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The rapid expansion of new sequencing technologies has enabled large-scale functional
exploration of numerous microbial ecosystems, by establishing catalogs of functional
genes and by comparing their prevalence in various microbiota. However, sequence
similarity does not necessarily reflect functional conservation, since just a few
modifications in a gene sequence can have a strong impact on the activity and the
specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some
microorganisms harbor certain identified functions yet do not have the expected related
genes in their genome. Finally, there are simply too many protein families whose function
is not yet known, even though they are highly abundant in certain ecosystems. In this
context, the discovery of new protein functions, using either sequence-based or activity-
based approaches, is of crucial importance for the discovery of new enzymes and for
improving the quality of annotation in public databases. This paper lists and explores the
latest advances in this field, along with the challenges to be addressed, particularly where
microfluidic technologies are concerned.

Keywords:metagenomics, discovery of new functions, proteins, high throughput screening,microbial ecosystems,
microbial ecology, biotechnologies

Introduction

The implications of the discovery of new protein functions are numerous, from both cognitive and
applicative points of view. Firstly, it improves understanding of how microbial ecosystems function,
in order to identify biomarkers and levers that will help optimize the services rendered, regardless of
the field of application. Next, the discovery of new enzymes and transporters enables expansion of
the catalog of functions available for metabolic pathway engineering and synthetic biology. Finally,
the identification and characterization of new protein families, whose functions, three-dimensional
structure and catalytic mechanism have never been described, furthers understanding of the protein
structure/function relationship. This is an essential prerequisite if we are to draw full benefit from
these proteins, both for medical applications (for example, designing specific inhibitors) and for
relevant integration into biotechnological processes.

Many reviews have been published on functional metagenomics these last 10 years. Many of them
focus on the strategies of library creation and on bio-informatic developments (Di Bella et al., 2013;
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Ladoukakis et al., 2014), while others describe the various
approaches set up to discover novel targets [like therapeutic
molecules (Culligan et al., 2014)] for a specific application.
In particular several review papers have been written on the
numerous activity-based metagenomics studies carried out to
find new enzymes for biotechnological applications, without
necessarily finding new functions or new protein families (Ferrer
et al., 2009; Steele et al., 2009). The present review focuses on all
the functional metagenomics approaches, sequence- or activity-
based, allowing the discovery of new functions and families from
the uncultured fraction of microbial ecosystems, and makes a
recent overview on the advances of microfluidics for ultra-fast
microbial screening of metagenomes.

Sampling Strategies

The literature describes a wide variety of microbial environments
sampled in the search for new enzymes. A large number of
studies look at ecosystems with high taxonomic and functional
diversity, such as soils or natural aquatic environments that are
either undisturbed or exposed to various pollutants (Gilbert et al.,
2008; Brennerova et al., 2009; Zanaroli et al., 2010). Extreme
environments enable the discovery of enzymes that are naturally
adapted to the constraints of certain industrial processes, such as
glycoside hydrolases and halotolerant esterases (Ferrer et al., 2005;
LeCleir et al., 2007), thermostable lipases (Tirawongsaroj et al.,
2008), or even psychrophilic DNA-polymerases (Simon et al.,
2009). Other microbial ecosystems, such as anaerobic digesters
including both human and/or animal intestinal microbiota
and industrial remediation reactors, are naturally specialized
in metabolizing certain substrates. These are ideal targets for
research into particular functions, such as the degrading activity
of lignocellulosic plant biomass (Warnecke et al., 2007; Tasse et al.,
2010; Hess et al., 2011; Bastien et al., 2013) or dioxygenases for the
degradation of aromatic compounds (Suenaga et al., 2007).

Some studies refer to enrichment steps that occur before
sampling, with the aim of increasing the relative abundance of
micro-organisms that have the target function. This enrichment
can be done by modifying the physical and chemical conditions
of the natural environment (van Elsas et al., 2008) or by
incorporating the substrate to be metabolized in vivo (Hess
et al., 2011) or in vitro, in reactors (DeAngelis et al., 2010)
or mesocosms (Jacquiod et al., 2013). Through stable isotopic
probing and cloning of the DNA of micro-organisms able to
metabolize a specifically labeled substrate for the creation of
metagenome libraries, it is possible to increase the frequency
of positive clones by several orders of magnitude (Chen
and Murrell, 2010). These approaches require functional and
taxonomic controls at the different stages of enrichment, which
are often sequential, to prevent the proliferation of populations
dependent on the activity of the populations preferred at the
outset. These kinds of checks are difficult to do in vivo,
where there would actually be an increased risk of selecting
populations able to metabolize only the degradation products
of the initial substrate, to the detriment of those able to attack
the more resistant original substrate with its more complex
structure.

Functional Screening: New Challenges for
the Discovery of Functions

Two complementary approaches can be used to discover new
functions and protein families withinmicrobial communities. The
first involves the analysis of nucleotide, ribonucleotide or protein
sequences, and the other the direct screening of functions before
sequencing (Figure 1).

The Sequence, Marker of Originality
There have been a number of large-scale random metagenome
sequencing projects (Yooseph et al., 2007; Vogel et al., 2009;
Gilbert et al., 2010; Qin et al., 2010; Hess et al., 2011) over
the past few years, resulting in catalogs listing millions of
genes from different ecosystems, the majority of which are
recorded in the GOLD1 (RRID:nif-0000-02918), MG-RAST2

(RRID:OMICS_01456) and EMBL-EBI3 (RRID:nlx_72386)
metagenomics databases. At the same time, the obstacles inherent
to metatranscriptomic sampling (fragility of mRNA, difficulty
with extraction from natural environments, separation of other
types of RNA) have been removed, opening a window into
the functional dynamics of ecosystems according to biotic or
abiotic constraints (Saleh-Lakha et al., 2005; Warnecke and Hess,
2009; Schmieder et al., 2012). Metatranscriptomes sequencing
has thus enabled the identification of new gene families, such
as those found in microbial communities (prokaryotes and/or
eukaryotes) expressed specifically in response to variations in the
environment (Bailly et al., 2007; Frias-Lopez et al., 2008; Gilbert
et al., 2008) and new enzyme sequences belonging to known
carbohydrate active enzymes families (Poretsky et al., 2005; Tartar
et al., 2009; Damon et al., 2012).

Regardless of the origin of the sequences (DNA or cDNA, with
orwithout prior cloning in an expression host), the advancesmade
with automatic annotation, most notably thanks to the IMG-M
(RRID:nif-0000-03010) and MG-RAST (RRID:OMICS_01456)
servers (Markowitz et al., 2007; Meyer et al., 2008), now make
it possible to quantify and compare the abundance of the main
functional families in the target ecosystems (Thomas et al.,
2012), identified through comparison of sequences with the
general functional databases: KEGG (RRID:nif-0000-21234)
(Kanehisa and Goto, 2000), eggNOG (RRID:nif-0000-02789)
(Muller et al., 2010), and COG/KOG (RRID:nif-0000-
21313) (Tatusov et al., 2003). They also enable research into
specific protein families, thanks to motif detection using Pfam
(RRID:nlx_72111) (Finn et al., 2010), TIGRFAM (RRID:nif-
0000-03560) (Selengut et al., 2007), CDD (RRID:nif-0000-02647)
(Marchler-Bauer et al., 2009), Prosite (RRID:nif-0000-03351)
(Sigrist et al., 2010), and HMM model construction (Hidden
Markov Models; Söding, 2005). Other servers can be used to
interrogate databases specialized in specific enzymatic families
(Table 1).

Finally, the performance of methods used to assemble
next generation sequencing reads is set to open up access
to a plethora of complete genes to feed expert databases,
1http://www.genomesonline.org/cgi-bin/GOLD/index
2http://metagenomics.anl.gov/
3http://www.ebi.ac.uk/metagenomics
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FIGURE 1 | Strategies for the functional exploration of metagenomes, metatranscriptomes and metaproteomics to discover new functions and
protein families.

which currently only contain a tiny percentage of genes from
uncultivated organisms—less than 1% for the CAZy database
(RRID:OMICS_01677), for example—while the majority of
metagenomic studies published target ecosystems with a high

number of plant polysaccharide degradation activities by
carbohydrate active enzymes (André et al., 2014).

Even based on a large majority of truncated genes,
metagenomes and metatranscriptomes functional annotation
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TABLE 1 | Examples of databases specialized in enzymatic functions of
biotechnological interest.

Databases Enzymes References

MetaBioME Enzymes of industrial interest Sharma et al. (2010)

CAZy
(RRID:OMICS_01677)

carbohydrate active enzymes Cantarel et al. (2012)
Auxiliary redox enzymes for
lignocellulose degradation

Levasseur et al. (2013)

CAT
(RRID:OMICS_01676)

carbohydrate active enzymes Park et al. (2010)

LccED Laccases Sirim et al. (2011)

LED
(RRID:nif-0000-03084)

Lipases Pleiss et al. (2000)

MEROPS
(RRID:nif-0000-03112)

Proteases Rawlings et al. (2012)

ThYme Thioesterases Cantu et al. (2011)

enables in silico estimations of the functional diversity of the
ecosystem and identification of the most original sequences
within a known protein family. It is then possible to use PCR
(Polymerase Chain Reaction) to capture those sequences
specifically, and test their function experimentally to assess
their applicative value. In this way, the sequencing of the rumen
metagenome (268 Gb) enabled identification of 27,755 coding
genes for carbohydrate active enzymes, and isolation of 51 active
enzymes belonging to known families specifically involved in
lignocellulose degradation (Hess et al., 2011).

PCR, and more generally DNA/DNA or DNA/cDNA
hybridization, also make it possible to directly capture coding
genes for protein families that are abundant and/or expressed in
the target ecosystem, but with no need for a priori large-scale
sequencing. This strategy requires the conception of nucleic
acid probes or PCR primers using consensus sequences specific
to known protein families. There are plenty of examples of the
discovery of enzymes in metagenomes using these approaches,
for instance bacterial laccases (Ausec et al., 2011), dioxygenases
(Zaprasis et al., 2009), nitrites reductases (Bartossek et al., 2010),
hydrogenases (Schmidt et al., 2010), hydrazine oxidoreductases
(Li et al., 2010), or chitinases (Hjort et al., 2010) from various
ecosystems. The Gene-Targeted-metagenomics approach
(Iwai et al., 2009) combines PCR screening and amplicon
pyrosequencing to generate primers in an iterative manner and
increase the structural diversity of the target protein families, for
example the dioxygenases from the microbiota of contaminated
soil. Elsewhere, the use of high-density functional microarrays
considerably multiplies the number of probes and is therefore
a low-cost way of obtaining a snapshot of the abundance and
diversity of sequences within specific protein families and even,
where the DNA or cDNA has been cloned (He et al., 2010;
Weckx et al., 2010), directly capturing targets of interest while
rationalizing sequencing. Using a similar strategy, the solution
hybrid selection method enables the selection of fragments
of coding DNA for specific enzymatic families using 31-mers
capture probes. Applied to the capture of cDNA, this method
provides access to entire genes which can be then cloned and
their activity tested (Bragalini et al., 2014). Solution hybrid
selection can therefore be used to explore the taxonomic and
functional diversity of all protein families. More especially, this

approach opens the way for the selection and characterization
of families that are highly represented in a microbiome but
whose function remains unknown, in order to further the
understanding of ecosystemic functions and discover novel
biocatalysts.

Metaproteomics has recently proved its worth in identifying
new protein families and/or functions. Paired with genomic,
metagenomic andmetatranscriptomic data (Erickson et al., 2012),
it provides access to excellent biomarkers of the functional state
of the ecosystem. Recent developments, such as high-throughput
electrospray ionization paired with mass spectrometry, enable
full metaproteome analysis after separation of proteins by
liquid chromatography. It is thus possible to highlight hundreds
of proteins with no associated function and new enzyme
families playing a key functional role in the ecosystem
(Ram et al., 2005).

This latter example illustrates the need for research and/or
experimental proof of function for proteins where the function
remains unknown (products of orphan genes or, on the contrary,
genes highly prevalent in the microbial realm but that have
never been characterized) or poorly annotated. In fact, annotation
errors, which are especially common for multi-modular proteins
such as carbohydrate active enzymes, are spread at an increasing
rate as a result of the explosion in the number of functional
genomics and meta-genomic, -transcriptomic and -proteomic
projects. New annotation strategies, most notably based on the
prediction of the three-dimensional structure of proteins, are
also worth exploring (Uchiyama and Miyazaki, 2009). However,
at the present time, it is very difficult to predict the specificity
of substrate and the mechanism of action (and therefore the
function of the protein) on the basis of sequence or even structure,
especially where there is no homologue characterized from a
structural and functional point of view. Functional screening can
address this challenge.

Activity Screening: Speeding up the Discovery of
Biotechnology Tools
There are three prerequisites for this approach: (i) the cloning
of DNA or cDNA in an expression vector for the creation of,
respectively, metagenomic or metatranscriptomic libraries, (ii)
heterologous expression of cloned genes in a microbial host, iii)
the conception of efficient phenotypic screens to isolate the clones
of interest that produce the target activity, also referred to as
“hits.”

Using this approach, the functions of a protein can be accessed
without any prior information on its sequence. It is therefore
the only way of identifying novel protein families that have
known functions or previously unseen functions (as long as
an adequate screen can be developed). Finally, it helps to
rationalize sequencing efforts and focus them only on the hits:
for example, those that are of biotechnological interest. The
expression potential of the selected heterologous host, the size of
the DNA inserts and the type of vectors all determine the success
of functional screening. Short fragments of metagenomic DNA
(smaller than 15 kb, and most often between 2 and 5 kb), or
cDNA for the metatranscriptomic libraries, cloned in plasmids
under the influence of a strong expression promoter, enable the
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overexpression of a single protein, and the easy recovery and
sequencing of the hits’ DNA (Uchiyama and Miyazaki, 2009). On
the other hand, fragments of bacterialDNAmeasuring between 15
and 40 kb, 25 and 45 kb or even 100 and 200 kb, cloned respectively
in cosmids, fosmids or bacterial artificial chromosomes, can be
used to explore a functional diversity of several Gb per library
and, above all, provide access to operon-type multigene clusters,
coding for complete catabolic or anabolic pathways This is of
major interest for the discovery of cocktails of synergistic activities
that degrade complex substrates such as plant cell walls for
biorefineries. This strategy also ensures high reliability for the
taxonomic annotation of inserts, and can even be used to identify
the mobile elements responsible for the plasticity of the bacterial
metagenome, mediated by horizontal gene transfers (Tasse et al.,
2010). However, it requires sensitive activity screens, since the
target genes are only weakly expressed, controlled by their own
native promoters.

Escherichia coli, whose transformation efficiency is
exceptionally high, even for fosmids or bacterial artificial
chromosomes, remains the host of choice in the immense
majority of studies published. The first exhaustive functional
screening study of a fosmid library revealed that E. coli can
be used to express genes from bacteria that are very different
from a taxonomical point of view, including a large number of
Bacteroidetes and Gram-positive bacteria (Tasse et al., 2010),
contrary to what had been predicted by in silico detection
of expression signals compatible with E. coli (Gabor et al.,
2004). However, the value of developing shuttle vectors to
screen metagenomic libraries in hosts with different expression
and secretion potentials, for example Bacillus, Sphingomonas,
Streptomyces,Thermus, or the α-, β- and γ−proteobacteria (Taupp
et al., 2011; Ekkers et al., 2012) must not be underestimated,
if we are to unlock the functional potential of varied taxons
and increase the sensitivity of screens. Finally, it is still very
difficult to get access to the uncultivated fraction of eukaryotic
microorganisms, due to the lack of screening hosts with sufficient
transformation efficiency for the creation of large clone libraries
(and thus the exploration of a vast array of sequences) and
compatible with the post-translational modifications required to
obtain functional recombinant proteins from eukaryotes. Thus,
at the present time, only a few studies have been published on the
enzyme activity-based screening of metatranscriptomic libraries
(making it possible to do away with introns) of eukaryotes from
soil, rumen and the gut of the termite (Bailly et al., 2007; Findley
et al., 2011, Sethi et al., 2013).

Regardless of the type of library screened, the functional
exploration of hundreds of thousands of clones is required,
whereas the hit rate rarely exceeds 6‰ (Duan et al., 2009; Bastien
et al., 2013). This requires very high throughput primary screens,
in a solid medium before or after the automated organization
of libraries in 96- or 384-well micro-plate format, in a liquid
medium after enzymatic cell lysis and/or thawing and freezing
(Bao et al., 2011), or using UV-inducible auto-lytic vectors (Li
et al., 2007). This stage is very often followed by medium or
low throughput characterization of the properties of the hits
obtained, particularly to assess their biotechnological interest
(Tasse et al., 2010).

Two generic strategies, used at throughputs exceeding 400,000
tests per week, have been and continue to be applied widely.
Positive selection on amedium containing, for example, substrates
to be metabolized as the sole source of carbon, can be used to
isolate enzymes (Henne et al., 1999), complete catabolic pathways
(Cecchini et al., 2013), or membrane transporters (Majerník
et al., 2001). This approach also helps easily identify antibiotic
resistant genes (Diaz-Torres et al., 2006). The use of chromogenic
(Beloqui et al., 2010; Bastien et al., 2013; Nyyssönen et al., 2013),
fluorescent (LeCleir et al., 2007), or opalescent substrates or
reagents, such as insoluble polymers or proteins (Mayumi et al.,
2008; Waschkowitz et al., 2009), or simply the observation of an
original clone phenotype, has already enabled the isolation of
several 100 catabolic enzymes, like the numerous hydrolases of
very varied taxonomic origin (Simon and Daniel, 2009), some
of which were coded by genes that are very abundant in the
target ecosystem (Jones et al., 2008; Gloux et al., 2011), but also,
although much less frequently, new oxidoreductases (Knietsch
et al., 2003). Novel enzymes (laccases, esterases and oxygenases
in particular) from microbial communities of very diverse
origins (soil, water, activated sludge, digestive tracts) have been
highlighted for their capacity to degrade pollutants such as nitriles
(Robertson and Steer, 2004), lindane (Boubakri et al., 2006),
styrene (Van Hellemond et al., 2007), naphthalene (Ono et al.,
2007), aliphatic and aromatic carbohydrates (Uchiyama et al.,
2004; Brennerova et al., 2009; Lu et al., 2012), organophosphorus
(Kambiranda et al., 2009; Math et al., 2010), or plastic materials
(Mayumi et al., 2008).

The discovery of proteins involved in prokaryote-eukaryote
interactions (Lakhdari et al., 2010) or anabolic pathways is
rarer, since it often requires the development of complex screens
and lower throughputs. Nonetheless, a few examples of simple
screens, based on the aptitude of metagenomic clones to inhibit
the growth of a strain by producing antibacterial activity or to
complement an auxotrophic strain for a specific compound, have
enabled the identification of new pathways for the synthesis of
antimicrobials (Brady and Clardy, 2004) or biotin (Entcheva
et al., 2001). Nano-technologies, and in particular the latest
developments focused on the medium-throughput screening of
libraries obtained by combinatorial protein engineering, enable
the design of custommicroarrays and covered with one to several
100 specific enzymatic substrates, the processing of which may be
followed by fluorescence, chemiluminescence, immunodetection,
surface plasmon resonance or mass spectrometry (André et al.,
2014). Nanostructure-initiator mass spectrometry technology,
combining fluorescence and mass spectrometry, is the first
example of a functional metagenomic application for the
discovery of anabolic enzymes, namely sialyltransferases
(Northen et al., 2008).

The Immense Challenges of Ultra-fast Screening
(Figure 2)
Microfluidic technologies are of undeniable interest when it
comes to reaching screening rates of a million clones per
day. The substrate induced gene-expression screening method
has been developed to use fluorescence-activated cell sorting
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FIGURE 2 | Microfluidic strategies for new enzyme screening.
(A) Droplet based microfluidics: single cells are encapsulated with
probes or fluorogenic substrates to create microdroplets, where
reactions happen (substrate degradation, PCR). The hits are sorted
using fluorescence detection. Non-lysed cells are cultured and DNA
fragments from lysed cells are amplified. Both methods allow the
recovery and sequencing of DNA. (B) Micro-magnet array: target cells
are labeled with biotinylated RNA transcripts probes and injected inside

the microchannel. Target cells are captured in the channel thanks to
magnetic forces while non-targets cells pass through the device.
(C) Chips: the chip wells are filled with a single cell. The iChip is covered
by membranes, and reintroduced into original environment, where
natural nutrients flow through membranes. Colonies are further isolated
on Petri dishes to be screened for the activity of interest. The SlipChip is
composed of two culture microcompartments which are further
separated for destructive and non-destructive assays.

to isolate plasmidic clones containing genes (or fragments of
genes) that induce the expression of a fluorescent marker
in response to a specific substrate. However, this technique
is only suited to small substrates that are non-lethal and
internalizable for the host strain (Uchiyama and Watanabe,
2008). Finally, the advances made over the past few years in
cellular compartmentalization (Nawy, 2013), selective sorting,
based on sequence detection (Pivetal et al., 2014; Lim et al.,
2015) or specific metabolites (Kürsten et al., 2014) and the
control of reaction kinetics (Mazutis et al., 2009) in microfluidic

circuits should allow for a huge acceleration in the discovery of
new proteins and metabolic pathways expressed in prokaryotes
and eukaryotes in an intercellular, membrane or extracellular
manner.

The very first examples of metagenome functional exploration
applications have already been used to establish the proof
of concept regarding the effectiveness of microfluidics in the
discovery of new bioactive molecules and new enzymes. For
example, droplet-based microfluidics technology was recently
used by the teams of A. Griffiths and A. Drevelle to isolate new
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strains producing cellobiohydrolase and cellulase activities at a
rate of 300,000 cells sorted per hour, using just a few microliters
of reagent, i.e., 250,000 times less than with the conventional
technologies mentioned above (Najah et al., 2014). Here, soil
bacteria and a fluorescent substrate were co-encapsulated in
micro-droplets in order to sort cells on the basis of the
extracellular activity only. In fact, the strategy used, which
requires the seeding of cells on a defined medium after sorting,
is not compatible with the detection of intracellular enzymes,
which require a lethal lysis step to convert the substrate. Applying
a similar principle, the ultra-rapid sorting of eukaryote cells
encapsulated with their substrate now also makes it possible to
select yeast clones presenting extracellular enzymatic activities
(Sjostrom et al., 2014). This technology should, in the short term,
make it possible to explore the functional diversity of uncultivated
eukaryotes at a very high throughput, by directly sorting fungal
populations or libraries of metatranscriptomic clones. In the latter
case, access to the sequence involved in the target activity will
be easy, since the libraries are built using hosts whose culture is
well managed, with insertion of the metatranscriptomic cDNA
fragment into a specific region of the genome. Where sorting is
done without cloning of the metagenome or metatranscriptome,
only microorganisms capable of growth on a defined medium
can be recovered, which hugely limits access to functional
diversity.

To increase the proportion of cultivable organisms, Kim
Lewis’ team recently used the iChip to simultaneously
isolate and cultivate soil bacteria thanks to the delivery of
nutrients from the original medium, into which the iChip
is introduced, via semi-permeable membranes. This method
enables an increase in cultivable organisms ranging from 1
to 50%. Using colonies cultivated in the chip, the clones
isolated in a Petri dish were screened for the production of
antimicrobial compounds (Ling et al., 2015). A novel antibiotic
was thus identified, together with its biosynthesis pathway,
after sequencing and functional annotation of the complete
genome.

It is quite another matter when it comes to selecting, on the
basis of intracellular activity, completely uncultivable organisms
or metagenomic clones containing DNA inserts of several dozen
kbp, which are difficult to amplify using PCR. In this case, to
liberate the enzymes in question, we are required to include a
cellular lysis step, preventing seeding after sorting. On the other
hand, this approach is compatible with the sorting of plasmid
clone libraries, where the metagenomic or metatranscriptomic
inserts can easily be amplified using PCR, on the basis of just
a few dozen lysed cells. For libraries with large DNA inserts,
the barriers are now being broken down, most notably thanks
to the development of the SlipChips microfluidic approach
(Ma et al., 2014), which uses two culture microcompartments,
where the content of one can be lysed for the detection of
enzymatic activities, for example, and the other is used as a
backup replicate for the culture and recovery of subsequent
DNA for sequencing. In spite of these recent, highly encouraging
developments, the proof of concept has not yet been established
for the identification of new functions and intracellular metabolic
pathways.

Conclusion

The rapid expansion of meta-omic technologies over the past
decade has shed light on the functions of the uncultivated fraction
of microbial ecosystems. A huge number of enzymes have been
discovered, in particular through experimental approaches to
functional metagenomes exploration. Where their performance
can be rapidly assessed within the framework of a known
process, or where they catalyze new, previously undescribed
reactions, many of them have provided new tools for industrial
biotechnologies. However, several challenges still need to be
addressed to speed up the rate at which new functions are
discovered and to make optimal use of the functional diversity
that so far remains unexplored. Firstly, while the uncultivated
prokaryote fraction of microbial communities is still extensively
studied, the functions of the eukaryote fraction are relatively
unexplored from an experimental angle, even though they
play a fundamental role for numerous ecosystems. Secondly,
in the majority of cases, the functions discovered using meta-
omic approaches play a catabolic role, mainly involved in the
deconstruction of plant biomass or in bioremediation. It is
thus necessary to develop functional screens to access anabolic
functions and enrich the catalog of reactions available for
synthetic biology. Finally, there are very few studies aimed at
identifying the role of protein families that are highly prevalent in
the target ecosystem but that have not yet been characterized, even
though some of them could be considered as biomarkers of the
functional state of the microbial community. Indeed, sequence-
based functional metagenomic projects continuously highlight
many sequences annotated as domains of unknown function in
the Pfam database (RRID: nlx_72111) (Bateman et al., 2010; Finn
et al., 2014), some with 3D structures solved thanks to structural
genomics initiatives, and available in the Protein Data Bank
(RRID: nif-0000-00135). With the goal of characterizing these
new protein families and identifying previously unseen functions
from the selection the most prevalent protein families (those
containing the highest number of homologous sequences without
any associated function) in the target ecosystem, the integration of
structural, biochemical, genomic and meta-omic data is now also
possible (Ladevèze et al., 2013). It allows to benefit from the huge
amount of long scaffolds now available in sequence databases,
and to access the genomic context of the targeted genes in order
to facilitate functional assignation. In the next few years, these
strategies should enhance our understanding of how microbial
ecosystems function and, at the same time, enable greater control
over them.
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