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ABSTRACT: Four decades after the first (and only)
reported synthesis of kekulene, this emblematic cyclo-
arene has been obtained again through an improved route
involving the construction of a key synthetic intermediate,
5,6,8,9-tetrahydrobenzo[m]tetraphene, by means of a
double Diels−Alder reaction between styrene and a
versatile benzodiyne synthon. Ultra-high-resolution AFM
imaging of single molecules of kekulene and computa-
tional calculations provide additional support for a
molecular structure with a significant degree of bond
localization in accordance with the resonance structure
predicted by the Clar model.

Cycloarenes1 constitute a fascinating class of polycyclic
aromatic hydrocarbons (PAHs) that have attracted the

scientific community for decades due to the singularity of their
molecular and electronic structures.2 They serve as ideal
platforms to investigate fundamental questions around the
concept of aromaticity and, in particular, those related with the
π-electron distribution in complex aromatic systems.3 Recently,
renewed attention to cycloarenes has arisen since they serve as
models for graphene pores.4 Kekulene (1) is probably the best
studied member of this family. Its electronic structure has been
the subject of debate for decades,5 the Clar model 1a and the
annulenoid Kekule structure 1b being of special interest
(Figure 1). In fact, properties such as superaromaticity6,7 have
been initially attributed to this molecule, associated with
hypothetically representative annulenoid structures such as 1b,
comprising two concentric [4n+2] π-electron circuits.
While many theoretical studies on the electronic structure of

cycloarenes have been reported, the experimental study of their

properties has been limited due to the extremely challenging
synthesis of this kind of planar, cata-condensed aromatic
macrocyclic systems.2 In fact, the synthesis and character-
ization of kekulene by Staab and Diederich in 19781,8 is
considered to be a landmark achievement in the field of
aromatic chemistry. Only two additional nearly planar,
unsubstituted cycloarenes, cyclo[d,e ,d,e ,e ,d,e ,d,e ,e]-
decakisbenzene9 and septulene,10 have been synthesized so
far, while substituted analogues of kekulene and of the higher
homologue, nonplanar octulene, have been recently accessed
taking advantage of their higher solubility.11 However, Staab
and Diederich’s synthesis of the parent kekulene (Scheme 1)
remains unsurpassed, and apparently unrepeated, since the
only available experimental studies on 1 are those reported by
this group 40 years ago.1,8,12

Our expertise and continuing interest in the chemistry of
polycyclic aromatic compounds and nanographenes led us to
turn our attention to this captivating molecule. Thus, here we
present our contribution to the study of kekulene through
three different yet related achievements: the improved
synthesis of 1 by means of the aryne-mediated construction
of a key synthetic intermediate, the single-molecule imaging of
this fascinating cycloarene by ultra-high-resolution atomic
force microscopy (AFM), and a computational study including
the accurate simulation of the experimentally observed AFM
images.
As shown in Scheme 1, probably the main drawback of the

otherwise superb synthesis of 1 is the preparation of 5,6,8,9-
tetrahydrobenzo[m]tetraphene (2).13 The construction of the
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Figure 1. Clar (1a) and Kekule annulenoid (1b) structures of
kekulene.

Scheme 1. Synthetic Approach to Kekulene by Staab and
Diederich1,8a
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key synthetic intermediate 2, far from being straightforward,
was reported to occur in four steps, involving relatively harsh
reaction conditions and in a poor overall 2.8% yield (Scheme
2a).1 Our wide experience in the application of bistriflate 5 and

other bisaryne precursors to the synthesis of diverse PAHs of
interest14,15 led us to envision an alternative approach to 2
through a double Diels−Alder reaction involving two
molecules of styrene (3) and the 1,4-benzodiyne synthon 4,
which would be generated by fluoride-induced elimination
from bistriflate 5,16 which is currently commercially available
(Scheme 2b).
The participation of styrenes as unconventional dienes in

Diels−Alder cycloadditions with arynes to yield dihydrophe-
nanthrenes has been previously reported, although these
transformations are commonly complicated by secondary
reactions such as aryne-mediated dehydrogenation to give
phenanthrenes,17 or by the concerted ene reaction of the initial
Diels−Alder adduct with a second aryne equivalent to afford
arylated products.18 In our case, such a Diels−Alder/ene
cascade would be particularly problematic, since the ene-
incorporated aryl moiety would contain ortho-disposed
trimethylsilyl and triflate functionalities, which are able to
generate new aryne species and give rise, probably, to
oligomerization processes and complex reaction mixtures.
Despite these possible difficulties, we targeted the synthesis
of 2 by reaction of styrene with 1,4-bisbenzyne precursor 5
under aryne-forming conditions (Scheme 3, Table 1).

Initial assays were performed in refluxing dioxane using CsF
as the fluoride source, conditions that had been previously
reported for the unusual selective preparation of non-arylated
9,10-dihydrophenanthrene by reaction of styrene with
benzyne.19 Encouragingly, treatment of 5 with CsF in refluxing
dioxane, in the presence of excess 3, resulted in the formation
of the expected products 2 and 6, although in modest yield

(entry 1). Addition of 18-crown-6 (entry 2) or the use of
TBAF as fluoride source (entry 3) led to poorer results.
The use of acetonitrile (ACN) as solvent led to slightly

better yields (entry 5), and under these conditions, the molar
ratio of 5:3:CsF was optimized (entries 5−8). Finally, we
proved that better yields were consistently obtained when the
reaction was performed on a higher scale (entries 8−11). The
best results were obtained by reaction of 5 (19−20 mmol)
with styrene (3) and CsF (in 1:5:6 molar ratio) in refluxing
acetonitrile, yielding a 2:3 mixture of tetrahydrobenzotetra-
phenes 2 and 6 in a reasonable 28% yield (entry 11). The
separation of both isomers was not easy, but it could be
achieved by semi-preparative supercritical fluid chromatog-
raphy (SFC)20 and also by sequential recrystallizations from
boiling methanol.
These results can be considered highly remarkable, since

compound 2, a key intermediate in the synthesis of kekulene
(1), is obtained in just one step from commercially available
materials under mild reaction conditions and with a 4-fold
increased yield with respect to that of the previously reported
synthesis.
Remarkably, the only isolable compounds detected in the

crude reaction mixtures were 2, 6, and excess styrene (3).20

Products derived either from dehydrogenation of 2/6 or from
Diels−Alder/ene cascade processes were not observed.21

However, the formation of insoluble oligomers or polymers
derived from aryne-based side reactions cannot be ruled out.
The mechanism proposed for the formation of 2 (and 6)
involves two probably sequential Diels−Alder/H-migration
processes. The detection of the functionalized dihydrophenan-
threne 8 in some experiments strongly suggests that the first
Diels−Alder reaction of styrene with monoaryne 7 and the
subsequent H-migration occur prior to the generation of the
second arynic insaturation in 9 (Scheme 4). Once compound 2
was conveniently prepared, we proceeded to complete the
synthesis of kekulene (1). After attempting some new synthetic
alternatives based on metal-catalyzed couplings and/or olefin
metathesis/isomerization reactions, we decided to rely on the
firmly established route described by Diederich and Staab,1,8

which in our hands was perfectly reproducible, even under
significantly lower scale conditions.
With kekulene (1) in hand, we identified the opportunity to

visualize its molecular structure by ultra-high-resolution
AFM,22 a state-of-the-art technique for the single-molecule

Scheme 2. (a) Staab and Diederich’s Synthesis of 21,a and
(b) This Work’s Aryne-Based Retrosynthetic Approach to 2

aConditions: (i) conc. HNO3, Δ; (ii) PhCHO, piperidine; (iii) H2,
90 atm, 10% Pd/C, Δ; (iv) Cu, conc. H2SO4, isoamyl nitrite.

Scheme 3. Reaction of Bistriflate 5 with CsF in the Presence
of Styrene

Table 1. Optimization of the Reaction Conditionsa

entry solvent molar ratio 5:3:CsF scale (mmol 5) yield 2 + 6 (%)b

1 dioxane 1:5:10 0.2 17
2c dioxane 1:5:10 0.2 11
3d dioxane 1:5:10 0.2 −
4e ACN 1:5:10 0.2 13
5 ACN 1:5:10 0.2 20
6 ACN 1:2:10 0.2 12
7f ACN 1:25:10 0.2 23
8 ACN 1:5:6 0.2 20
9 ACN 1:5:6 1.4 22
10 ACN 1:5:6 6 26
11 ACN 1:5:6 19 28

aTypical reaction conditions: reflux under Ar, 16 h, [5] = 0.05 M.
bYield of isolated product (∼2:3 mixture of 2 and 6). c18-crown-6
(120 mol%) was added. dTBAF was used as the source of fluoride.
eReaction conducted at room temperature. f[5] = 0.01 M.
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study of planar, conjugated systems. As recently demonstrated,
this technique, in combination with scanning tunneling
microscopy (STM), has become a powerful tool for the
elucidation and study of individual molecules.23 In order to
increase the sublimation rate with respect to the fragmentation
rate, the material was sublimated by rapid heating24a from a Si
wafer24b onto a Cu(111) substrate, holding the sample at T =
10 K during deposition. The large size and thus high
sublimation temperature of kekulene were expected to result
in fragmentation, and, in fact, the preparation resulted mostly
in small and often mobile molecules on the surface. However,
we found a few molecules of the expected hexagonal shape and
size of kekulene. Constant-height AFM images of the molecule
adsorbed on Cu(111) with a CO-functionalized tip22,25−28

were recorded at different heights (Figure 2), with decreasing
tip-to-sample distance in Figure 2a−c. Corresponding Laplace-
filtered images are shown in Figure 2d−f, respectively. From
the AFM images, the molecular structure of kekulene (1) was
resolved. In addition, details of the contrast can be related to

bond order. Resolving the bond-order-related contrast is
challenging at the periphery of molecules because of the
nonplanar background from van der Waals and electrostatic
forces.27,29 However, bonds that experience similar background
forces are comparable, allowing qualitative resolution of bond-
order differences. Increased bond order results in brighter
appearance at moderate tip heights and shortened appearance
of bonds at small tip heights.27 In the case of kekulene (1), the
peripheral C(H)−C(H) bonds appear as the overall brightest
bonds at moderate tip height, i.e., in Figure 2a,b, and as the
shortest bonds at small tip height, i.e., in Figure 2c. Both
observations indicate that these are the bonds of the highest
bond order within the kekulene structure, which is in
agreement with previous experimental evidence obtained by
X-ray diffraction (XRD) studies of single crystals of 1.8b

To gain further insight into the interpretation of the AFM
images in connection with the molecular structure of 1, we
computed the kekulene molecule both in the gas phase and on
the Cu(111) surface and performed simulations of AFM
images.20 Calculations in the gas phase at the B3LYP-def2-
TZVP level30 reveal that the molecule possesses D3d symmetry
since the hydrogen atoms of the inner cavity or pore present a
slight distortion out of the molecular plane due to steric
hindrance. Remarkably, the calculated C−C bond distances
reproduce the experimental solid-state XRD values within 0.01
Å (Figure 4). This bonding pattern, which is also reproduced
by on-surface calculations, matches perfectly the predictions of
the π-sextet rule31 and supports the Clar model 1a, with the
highest possible number of disjoint aromatic π-sextets (six), as
the most representative structure of kekulene. Thus, despite its
48 π electrons (6n π electrons), kekulene is far from being
“fully benzenoid”, as the π electrons are not highly delocalized.
In fact, 1 possesses an unusually high calculated HOMO−
LUMO gap of 3.55 eV (B3LYP-def2-TZVP level), similar to
that calculated for the much smaller anthracene molecule (3.56
eV). Finally, simulations of the AFM images were performed
with a Molecular Mechanics (MM) model as implemented in
the Probe Particle Model (PPM) software.20,28,32 We

Scheme 4. Mechanistic Proposal for the Formation of 2/6

Figure 2. Experimental AFM images of kekulene (1) on Cu(111). (a−c) Constant-height AFM images with a CO-functionalized tip, amplitude A
= 1 Å, sample voltage V = 0 V. We approached the tip by z = 1.6 Å in (a), 1.9 Å in (b), and 2.2 Å in (c) with respect to the STM set point of V =
0.1 V, I = 1 pA on the bare Cu(111) surface. (d−f) Corresponding Laplace-filtered images.
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computed images with an experimental amplitude of 1.0 Å and
with different binding constants, k, ranging from 0.15 to 0.60
N/m, and uncharged, monopole and quadrupole tips. The best
match to the experimental images was achieved by a dz2-like
quadrupole tip33 with Qdz2 = −0.25 and a bending constant of
k = 0.35 N/m (see Figure 3).34

In conclusion, this work provides a significant contribution
to the synthesis of kekulene (1) based on the improved
preparation of the key intermediate 5,6,8,9-tetrahydrobenzo-
[m]tetraphene (2) by means of aryne chemistry. The modified
protocol has been applied to the actual synthesis of 1, which, to
the best of our knowledge, had not been synthesized nor
experimentally studied since the seminal work by Staab and
Diederich in the early 1980s. With this material in hand, the
structure of individual molecules of kekulene (1) was nicely
resolved by ultra-high-resolution AFM. The computational
study of kekulene (1) in vacuum and on the Cu(111) surface
and the successful simulation of the experimental single-
molecule AFM images provided further evidence of a bonding
pattern for kekulene which matches with the molecular
structure predicted by Clar’s π-sextet rule.
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Guitiań, E.; Peña, D. From Perylene to a 22-Ring Aromatic
Hydrocarbon in One-Pot. Angew. Chem., Int. Ed. 2014, 53, 9004−
9006. (b) Rodríguez-Lojo, D.; Peña, D.; Peŕez, D.; Guitiań, E. Large
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D. 1,7-Naphthodiyne: a New Platform for the Synthesis of Novel,
Sterically Congested PAHs. Chem. Commun. 2016, 52, 5534−5537.
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