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Translational issues in precision medicine in neuropathic pain
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ABSTRACT
Neuropathic pain remains poorly treated, with most new drugs falling through the transla-
tional gap. The traditional model of bench-to-bedside research has relied on identifying new
mechanisms/targets in animal models and then developing clinical applications. Several have
advocated bridging the translational gap by beginning with clinical observations and back-
translating to animal models for further investigation of mechanisms. There is good evidence
that phenotyping of patients through quantitative sensory testing can lead to improved
treatment selection and hence improved patient outcomes. This practice has been widely
adopted in clinical investigations, but its application in preclinical research is not mainstream.
In this review, we retrospectively examine our historical rodent data sets with the aim of
reconsidering drug effects on sensory neuronal endpoints, their alignment with clinical obser-
vations, and how these might guide future clinical studies.

RÉSUMÉ
La douleur neuropathique reste mal traitée, alors que la plupart des nouveaux médicaments ne
réussissent pas à franchir le fossé translationnel. Le modèle traditionnel de la recherche, du
laboratoire au chevet du patient, repose sur l'identification de nouveaux mécanismes ou cibles
dans des modèles animaux, suivie du développement d'applications cliniques. Certains
préconisent de combler le fossé de la recherche translationnelle en commençant par des
observations cliniques et en les transposant ensuite sur des modèles animaux afin d’appro-
fondir l'étude des mécanismes. Il est bien établi que le phénotypage des patients par des tests
sensoriels quantitatifs peut conduire à une meilleure sélection des traitements et, par
conséquent, à de meilleurs résultats pour les patients. Ces pratiques ont été largement
adoptées dans les enquêtes cliniques, mais leur application dans la recherche préclinique
n'est pas généralisée. Dans cette revue, nous examinons rétrospectivement nos ensembles
de données historiques sur les rongeurs dans le but de reconsidérer les effets
des médicaments sur les paramètres neuronaux sensoriels, leur alignement avec les observa-
tions cliniques et la manière dont celles-ci pourraient orienter les études cliniques futures.
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Introduction

In many areas of medicine the aim is to move toward
personalized or precision treatments so that the therapy
matches the cause of the condition. Emphasis has been on
defining the genetic cause, but it is rare that a single gene
mutation forms the basis for a disorder, and even if this is
the case a therapy that manipulates the gene produce is
often lacking. In the case of pain, the best characterized
genetic bases are mutations in sodium channels with loss
and gains of function, depending on the particular changes
in Nav1.7. A loss-of-function mutation renders the carrier
analgesic, thus validating the target.1 Blockers of this chan-
nel are being developed but are not generally available for
human use. In the case of inherited erythromelalgia, a gain-
of-function alteration in the channel, the particular muta-
tion in the amino acid sequence confers differential

sensitivity of individual patients to the nonspecific sodium
channel blockers carbamazepine and mexiletine.2,3 This
suggests that even with a genetic basis for the pain disorder,
drug choice can be complicated. In the case of neuropathic
pain, a number of drugs with very different mechanisms of
action are approved but the numbers needed to treat is
high, circa six, indicating that only a minority of patients
will gain relief with a particular drug.4 This is perhaps not
surprising, because although peripheral neuropathic pain
originates at the site of the damaged nerves, there are
considerable pharmacological changes at this level as well
as many and varied changes in the spinal cord, brain, and
descending controls. Because each drug has a defined
action, one could presume that in order to treat the pain
adequately, the drug would have to target the predominant
mechanism active in that patient.
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In the rest of this review, we will discuss a number of
other drugs used for neuropathic pain and their profiles
in preclinical models. There is a key issue here regarding
translation. If a drug has effects on particular responses
or modalities, then many drugs may have failed in clin-
ical trials where patients were simply included based on
a particular etiology, whether postherpetic, diabetic,
HIV, or chemotherapy-induced neuropathy. It has
been clearly shown that independent of the etiology,
patients with neuropathic pain fall into three subgroups,
based on their sensory profiles determined through
quantitative sensory testing (QST; Figure 1).5 Similar
separable subgroups of patients have been identified
among patients with fibromyalgia and postsurgical
pain, suggesting that the heterogeneity crosses pain syn-
dromes. Failing to take this into account means that the
patients in the trials were very likely to be heterogeneous
in terms of mechanisms and thus drugs that were effec-
tive in some patients would not be observed and the trial
and drug would fail. Consequently, the idea of
a mechanism-based rationale for bench-to-bedside
translation when screening novel drugs is a crucial
point because it will guide the trial design.

To align sensory profiling in clinical and preclinical
studies, suitable measures of sensory processing are
required. At present, probing of somatosensory function
in rodents is largely accomplished by determining paw
withdrawal thresholds or by performing neurophysiology.
The “all-or-nothing” nature of a withdrawal response poses
certain limitations. Below threshold there is no quantitative
measure of any sensory processing, a response is only
measured when threshold is breached, and above-
threshold responses cannot be readily quantified because
the test is effectively terminated at the first point of with-
drawal. Secondly, these behaviors are largely governed by

spinobulbal processing mechanisms with limited cortical
involvement. In recent years, novel endpoints have been
developed, such as classical or operant-based conditioned
place aversion to sensory stimuli,6,7 and these tests provide
additional insight into the affective/aversive dimension of
pain. These measures of cognitive function may be more
translatable than reflexive endpoints. Neurophysiology can
overcome some of these limitations by providing
a quantitative and objective measure of sensory neuronal
transmission. Microneurography, for example, can be per-
formed in both rodents and humans,8 and numerous
studies have established the relationship of second- and
third-order neuronal firing with perceptual outcomes.9–12

We retrospectively examine the effects of drugs on this
latter neuronal endpoint in rats from our historical data
sets (summarized in Table 1). The chosen endpoints
encompass several of the modalities applied during QST,
such as dynamic brush, punctate mechanical, and heat and
cold, as well as measures such windup. Drug effects against
innocuous and noxious intensities of stimulation are also
considered, and these may better relate to the range of
intensities used duringQST. Lastly, conditioned painmod-
ulation (CPM), analogous to diffuse noxious inhibitory
controls (DNICs) in animal models, is often performed
alongside QST and is also discussed.

Irritable Nociceptors

To decipher a mechanism in a particular patient at any
one time is next to impossible at present. An approach
that would overcome this problem would be to reverse
the process and work from the premise that the sensory
signs and symptoms of the patient must reflect the
underlying mechanisms at play and that drugs have
a defined mode of action. Thus, attempting to align

Table 1. Effects of drugs on spinothalamic wide dynamic range neuronal responses in spinal nerve ligated rats.
Punctate mechanical Heat Cold

Receptor Drug Brush Innocuous Noxious Innocuous Noxious Innocuous Noxious Windup Spontaneous DNIC

VGSCs Oxcarbazepine (s.c)14 ↓ ↓↓ ↓↓ – – ↓ ↓↓ – ↓↓

VGSCs Licarbazepine (i.pl)14 ↓ ↓↓ ↓↓ – – ↓ ↓↓ – ↓↓

5-HT2A Ketanserin (i.th)58 – – ↓ – ↓ ↓↓ ↓↓ –
NET Reboxetine (i.th)56,61 – ↓ ↓ – – – ↓ – ↑↑

TRPM8 M8-an (s.c)62 – – – – – ↓↓ ↓↓ –
α2δ-1 Pregabalin (s.c)31,41 ↓↓ ↓↓ ↓↓ – ↓ – – – –
5-HT3 Ondansetron (i.th)56,58,63 – ↓↓ ↓↓ – ↓↓ – – – – ↑↑

Cav2.1/2/3 TROX-1 (i.th & s.c)50 – ↓↓ ↓↓ – – – – –
OR Morphine (s.c)64 – ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

α2 Clonidine (i.th)61 ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

μOR/NET Tapentadol (s.c)56,65 ↓↓ ↓↓ ↓↓ ↓ ↓↓ ↓↓ ↑↑

Cav2.1/3 Tx3-3 (i.th)49 ↓ ↓↓ ↓↓ ↓ ↓↓ ↓

A3 MRS5698 (s.c)66 ↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓

VGSCs Lacosamide (i.th & s.c)15 ↓ – ↓↓ ↓ ↓↓ ↓↓

NMDA Ketamine (s.c)67,68 ↓↓ ↓↓ ↓↓ ↓↓ –

Examining drug actions on evoked sensory neuronal endpoints reveals three broad groups characterized by predominant inhibitory effects on (1) mechanically and
cold-evoked responses, (2) mechanically evoked responses, and (3) all modalities.

↓ = moderately inhibited; ↓↓ = inhibited; ↑↑ = enhanced; – = no/minimal effect; (blank) = not tested; VGSCs = voltage-gated sodium channels; s.c =
subcutaneous; i.pl = intraplantar; i.th = intrathecal; NET = norepinephrine transporter; TRPM8 = Transient Receptor Potential Melastatin 8; OR = opioid
receptor; A = adenosine.
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the sensory phenotype of the patient with a particular
class of drug could be very fruitful. The overall aim
would be to define patient subgroups and relate them
to the efficacy of a particular drug. This has been
achieved with the sodium channel blocker oxcarbaze-
pine. In a randomized controlled trial with patients
with neuropathic pain, the drug did not separate from
placebo.13 However, when patients with a so-called
irritable nociceptor who were suffering from evoked
pain hypersensitivity were split off, the drug was effec-
tive. Thus, abnormal impulses in still-connected nerves
in these patients appear to be driving the pain and thus
blocking this activity through sodium channel modula-
tion alleviates the pain.

Based on this study, we recorded activity in thalamic
neurons in a model of neuropathy and studied the
effects of the drug and the effects of lidocaine, another
sodium channel blocker.14 Because the clinical study
had used systemic administration, we also aimed to
localize the site of action of these ion channel blockers.
We studied both ongoing and evoked responses of the
neurons in the pathways behind sensory components of
pain and spontaneous activity in the thalamus.
A marked reduction in spontaneous activity was seen
after spinal lidocaine, with no effect being seen in sham
rats. This measure was partly driven by ongoing per-
ipheral activity because intraplantar lidocaine also
reduced this ongoing thalamic neuronal firing.
Systemic oxcarbazepine in neuropathic animals mark-
edly inhibited evoked responses, namely, punctate
mechanical, dynamic brush- and cold-evoked neuronal
responses in the thalamus and dorsal horn, but did not
show a marked effect on heat-evoked firing yet inhib-
ited spontaneous activity in the thalamus. Intraplantar
injection of the active metabolite licarbazepine repli-
cated the effects of systemic oxcarbazepine, supporting
a peripheral locus of action.

Thus, overall, ongoing activity in primary afferent
fibers drives spontaneous thalamic firing after spinal
nerve injury and oxcarbazepine exhibits modality-
selective inhibitory effects on sensory neuronal proces-
sing through a peripheral mechanism. These inhibitory
effects of both lidocaine and oxcarbazepine suggest that
this rat model of neuropathy, involving a partial liga-
tion of spinal nerves, resembles the irritable nociceptor
patient subgroup. Baron and colleagues proposed that
these patients are represented within the thermal clus-
ter and that peripheral sensitization is the predominant
pathophysiological mechanism.5 Spinal nerve injury in
rats produces a profile of sensory gain in a manner that
resembles the thermal and mechanical phenotypes in
patients but has little likeness to the sensory loss
group.14

Like oxcarbazepine, lacosamide is a nonselective sodium
channel blocker and also reduced evoked spinal neuronal
responses in an experimental ratmodel.15 Based on ameta-
analysis of clinical trial data, lacosamide has limited to no
benefit compared to placebo in an overall patient
population16; however, as with oxcarbazepine, this may
stem from a lack of patient stratification rather than lack
of efficacy as such. A recently registered trial will attempt to
address this by investigating whether a similar drug-
sensory phenotype interaction exists.17 A multimodal
genetic, electrophysiological, and sensory profiling
approach has already showed promise for personalized
treatment selection; several recent studies support that
patients with Nav1.7 variant-driven small fiber neuropa-
thies can benefit from lacosamide treatment.18–20

Calcium Channel Modulators

Despite accumulating vast global annual sales, the α2δ-1/2
ligands pregabalin and gabapentin are known to be inef-
fective for themajority of patients with neuropathic pain.4

Their effects have been comprehensively characterized in
rodent injury models, and both drugs attenuate ongoing
pain and evoked hypersensitivity through central
mechanisms, particularly where central sensitization is
present.21–23 In human surrogate models of central sensi-
tization, the gabapentinoid drugs are more effective at
reducing areas of secondary pinprick hyperalgesia rather
than altering mechanical pain thresholds.24–27 Clearly,
rodent models of nerve injury recapitulate underlying
mechanisms that are shared with a proportion of patients
who are sensitive to gabapentinoid treatment (reviewed in
detail in Patel and Dickenson28).

In a case study of spinal cord injury, a patient with
ongoing pain presented with contrasting left and right
QST profiles at the same thoracic level. Intriguingly,
these pains exhibited different sensitivity to pregabalin
treatment. Where there was fiber loss and sensory
deficits, ongoing pain was refractory to pregabalin
treatment but pain relief was achieved in the region
where sensory function was preserved.29 Although only
a single example, it illustrates how careful dissection of
mechanisms can distinguish different pains and per-
haps aid treatment selection. It is conceivable that in
clinical trials, patients with mixed pains may report
insufficient pain relief due to targeting of a single neu-
robiological mechanism. When tested against QST end-
points in a small group of patients with peripheral
neuropathy, chronic gabapentin treatment reduced
brush allodynia and raised cold pain thresholds where
these sensory disturbances were present but had no
effect on heat detection or pain thresholds in all
patients tested or any effect on punctate mechanical
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stimuli in patients with mechanical hyperalgesia.30

Although low in numbers, this study displays some
concordance with the effects of acute pregabalin on
sensory neuronal processing in rats with peripheral
nerve injury because brush-evoked neuronal responses
were inhibited and heat-evoked responses were only
weakly affected, but contrasting effects were seen with
respect to cold and mechanical stimuli.31 In the rat
models at least, the gabapentinoids are particularly
effective at inhibiting high-intensity mechanically
evoked neuronal responses. On a larger scale, post
hoc analysis of clinical trial data revealed that pregaba-
lin had no benefit in patients with HIV neuropathy but
provided pain relief in a patient subgroup characterized
by severe pinprick hyperalgesia.32 A more recent study
of patients with chemotherapy-induced neuropathy
found that mechanical pain thresholds were not pre-
dictive of response to pregabalin, though the number of
patients exhibiting mechanical hypersensitivity was
low,33 and the former study noted that only those
patients with the most severe pinprick hyperalgesia
benefited, whereas those with mild/moderate hyperal-
gesia did not. Baron and colleagues proposed that these
patients are represented by the mechanical cluster
(Figure 1) and that central sensitization is the predo-
minant pathophysiological mechanism.5 Consistent
with the features of this sensory phenotype, post hoc
analysis of a separate pregabalin trial concluded that
analgesia corresponded with preserved large fiber func-
tion and poorer outcomes were observed with loss of
fibers.34

Windup and temporal summation of pain and con-
ditioned pain modulation are two measures that could
merit further investigation. Windup is commonly inter-
preted as a readout for sensitization state. Electrically
evoked windup produces hyperexcitability of spinal
neurons that induces transient features that are shared
with central sensitization, such as enlarged receptive
field sizes and windup at lower frequencies.35

Moreover, windup and the human counterpart test
temporal summation share similar pharmacological
properties—for example, abolished by N-methyl-
D-aspartate (NMDA) block36,37—and patients with neu-
ropathy with enhanced temporal summation are more
likely to benefit from ketamine treatment.38 In pain-
free volunteers, the ability of gabapentin and pregabalin
to inhibit temporal summation of pain is dependent on
the sensitization state.39,40 Data from animal models are
rather mixed; neither gabapentin nor pregabalin inhi-
bits windup in uninjured rats, but whether windup is
inhibited in neuropathy seems to depend on the precise
nature of the nerve injury.21,41–43 Supraspinal analgesic
mechanisms of the gabapentinoid drugs include

activating descending inhibitory pathways,23,44 though
at present there appears to be no report of whether they
improve CPM in patients with neuropathy. In
a nonneuropathic condition such as pancreatitis, preg-
abalin had no effect on low CPM responses.45 In rats at
least, pregabalin does not restore deficient DNICs in
a model of knee degeneration where disrupted descend-
ing modulation forms part of the etiology of persistent
joint pain.46

Gabapentin was in use as an anticonvulsant but found
new purpose as an analgesic following a clinical observa-
tion. One of the rare success stories for bench-to-bedside
translation was the discovery that intrathecalω-conotoxin
was antinociceptive, which led to the development of
ziconotide, a synthetic peptide blocker of the voltage-
gated calcium channel Cav2.2.

47 The poor blood–brain
barrier penetration necessitates delivery via the intrathe-
cal route and, due to this impracticality, it is most com-
monly used in cases refractory to treatment by other
drugs. Ziconotide can provide relief for many of these
patients, validating targeting of calcium channels for
treatment of neuropathic pain.48 Like the conotoxins,
the spider toxin Tx3-3 has broad inhibitory effects on
spinal neuronal responses consistent with its lack of selec-
tivity over channel subtypes and activation state.49 The
development of small molecule activation state-
dependent blockers was intended to circumvent the neu-
rological side effects that can be associated with peptide
blockers, the hypothesis being that targeting of calcium
channels in hyperexcitable primary afferents would block
aberrant nociceptive signaling while permitting normal
sensory transmission. Several of the developed com-
pounds (CNV219794, Cav2.2; ABT-639, Cav3.2; Z160,
Cav2.2) displayed good tolerability within phase I trials
but failed to demonstrate efficacy in phase II (NCTs:
1655849, 01345045, 01848730, 01893125). In line with
the predicted mechanism of action, the activation state-
dependent but non-subtype-selective Cav2 blocker
TROX-1 has no effect on normal sensory transmission
but exhibits modality-selective effects in neuropathic rats,
only inhibiting responses evoked by punctate mechanical
stimuli.50 All of the failed trials selected patients on the
basis of disease etiology and did not distinguish between
those with sensory gain and sensory loss. Drawing paral-
lels with the oxcarbazepine trial, these drugs may be
particularly effective where pain is driven by peripheral
hyperexcitability and evoked pain is the primary sensory
disturbance.

Descending Control

Over 40 years ago, DNICs were described whereby
a distant noxious stimulus would inhibit the responses
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Figure 1. Sensory profiles of the three-cluster solution for test and replication data sets. Sensory profiles of the three clusters are presented as mean
z scores ± 95% confidence interval for (A) the test data set (n = 902) and (B) the validation data set (n = 233). Note that z transformation eliminates
differences due to test site, sex, and age. Positive z scores indicate positive sensory signs (hyperalgesia), whereas negative z values indicate negative
sensory signs (hypoesthesia and hypoalgesia). Dashed lines: 95% confidence interval for healthy subjects (−1.96 < z<+1.96). Note that if themean of
a cluster is within the shaded area, this does not imply that it does not differ from a healthy cohort. Values are significantly different from those of
healthy subjects if the 95% confidence interval does not cross the zero line. Insets show numeric pain ratings for dynamic mechanical allodynia on
a logarithmic scale (0–100) and frequency of paradoxical heat sensation (0–3). Blue symbols: Cluster 1 “sensory loss” (42% in A and 53% in B). Red
symbols: Cluster 2 “thermal hyperalgesia” (33% in A and B). Yellow symbols: Cluster 3 “mechanical hyperalgesia” (24% in A and 14% in B). CDT = cold
detection threshold; WDT = warm detection threshold; TSL = thermal sensory limen; CPT = cold pain threshold; HPT = heat pain threshold; PPT =
pressure pain threshold; MPT = mechanical pain threshold; MPS = mechanical pain sensitivity; WUR = windup ratio; MDT = mechanical detection
threshold; VDT=vibrationdetection threshold;NRS=Numerical RatingScale;DMA=dynamicmechanical allodynia; PHS=paradoxical heat sensation.
Reproduced with permission from Baron et al.5 (under a Creative Commons license).
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of spinal wide dynamic range neurons through des-
cending controls.51 Subsequently, it has been shown
that these neurons are part of the spinothalamic tract,
code the intensity and spatial summation of a noxious
thermal stimulus in an overlapping way with the
human pain ratings to the same stimulus,12 and exhibit
both peripheral and central sensitization after ultravio-
let B radiation and heat, corresponding with the human
psychophysical correlates of the same model.11 This
correspondence between neuronal coding (even under
general anesthesia) and human sensory reports is likely
the basis for why CPM, the human counterpart of
DNICs, can be readily established in volunteers and
patients. In many patients with persistent pain there is
a reduction in CPM, and a low CPM at the time of
surgery is a risk factor for persistent pain.52,53 Have
tested CPM in patients and studied the interaction
between pain control and this descending inhibitory
system. Duloxetine (a serotonin–noradrenaline reup-
take inhibitor) and tapentadol (a dual μ-opioid receptor
agonist/noradrenaline reuptake inhibitor) were tested
in patients with diabetic neuropathy. Duloxetine effi-
cacy was predicted by CPM in that low or lost CPM
correlated with drug effectiveness, whereas tapentadol
restored CPM as its analgesic effect appeared.54,55 Both
studies are explained by the subsequent preclinical
finding that DNICs were fully mediated by noradrena-
line acting at the α2-adrenoceptor, that it was lost in
models of nerve injury and could be restored by both
tapentadol and reboxetine, the noradrenaline reuptake
inhibitor.56 Very similar findings were seen in a model
of osteoarthritis, in agreement with human data where
CPM is lost in many pain states.57

DNICs are noradrenergic inhibitors but are balanced
by descending facilitations mediated by 5-
Hydroxytryptamine (HT) largely through the 2A and
3 receptors. A large number of preclinical studies have
shown that a loss of descending inhibition, normally
protective, is accompanied by a gain of facilitation as
pain becomes persistent, and recent human imaging
studies in very different pain states, namely, fibromyal-
gia and severe osteoarthritis, report similar findings.
These serotonergic enhancements of pain can be
blocked by antagonists such as ondansetron (5-HT3R)
and ketanserin (5-HT2AR).

58 When given spinally, the
former drug restores DNICs and has an enhanced
action on sensory coding of spinal and thalamic neu-
rons in models of nerve injury.56,58 Two human studies
have used the drug in patients with neuropathy, and
one was positive when ongoing pain was the outcome
measure, whereas the other, looking at dynamic allody-
nia and ongoing pain, was negative.59,60 However, these
discrepant results are explicable on the basis that the

drug has differential effects on neuronal coding with
modulation of punctate mechanical and heat stimuli
but no effect on brush or ongoing activity. This empha-
sizes the point that clinical studies may “fail” if the
wrong endpoints are picked.

Summary

It is becoming increasingly clear that pharmacological
agents for the treatment of neuropathic pain have differ-
ential effects on different modalities/ongoing activity
and that this can be readily examined in preclinical
models measuring the activity of spinal and brain neu-
rons. Therefore, designing a trial based on etiology
seems highly likely to fail to identify those patients who
will respond to treatment, and indeed many have failed
in recent years. Simple reflexive withdrawal responses in
preclinical development of drugs are not able to dissect
out the nuances of drug actions and thus will not be
helpful in providing a basis for mechanism-based treat-
ments. Behavioral assays requiring cognitive processing
offer greater insight but are not suited to measuring
windup/temporal summation or DNICs where neuro-
physiological measures are advantageous. From this
account, we would recommend a reconsideration of
some of the pharmacological agents that have failed in
trials based simply on etiology. Most of the preclinical
and clinical data are based on neuropathic pain, but the
same principles may apply to other important condi-
tions such as osteoarthritis and fibromyalgia.
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