pairwise 

spins of the spin Hamiltonian denoted by 𝑀 measured from the energy interval function Δ𝐸( 𝑀 ≥ 0) between a particle pair. The algorithm encodes 

( 𝜀 ) or decodes ( 𝔇 ) their quantum states as discussed in [7] . Lower figure a) The histograms show different scenarios on double-field sites and their 

complements. For example, if 𝑃 is 1∕3 , the complement is predicted with a 𝑃 of 2∕3 , appearing in state 10 as opposed to 01 in the qubit setup of 0 10 1 

and 0 01 1 in the circuit. This is where particles exchange quantum information (QI) within the QDF as simulated using IBM quantum computers. The 

entanglement between particle pairs is determined by measuring ( 𝔐 ), and its EE during a 𝜿-based SF-to-QDF transformation in this circuit. Bottom 

figure b) EE scaling graph of the QDF circuit is the left graph b) which illustrates the phase shift region of pairwise particle interactions. From 

their 𝑃 dist ribut e , values of 𝑃 > 2∕3 are predicted as classical information (states) from the particles’ QI.. This is denoted by the function converting 

the pairwise qubit state to decimal. For example, the constant trend with probability 𝑃 ≤ 1∕3 is for b (11) = 3 in decimal, and is the complement of 

b (01) = 1 and b (10) = 2 in all cases of 𝑛 ≥ 3 interacting particles ( right graph b ). Implementing the circuit with a SWAP gate vs. a no SWAP gate, 

projects a probability trend of 𝑃 ≥ 2∕3 . 
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Fig. 14. Selected QFCMs operating on particle samples. Left) on the energy input side 𝑬 in Ψ denotes an atom sample of a used Persian stamp 

(imperforated): Coat of arms (Lion & Sun with sword), black 1Chahi (currency unit at the time) with English numeral under the lion’s belly printed 

in 1876. Catalog value of a mint condition is worth 1K USD compared to forged types of 10 + USD, and a used genuine is est. 250 + USD [35] . 

Left-to-right) events from the DFC concept [8] obey Fig. 15 Hamiltonian model. It detects spins between sample’s input state and output state by 

measuring their QF’s correlation function of ⟨ΦΨ⟩. A three-field correlation ⟨ΦΨ2 ⟩ is measured between input-output paired particles of average 

position field ⟨Ψ2 ⟩, and a photon of average momentum field ⟨Φ⟩. This is distributed via superdense coding between the GS on a BEC scale, and ES of 

the sampled atom, paired with the photon from a light source (laser beam) in the QDF heat engine. Middle and bottom) The flow of events simulates 

the correlation measure and state classification by switching QFCM algorithms between sampled particle pairs within a doubled probability space 

from a 𝜿-based SF-to-QDF transformation, Eqs. (2)–(4) . The input-to-output particle samples and their states are classified according to Fig. 15 . The 

flow is a sample’s input of a GS and ES → {QDF + QFCM operations + QAI} → output sample. Entanglement between sample’s ES and GS regimes 

is then determined and classified. Right-to-left) Entanglement is determined between constructed samples e.g., forgery (whether on the input side 

or output side) and genuine. The greater their fidelity of states, the more identical to the input. If the input is forged, the output is as well, if not, it 

is either a newly-constructed one, altered, or genuine. Then, the 𝑬 in and 𝑬 out cycle reiterates. 

 

 

 

 

 

 

 

 

 

 

4. Future work 

This section explores some examples that can hypothetically employ QFCMs, for a UQFCM, from Table 4 . 

4.1. Measurement examples and algorithm 

From the measurement-based parameters of the reviewed models’ strengths and limitations in Tables 1 , 2 , and 4 , given their ⟨𝔐 ⟩’s
as ⟨𝔐 ( 𝑃 ) ⟩’s and ⟨𝔐 (  ) ⟩’s, the following method employs QFCMs with high ⟨𝔐 ⟩’s using an IDS. In this case, quantum tunneling and
qubit teleportation are exemplified for this choice to satisfy the ⟨𝔐 ⟩’s from e.g., [7-12 , 40 , 52] models. To propose a UQFCM based on
the IDS, a QFCM input and an expected output are evaluated as ⟨𝔐 ⟩’s with high  . Alternatively, a combination of QFCMs is made
to deliver a reliable and efficient outcome for predicting an experiment. 

In the case of qubit teleportation, a QAI algorithm is employed to determine suitable QFCMs in proposing a UQFCM. Quantum
AI algorithms employed by QFCMs, e.g., combined with the DFC model [7 , 8] , and quantum-classical hybrid models [42–44] , can
achieve high fidelities in classical and QF measurements on matter. For instance, consider fields involving security, monetary losses 
and antiquities of static (fixed) fields. A QDF of a DFC model involving solid matter fields, based on QFTh, can duplicate classical
static fields of e.g., a genuine postal stamp [34] , or a copy of a painting claiming to be the original from centuries ago. 

Fig. 14 shows a QFCM identifying a forged stamp from genuine. This is achieved by replicating the 2nd field of a QDF transformed
from a used stamp single-field 𝐅 , as { 𝐅 1 , … , 𝐅 𝑛 } on a genuine against a forged stamp (masked). The QDF signature replicates and
validates the exact material (atoms) used for the forged against the genuine (used, unused, or mint) stamps. This is by observing
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particle field entanglement from their QDF lens function ( lens distance and correlation function ) in a QDF heat engine [8] . This engine
performs a PT of particles sampled from the original material (input) compared to the forged or replicated (output). The output
must indicate one of these states: stamp is altered by removing the cancellation ink, or, unaltered by adding a mint one as a masked
sample output to compare and determine their QF’s level of entanglement. If a negative correlation is observed, the forged from the
original is determined. The closer the lens distance 𝑑, Eq. (4) , between the two samples [7, Eq. (9)], the closer to be the original to
their issued date and condition. The entanglement between the input and output samples is determined based on EE measure [7] ,
see Figs. 12 and 13 . In Fig. 14 , the cycle of qubit teleportation to/from its reverse protocol i.e., superdense coding as a QDF circuit,
is to satisfy an energy condition for a reversible thermodynamic model [7, pp. 11–13], [52 , 58] . This is to determine the entangled
state between the energy input and energy output side (see circuit code in [7] ). The spin Hamiltonian is shown in Fig. 15 for an
entangling Hamiltonian. Energy (state) differences are shown corresponding to temperature 𝑇 (in kelvins) in a 𝜅-based SF-to-QDF 
transformation, see Eq. (2) . 

To reconstruct or replicate particle pair samples, the correlation function between three fields ⟨ΦΨ2 ⟩ must be measured i.e., 
observing a double-field of a particle pair and its interacting photon field. This requires 2D to 𝑁-dimensional lattice sites reconfigured
for the sampled stamp image (a cliché), via BEC or BEC EPR traps, see Fig. 15 , or EE scaling from [7] . This is a costly construction
process to perform an entangling Hamiltonian between the CPT and QPT regimes in determining entanglement from other particle
states. However, once these traps are created, unlimited sampling, forging, identifying and classification of any sample can be made,
as a gainful strategy. For instance, balancing out the initial costs and benefit economically on correlation measure, reconstruction, 
and replication services, is a matter of investment towards information science, forensics, medicine, security, arts, etc. Correlation test 
results can then be input to a QAI program to classify and examine more samples about fabricated documents, signatures, banknotes,
reconstruction of destroyed evidence, DNA, etc. This is one example out of many future works that a QDF model as QF-LCA, combined
with other QFCMs relative to a UQFCM, can benefit users operating in a quantum environment. 

Gen-forge QFCM algorithm: compares forgery against genuine samples ± transformation 

Input: target correlation function between sampled particle fields as the 𝜅-based SF or QDF function 

Input ( external ): target sample’s macro features from known expert databases about forged and genuine samples 

Output: print correlation between particle samples on the quantum scale (smallest scale representing the classical sample or 

object). This shows the level of authenticity of each sample. 

START 

1. INPUT a QFTh model for a 𝜅-based SF or QDF transform as an option: Table 1 models or [7-12 , 17-19 , 36] . 

a. Input sample to read its structure via heat engine components (photonic probes and sensors) and storage access #Engine components are simulated as part 

of the software comparing collected/registered data through storage. 

b. Input ( external ) sample to read and compare for input sample’s macro features # Macro features are classical, exemplified in Fig. 16 to compare sample’s 

appearance based on original print cliché of A-D types 

c. Measure system events by targeting field function on sample particles. # This produces P’s event data on the sample’s particle state. 

d. IF data comparison and classification of QFCM is based on ⟨𝑃 dist ribut e ⟩ ≥ 2 3 , GOTO step 3 , 

e. ELSE Transform field(s) of sample particles via heat engine. 

2. Compare and classify 𝑃 ’s of sample particles: 

a. 𝑃 ’s between macro features and determine strong 𝑃 ’s as ⟨𝑃 success ⟩ ≥ 2 3 from ⟨𝑃 dist ribut e ⟩ ≥ 2 3 
b. 𝑃 ’s that are not strong 𝑃 ’s as ⟨𝑃 ′⟩ compared to step 2.a. , to determine degrees of authenticity based on ⟨𝑃 success ⟩ . 

3. PRINT OUT or store results, # This is stored and displayed as a chart, here as a ∗ .csv or ∗ .xls file format 

4. Process experiment results. 

a. IF sample genuine, GOTO step 6 , 

b. ELSE IF sample forged or transformed 

i. Decide YES , report forged or transformed, GOTO step 6 . 

ii. Decide NO , transform sample to transform forged to genuine, GOTO step 5 . 

5. RUN QAI/AI program: # This step executes a classical and quantum hybrid AI program to transform the sample 

a. INPUT probability and fidelity results on expected measurements relative to YES or NO decision for/against achieving accurate outcomes of steps 4.a 

and 4.b . 

b. PRINT OUT distance-based classification of results from specific QFCMs [7–11] employing methods like [30] . Reiterate step 1 with step1.e enabled. 

6. Publish correlation function results between samples as a datasets or report as unaltered or transformed sample(s). 

# ============================================================================== 
# The following two steps are optional to code for optimization purposes in targeting strong correlation results 

# ============================================================================== 
7. Validate results or test further to conclude a successful experiment as a UQFCM on this sample. 

8. Decide algorithm’s candidacy for a UQFCM, 

a. IF YES, PRINT OUT algorithm meets a UQFCM expected measurement outcomes and fidelity 

b. ELSE revisit steps 1 to 7 , revise code for step 8.a . 

HALT 

The flow of events in Fig. 16 is simulated by a QFCM algorithm that proposes the sampling, measuring, reconstruction and
replication of I/O data from sampled particles in a heat engine, see Fig. 14 . The algorithm is written in a pseudocode form with
supplementary comments presented after a # notation, like in Python, or QASM code written for QInspire or IBM-QE simulators
[33 , 50] . The data must represent physical values (particle type, energy, momentum, position, density, frequency, etc.), as well as
probability values for a classical or quantum state, GS, ES, ST, PT, etc. The analysis and classification are made after the input data as
internal (from the heat engine) or external (from a database of forged and genuine samples [34 , 35] ). Classifying these data through
code [7] , requires the sampling of the physical state of sampled particles, for or against genuine samples (particles) taken from the
stamps under observation in a lab. Sensors or probes of photons (aka photonic probes [7–11] ) are used, as shown in Figs. 14–16 , to
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Fig. 15. Spin Hamiltonian revisited from [7 , 8] as a DFC algorithm; (a, b) correspond to thermodynamic events in Fig. 14 ; (a) Spin-ordering 

simulation for the Ising model, as temperature increases (top-to-bottom) magnetization 𝑀 changes to a zero net value. The correlation length 

increases when temperature is decreased (ordered spins), and diverges at critical temperature 𝑇 c . If the external field is absent, there is still 𝑀 = 0 ; 
(b) The cyclic production of BECs via atom-light interactions with an expected spin order in (a) , is to create BEC EPR pairs in an entangling 

Hamiltonian, scaling 𝐻 between ES and GS regimes. A pair’s space in probability doubles in a correlated QDF with photon field by their function ⟨ΦΨ2 ⟩, as opposed to a disordered non-BEC space. Teleportation is performed after doubling, as the classical states are decoded by sharing the EPR 

state via superdense coding [7] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

store, access, read/write data. Data writing is in document form for reporting results of genuine vs. forgery types. In Fig. 16 , this is
presented as a spreadsheet chart from step 3 of the algorithm. On the other hand, data writing and sample transformation can be
explicitly instructed by the model or user’s choice based on evaluating ⟨𝑃 distribute ⟩ between steps 2 and 5. This choice, after decision
step 4, can result into methods delivering ink or any other required material from an atomic force microscopic (AFM) tip for the
stamp [36, pp. 2–5]. This includes the stamp’s gum, fabric, and its structural reconstruction. The AFM tip and inkjet printing, or other
micro-to-nano printing methods, including their advantages and disadvantages, are discussed in [36] . The tip size is attributed to
the micro-/nano-scale printing technology. The inks used can consist of small molecules, polymers, DNA, proteins, nanoparticles and 
peptides, directly transferred to the substrate with accuracy on a sub-nanometer scale [36] . This includes printing micro-/nano-scale 
sensors and circuits. 

Fig. 16 shows a used rare (genuine) stamp for comparison to authenticate the unused rare stamp (its upper left) based on features
and Type D Cliché description in re-engraving the 1 Toman issue in 1878. Same blue paper and violet print, requires a good match
with A-D features, mainly A, B and D, which fit for the unused stamp in question. If the stamp’s back is also reconstructed, as shown by
3D printing, after authentication (?), step 2.b of Gen-forge, it will be one of the rarest unused stamps recorded in history in excellent
condition (7 unused copies are known [34] ). Can this be one of the lost or hidden ones added, or, a good forgery? 

For the rare sample determination, data results at the ‘register & print’ step 3, mixes the sampled example measurement results
based on feature comparisons database from step 1 as ‘read sample’. The assumption is 100% forged, yet, with the possibility of
transformed/altered to be ⟨𝑃 success ⟩ ≥ 2∕3 genuine. This is tested by employing predictive transformation models ( Fig. 14 ) with strong
prediction outcomes, e.g., QDF and QFT from Table 1 . The complement of the output, is the assumption for the genuine type as the
input, which is 

Input ( ⟨𝑃 ′⟩) = 1 − 2∕3 = 1∕3 for 𝑃 ( gen ) , 

and the difference, or Δ, is 

Output ( Δ𝑃 ) = [1 for 𝑃 ( forg ) − 1∕3 for 𝑃 ( gen )] = 2∕3 transformed, genuine, or mixed, 

given the sum of sample tests run by the selected QFCMs. Once classified and printed as a report, at step 5, the QAI algorithm weighs
the data for either an SF or QDF transformation from Eq. (2) . This is to determine whether reconstructing the damaged parts are
needed, or transform the sample from forged to genuine, or conduct further detection as part of the experiment. Finally, a report is
printed and the program ends (HALT). 

After discerning the forged from genuine stamp(s), a physical reconstruction or replication to improve the value of a damaged
stamp/gum to a mint or a duplicate with a high USD value, a 3D printer can be used, Fig. 16 . Although this is forging with perfection,
the printing process can be useful in reconstructing damaged or lost data in science and industry, as discussed earlier. 

This leads to whether the algorithm can be a good choice to represent a UQFCM, given the facts of its future scope to improve
QFCM limitations and strengths. 

Among QFCMs from Tables 1 and 4 , AQO [48] and AQOpt [51 , 52] , can be explored to employ and adapt the Gen-forge algorithm
to satisfy objectives 3 and 4 from Section 1.1. For example, consider using photons in the heat engine in a disordered state over
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Fig. 16. Further replication uses a micro-/nano-scale printer [36] to rebuild and replicate a forged against a genuine stamp. This stamp of 1 

Toman ( = 200 Chahis = 200 stamps from Fig. 14 ), as the highest denomination at the time, printed on blue paper with reddish bronze or violet 

print of the lion. If genuine, is worth around 80K USD according to the 2020 catalog value [34] . Since there is barely 7 of the unused copies 

(with damaged gum) recorded, a mint condition can be very few. This is the author’s (P. B. A.) own stamp purchased on e-Bay auction, given 

the knowledge that it could be genuine, since it has a history of being inherited from a Royal British officer who served in Persia in 1878, to its 

seller. To certify its authenticity, the author and expert of [34] can evaluate against an identical type or genuine. This evaluation is based on paper 

(blue), appearance (as shown for this type printed from Type D cliché), and errors in the original print which was printed from the original cliché. 

Regardless of the outcome, Gen-forge algorithm steps are executed to compare between the outside expert opinion, Gen-forge user’s opinion, and 

QAI output. Reconstruction can be made to make a perfect forged, or genuine, or alter it by transforming the forged type to a genuine type. This 

is by feeding the information and material needed to the 3D printer on nano (or macro) scale, as part of the heat engine. After printing, for more 

reconstruction, replication and comparisons, Fig. 14 can be revisited by restarting the Gen-forge algorithm. 
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a communication channel between the input and output particles in Fig. 14 . The AQOpt method is during the sampling process of
pairwise particles between the engine’s output side as a result of an SF, QFT, or QDF transformation, and the engine’s input side. The
input side has photons emitting from the light source onto the pairwise particle samples. The method to measure EE in this case, is
shuffling the photons and preserve information between steps 1.d and 3, while transformation occurs at step 1.e. This is assuming the
user or QAI program have decided to transform the sample at steps 4 and 5. Further analysis and validation between the selection of
such models, according to step 1, and Table 4 , can be made according to steps 6–8 of the Gen-forge algorithm. 

The following section summarizes the mapping of Gen-forge’s steps 6–8 results to other QFCM candidates. This produces ( ± )
strong correlation results for a UQFCM. Compatibly, the results meet step 8 of the graphical abstract, so as the other Gen-forge’s steps
on a smaller scale for achieving a UQFCM. 

4.2. Future scope 

From Figs. 14–16 , a QFCM algorithm was proposed as a Gen-forge simulator, where similar algorithms can be coded obeying its
state decision process. These algorithms need to conform to the steps presented in the graphical abstract for a UQFCM, relative to
Table 1 and 4 model control, processes, datasets and expected measurement outcomes. The scope of the heat engine is to physically
sample, measure, reconstruct, and replicate I/O data. However, this simulator should project results based on the data feed from
online past/real-time datasets published by actual labs. In the hypothetical example, the simulator’s objective was to reconstruct 
particle paths of a damaged postal stamp, compare it, and examine its authenticity. This involved a QAI algorithm to distinguish
genuine samples from fabricated. Other examples are, examining documents under controlled conditions at a forensics lab, so to
predict events related to a crime scene after data reconstruction. The data must represent physical values as particle type, energy,
momentum, position, density, frequency, etc., and probability values for classical or quantum state transitions, GS, ES, PT, etc. 

DNA sampling, printing parts of the DNA code as strands of molecules to reprogram against e.g., cancer cells, or a virus, can be
achieved when high measurement fidelity and expected outcomes are made. This is to find the best model candidate based on an
algorithm step that can meet the UQFCM’s expected measurement standard against a QFCM limitation, as specified in Gen-forge’s 
steps 6–8. 

QFCMs’ future scope is focused on simulating systems based on the review of QFCMs that predict system states reliably. Among
which are to reliably predict HEP events in experiments conducted at CERN, where LHC datasets can be used to make predictive
advances of LHC data events. The main challenge is to address each model’s limitations through monitoring its ⟨𝔐 ⟩’s, relative to
events’ dataset input, as identified in Table 1 . For publishing data-driven prediction results, a UQFCM output has to represent a QFT
describing a system event. For example, in condensed matter physics, a combustion or refrigeration event is predicted, compared to
jet engines at industrial scales impacting the environment. A constant requirement for a QFCM as a UQFCM, is to perform a high  in
predictions for ⟨𝔐 ⟩’s. This is needed for predicting events in experiments, as their datasets expand and updated. The other challenge
is reconfiguring code for specific quantum circuits when a QFCM code is executed on e.g., an IBM-QE device, compared to QX
simulators running on a classical supercomputer. Such challenges are addressed by simulating events in a hybrid quantum-classical 
simulator. The application of this model was discussed, hypothetically, to make strong predictions of motion and STs real-time, e.g.,
for human-assisted self-driving vehicles. In this model, the external QF of a body on road is associated to the internal QF of the vehicle
to measure their particle field entanglement based on an EE readout. Reacting and choosing the right route with a high 𝑃 success is by
doubling the paired QFs probability space by a QDF model. The classical system then reliably actuates the decision command after
prediction by a QAI program. As a result, a UQFCM with strong predictions of STs, simulates energy paths and then reroute them to
choose the most efficient path. For example, in a jet engine, make certain particles not participating in a thermal event, to participate,
so to increase efficiency. This leads to a UQFCM with a strong system state prediction, in order to achieve a desired Hamiltonian. 

5. Conclusion 

Fundamental questions about simulating the observable universe on classical and quantum scales were addressed in this review. 
Among which was evaluating quantum field (QF) computation models (QFCMs) on quantum computers to simulate a physical system. 
The selection of a QFCM was based on comparing QFCMs’ strengths and limitations in measurement parameters that measure a system
state. This includes QFCMs expected measurement outcomes, ⟨𝔐 ⟩’s, to predict system events based on the expected success probability⟨𝑃 success ⟩ over state transitions as system events. This probability is yielded from the probability distribution of particle states in the
system, 𝑃 dist ribut e . The more consistent a QFCM in simulating the ⟨𝔐 ⟩’s for an experiment, the greater the model’s measurement
fidelity  > 0 . QFCMs were selected based on the  of states, their error rate reduction, and 𝑃 success . QFCMs, such as LQFT, HNT,
CFT, QFT, BLFQ, 1DG of QFTh, AQO, AQOpt, QDF, for HEP and BEC, were compared in their measurement strengths and limitations.
From all listed models, their  ’s were averaged to ⟨𝔐 (  ) ⟩ ≥ 7∕5 , denoting 7 QFCMs are optimal compared to 5 less optimal QFCMs
in predicting events consistently with success. Measurement limitations were addressed by combining measurement parameters to 
satisfy maximum fidelity, max  → ∞, for a select set of QFCMs. Measurement data on quantum states are decoded as classical states.
Prediction results come from sharing 𝑃 success ’s in classifying states. This is by focusing the 𝑃 dist ribut e of states from those QFCMs with
max  , such as QDF, compared to stochastic types observed within a set of quantum states, as in the LQFT model. This proposed the
development of a universal QFCM (UQFCM) to simulate systems with strong prediction results. 

Model limitations can be controlled by maximizing model strengths through a model control process. For example, a UQFCM 

reduces the error rate or uncertainty of a system state measure, given ⟨𝑃 success ⟩ ≥ 2∕3 of a selected QDF model as a strong predictor
of the system’s final state. This priority is given by eliminating QFCMs with low fidelity  → 0 in measurement data that are input
28 
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by an intelligent decision simulator (IDS). Examples of low fidelity would be in quantum tunneling cases where data loss is expected
for single and double potential wells under a QF transformation. However, the higher the number of potential wells, the greater the⟨𝑃 success ⟩ and  between energy states entangled to preserve low information loss. With this quantum information (qubits), a strong 
prediction can be made on where the particle will appear in a specific site. The goal was to keep those QFCMs with high  ’s by the
IDS selection. When a certain quantum condition arises, regardless of missing parameters, the selected QFCM must still achieve strong
predictions. As part of the IDS, all QFCMs remain to input for a quantum AI (QAI) algorithm. A QAI program classifies, decides, and
suggests a QFCM to make a strong prediction of an event for the system. 

QFCMs’ future scope is focused on simulating systems and predict their events reliably. One major challenge is to address each
model’s limitations through monitoring its ⟨𝔐 ⟩’s relative to events dataset input. For publishing data-driven prediction results, a 
UQFCM output has to represent a QFT describing a system event. By addressing model limitations on ⟨𝑃 success ⟩ and ⟨𝔐 (  ) ⟩ results, 
a high  in model predictions becomes a constant requirement to perform as a UQFCM for predicting events. The other challenge is
reconfiguring code for quantum circuits when a QFCM code is executed on quantum devices compared to classical. Such challenges
were addressed by simulating in a hybrid quantum-classical simulator. Among the presented examples, the application of this model
was discussed for kinetic and potential systems/bodies. In this model, the external QF of a system is associated to the internal QF of
the system to measure their particle field entanglement level. To choose the correct efficient route with a high 𝑃 success , is by doubling
the paired QFs probability space via a QDF model. The classical system, then reliably actuates the decision command after prediction
by a QAI program. As a result, a UQFCM makes a strong prediction by simulating energy paths, rerouting them to choose the shortest,
most efficient and correct path. The reconstruction of particle paths of a damaged evidence e.g., DNA, collectables, ID’s, etc., was also
discussed involving QAI to discern original samples from fabricated as other QFCM’s viable products to operate and deliver service
to its users. 

Finally, a UQFCM gives a more focused method of measuring physical systems by presenting a unified solution to their prediction
problems. The study and development of technologies from the physical world on an industrial scale can be cost effective when a
UQFCM is achieved, as it improves system design, state control and performance of those technologies. 
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