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Abstract: Plant polysaccharides, as prebiotics, fat substitutes, stabilizers, thickeners, gelling agents,
thickeners and emulsifiers, have been immensely studied for improving the texture, taste and stability
of fermented foods. However, their biological activities in fermented foods are not yet properly
addressed in the literature. This review summarizes the classification, chemical structure, extraction
and purification methods of plant polysaccharides, investigates their functionalities in fermented
foods, especially the biological activities and health benefits. This review may provide references for
the development of innovative fermented foods containing plant polysaccharides that are beneficial
to health.
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1. Introduction

In the past few decades, chronic diseases (overweight, heart disease, diabetes, and
certain cancers) caused by dietary habits, lifestyle and sociocultural factors have become
severe worldwide [1,2]. Recent evidence from the Global Burden of Disease Study 2017 has
shown that the global death toll due to poor diet has surpassed 10.9 million [3]. Therefore,
improving dietary patterns or getting adequate nutrition is one of the most effective
ways to prevent non-communicable chronic diseases and reduce mortality. Interestingly,
functional foods have become increasingly prominent in the food industry owing to their
potential to improve dietary efficiency by delivering essential nutrients to the human
body [4]. As the global burden of disease increases and the relevance between dietary
nutrition and health is more widely recognized by consumers, the unprecedented global
demand for healthy and functional foods has increased. Fermented foods, including
dairy (yogurts, acidified milk, creams, cheeses, and ice cream) and non-dairy products
(meat, cereals, vegetables, juices, and other fruit products) [5], are ideal candidates for
functional foods with excellent nutrient sources such as antioxidants, vitamins, organic
acids, minerals, and other bioactive components [6]. These foods play an important role
in preventing and treating chronic diseases with probiotics and/or prebiotics. Probiotics
are live microorganisms gaining popularity in multiple dietary applications owing to
their beneficial effects on the host’s health when used correctly [7], while prebiotics are
substrates that the host bacteria preferentially use to improve their health [6]. In previous
studies, the combination of probiotics and prebiotics, known as synbiotics, in food has
demonstrated the ability to produce vitamin B groups such as folate and short-chain fatty
acids (SCFAs) such as propionate, acetate, and butyrate, secondary bile acids, indole, and
indole derivatives. These diet-dependent microbial products are not only essential for the
digestion, absorption, and storage of food substrates, but also for the neural and immune
system development, especially with regard to preventing neural tube defects, regulating
energy expenditure, glucose and lipids metabolism, immunity, and inflammation [8,9].
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Notably, prebiotics’ global demand has been estimated at over USD 8.95 billion in
2020, with the global prebiotics market forecast to grow at a compound annual growth rate
(CAGR) of 7% by 2030. For example, the inulin market will expand at a CAGR of 3.1%,
from USD 318.3 million in 2020 to USD 382.3 million in 2026 due to the increasing demand
for inulin in diverse applications such as food and beverages [10]. Unlike oligosaccharides,
polysaccharides are not only used as prebiotics, they can also be applied as thickeners,
emulsifiers, stabilizers, inhibitors, adhesives, gelling, water-retaining, film-forming, and
continuous release agents in fermented foods (Table 1) [11]. Therefore, polysaccharides are
accounting for about 10% of their total applications in food production and are increasing
exponentially. The global polysaccharide and oligosaccharide markets are anticipated to
expand at a CAGR of more than 5% from 2020 to 2030, reaching a value of more than USD
22 billion by then [10].

Polysaccharides are essential biopolymers formed by the natural polymerization of
monosaccharides joined together by glycosidic linkages to form linear or branched-chain
polysaccharides. Based on polysaccharides’ effectiveness, cost, convenience, and environ-
mental impact, significant methods were established to extract and purify polysaccharides
from different sources such as plants, animals, fungi, and microorganisms (Figures 1 and 2).
A variety of new natural polysaccharides from plants, indigestible by digestive enzymes
found in the gastrointestinal system [12] were introduced to meet the needs of the ex-
panding market (other than oligosaccharides), including defatted coconut residue crude
polysaccharides [13], Tragacanth gum [14], Sphallerocarpus gracilis polysaccharides [12],
longan pulp polysaccharides [15], and loquat leaves polysaccharides [16], contributing to
novel functional foods, particularly fermented foods. It was shown that polysaccharides im-
prove the texture, sensory, and nutritional properties of fermented foods [17] and provide
a solution for consumers to improve dietary efficiency (biological activities and nutritional
properties) by consuming fermented foods [18].
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Although extensive reviews were conducted on the potential use of plant polysaccha-
rides in the food matrix, emphasizing emulsification stability [19], improving texture [17]
and producing colloids with functional biopolymers [20], a few of them have focused on
synbiotic functional foods. For example, Tesfaye et al. [21] commented on the effects of
synbiotics in dairy and non-dairy drinks on health and disease binomial approach via food.
Rosa et al. [22] have focused on incorporating prebiotic components into dairy products to
enhance the therapeutic effects of their consumption and the influence of their inclusion
on product quality characteristics. However, in general, the importance of plant polysac-
charides in fermented foods is not yet properly addressed in the literature. However,
considering the significant progress made in incorporating polysaccharides into foods, it is
necessary to give an overview of plant polysaccharides in fermented foods to provide a
comprehensive outlook for further opportunities. Herein, this review has demonstrated
a brief overview of polysaccharide classification, chemical structure, extraction and pu-
rification techniques, as well as their functional features, such as rheological properties
and biological. Furthermore, the current controversy over the effects and possible health
benefits of polysaccharides as prebiotics on probiotic viability in food fermentation are
summarized, and the possible further research considerations on plant polysaccharides in
fermented foods were discussed. Therefore, this review may provide valuable references
for the development of innovative fermented foods containing plant polysaccharides that
are beneficial to health.

We comprehensively searched for literature covering plant polysaccharides, focusing
on extraction and purification methods, functionalities, potential applications in fermented
foods, as well as health benefits. The following databases were searched for articles in En-
glish that were published until October 2021: Web of Science, Science Direct, PubMed (Med-
line), Scopus, and Google Scholar using the following keywords: (1) “plant polysaccharide”,
“polysaccharide”, “polysaccharide from plant”, “natural polysaccharide”; (2) “extraction”,
“extraction methods”, “comparison of extraction methods”; (3) “purification”, “purification
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methods”, “comparison of purification methods”; (4) “functionality”, “rheological proper-
ties”, “biological properties”, “bioactivity”; (5) “application”, “fat replacer”, “stabilizer”,
“thickener”, “prebiotic”, “synbiotic”; (6) “dairy product”, “milk fermentation”, “yogurt
cereal beverages”, “fruit and vegetables”, “juice”, “meat”; (7) “bioactive compounds”,
“vitamins”, “short-chain fatty acids”, “SCFAs”; and (8) “health benefit”, “therapeutic ef-
fect”, “clinical trial”, “randomized trial”, “intake consumption”, “reduction of disease”,
“treatment of disease”. The manual search approach was to combine (1) with other search
keywords using “AND.” As inclusion criteria, studies evaluating natural polysaccharides
derived from plants and used in fermented foods were considered. We excluded papers
related to polysaccharides from other sources (animal, algal, and microbial), as well as
those that discussed the polysaccharides in non-fermented foods.

Table 1. Plant polysaccharides used in fermented foods.

Polysaccharide Main Sources EM Molecular Structure FM Functions References

Cellulose
Coconut fiber
Grains, fruit,
vegetable

AHE, APOE, UA

β-(1→4)-D-
glucopyranose,
homopolysaccharides,
and linear

Ice cream,
sausage, cheese

Thickening agent,
stabilizer, fat
replacer

[23]

Pectin Plant cell wall,
vegetable, fruit HWE, MAE, UE

α-(1→4)-D-Methoxylated
galacturonic acids,
Branched/coiled

Yogurt, sausage
Gelling,
antimicrobial
agent

[24]

β-glucan Barley, Oat,
Wheat bran AE, ALE, EE β-(1→4)-D-Glucose and

β-(1→3)-D-glucose Cheese Prebiotic, fat
replacer [25,26]

Inulin
Chicory root,
Jerusalem
artichoke

HWE, UE β-(1→2)-D-Fructose,
linear Yogurt, cheese

Fat replacer,
texturizer,
gel-forming

[27]

OP Okra fruit HWE, MAE, PWE

L-rhamnose (L-Rha),
D-galacturonic acid
(D-GalA), and
(1→4)-α-GalAp-(1→2)-α-
Rhap-(1→D-galactose
(D-Gal)

Yogurt Stabilizer [28,29]

KP Oil palm tree AE, AE, HWE β-glycosidic bonds Yogurt Prebiotic [30,31]

DOP Dendrobium
Officinale HWE, ETE

Ribose, glucose, xylose,
rhamnose, arabinose,
mannose, and galactolipid

Yogurt Prebiotic [32]

TG Tragacanth ESM

D-galactose,
D-galacturonic acid,
L-arabinose, L-fucose,
L-rhamnose, D-xylose and
D-glucose

Sausage, yogurt
Fat replacer,
stabilizer,
prebiotic

[14,33]

EM, Extraction methods; FM, Food matrix; OP, Okra polysaccharide; KP, Kernel polysaccharide; DOP, Dendrobium Officinal polysaccharide;
TG, Tragacanth gum; AHE, Acid hydrolysis extraction; APOE, Ammonium persulphate oxidation extraction; UA, Ultrasound extraction;
HWE, Hot water extraction; MAE, Microwave-assisted extraction; UE, Ultrasound extraction; AE, Acidic extraction; ALE, Alkaline
extraction; EE, Enzymatic extraction; PWE, Pressurized water extraction; ETE, Ethanol extraction; ESM, Electrospinning method.

2. Plant Polysaccharides
2.1. Polysaccharides: Classification and Chemical Structure

Polysaccharides have been classified into diverse categories relying on source, struc-
ture, functions and other factors. In terms of source, they are classified into four groups:
plant-derived (pectin, cellulose, starch, etc.), microbial-derived (curdlan, dextran, cellulose,
etc.), animal-derived (chitosan, chitin, heparin, etc.), and algal-derived (agar, alginate,
etc.) [34]. As for the composition, D-glucose is the most abundant monosaccharide in
polysaccharides, followed by D-mannose, D-galactose, D-fructose, L-arabinose, L-galactose,
and D-xylose. Besides, the amino sugars (D-galactosamine and D-glucosamine), their deriva-
tives (N-acetylmuramic and N-acetylneuraminic acids), and simple sugar acids (iduronic
and glucuronic acids) are also found in polysaccharides [35]. The monosaccharides in
polysaccharides are linked by different glycosidic bonds, which affect the digestibility
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of food. For example, amylose is a linear polysaccharide consisting of d-glycose units
mainly linked by α 1→4 glycosidic bonds, which does not produce insulin resistance, thus
has great potential to be applied in low-fat and low-calorie foods as raw material or fat
substitutes. In contrast, amylopectin, a branched polysaccharide whose main chain is
connected by α 1→4 glycosidic bonds and branches are connected by α 1→6 glycosidic
bonds [36,37], has a strong thickening and water holding capacity, and a higher glycemic
index. Cellulose serves as a structural part of cell walls [38] and is composed of d-glucose
linked by β 1→4 glycosidic bonds, which cannot be digested and assimilated by diges-
tive enzymes existing in the body but can be decomposed and utilized by intestinal
microflora. Polysaccharides can be heteropolysaccharides or homopolysaccharides based
on the structure of monosaccharides. Homopolysaccharides comprise only one repeat-
ing monosaccharide unit (starch, cellulose, and inulin) [39], while heteropolysaccharides
comprise the repetition of two or more distinct monosaccharides, even include additional
non-carbohydrate molecules such as proteins (fibronectin, elastin, collagen) to create mu-
copolysaccharides, glycosaminoglycans or proteoglycans, and lipids to form glycolipids.
The classification of polysaccharides based on the source, the composition of monosaccha-
ride units, functionalities, and the charge was shown in Figure 1.

Plant polysaccharides offer diverse applications in the food and pharmaceutical sec-
tors with distinct advantages over synthetic polymers, including availability (plants are
abundant and sustainable), biocompatibility, biodegradability, low toxicity, swelling ability
and water solubility [38,40,41]. The fundamental reason for the rapidly increasing inter-
est in different plant polysaccharides is their convenience of cultivation and harvesting,
which provides a continuous source of raw plant materials for polysaccharide extraction.
These biopolymers are composed of multiple monosaccharide units with a high molec-
ular weight and stable structures due to their strong intermolecular interactions [19,42].
Branching patterns, linkage, sequencing, and side-chain distributions of similar or differ-
ent monosaccharide units are organized into exceedingly complex molecular structures.
Furthermore, plant polysaccharides’ molecular structural properties contain numerous
functional groups that may be changed or modified to generate high-quality polysaccha-
rides [43].

2.2. Plant Polysaccharides Extraction and Purification
2.2.1. Extraction

It is crucial to apply suitable extraction techniques that significantly influence the
chemical structure, yield, consistency, and biological activities [44,45], due to its indus-
trial application of plant polysaccharides in functional foods and pharmaceutical fields
being limited by its extraction efficiency, conditions and cost. Different extraction tech-
niques are used to produce natural polysaccharides with the basic principle of preventing
polysaccharide denaturation and high efficiency [46]. The current methods for extracting
plant polysaccharides include ultrasonic-assisted extraction (UAE) [47], alkaline solvent
extraction (ASE) [48], enzymatic-assisted extraction (EAE), ultrasonic-assisted enzymatic
extraction (UAEE) [49], microwave-assisted extraction (MAE) [50], ultrasound-microwave
assisted extraction (UMAE) [51], ultra-high pressure extraction (UHPE) [38], and super-
critical fluid extraction (SFE) [52], which have demonstrated a much greater extraction
efficiency compared to the traditional hot water extraction (HWE) [45].

Each approach has distinct benefits and limitations regarding economic cost, ma-
terial complexity, time consumption, environmental effects, energy, and extraction effi-
ciency [50,53,54] (Figure 2). MAE is time-saving and environmentally friendly since it uses
fewer solvents and energy and uses microwave radiation to increase the mass transfer
of the target chemicals. However, it alters the structure of polysaccharides and is expen-
sive [50]. The UHPE method boosts the solubility of object compounds, enabling them
to permeate better into the sample matrix with reduced solvent consumption. However,
this process may affect the chemical structure of polysaccharides [38]. The UAE is a fast,
energy-efficient process with the least solvents and can produce high extraction rates [47].
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SFE is an excellent method to extract plant polysaccharides since it is non-polluting, non-
toxic and maintains polysaccharide activity. However, due to the high cost and extended
extraction time, it is mostly used to extract and prepare important plant-based active
components [55]. The most common method of polysaccharide extraction is a combination
of hot HWE and enzymatic methods, which was shown to generate higher polysaccharide
yields and purity than mono-extraction methods [56]. In addition, enzymes (cellulase,
protease, pectinase, etc.) are used to hydrolyze and break down plant tissues in relatively
moderate conditions (mild reaction conditions, short time, reduced chemical reagents)
to accelerate polysaccharide release, even though the cost of the enzymes is relatively
high [57].

Numerous researchers have compared different extraction techniques based on their
extraction yield. For instance, ginger polysaccharides were extracted using HWE (100 ◦C,
5 h), UAE (50 ◦C, 50 min, 300 W), ASE (0.2 mol/L NaOH, 25 ◦C, 2 h), and EAE (50 ◦C,
90 min, 0.5%, w/v, enzyme) methods, respectively. In addition, polysaccharides from
bamboo shoots were extracted using HWE (100 ◦C, 4 h), ASE (126 ◦C, 2 cycles, 22 min),
UAE (49 ◦C, 49 min, 240 W), MAE (90 ◦C, 15 min, 400 W), and EAE (50 ◦C, 80 min,
1% complex enzyme) methods, respectively. Interestingly, the ASE method attained a
maximum extraction yield of 11.38 ± 1.17% and 9.94%, respectively [50,58]. This method
has gained more interest due to its ability to complete extraction in a short time with
increased temperature and high pressure, resulting in increased yield [54]. Furthermore,
Fritillaria polysaccharide and Lanzhou lily (Lilium davidii var. unicolor) polysaccharide were
extracted by UAE, EAE (cellulase), UAEE (trypsin), and UAEE (pectinase) [54], respectively.
Results revealed that the UAEE (cellulase) and UAEE (trypsin) methods achieved the
greatest yields of 20.65 ± 0.78% and 9.62 ± 0.23%, respectively, compared with other
enzymes. Thus, it was hypothesized that trypsin had vigorous enzymatic hydrolysis
activity on the Lanzhou lily cell tissues, allowing polysaccharides to be released more
quickly and efficiently in a short timeframe at a low temperature [59]. In conclusion, for
different plant polysaccharides, the optimal purification methods may be different.

The polysaccharide extraction methods considerably influence the polysaccharide’s
biological activities and chemical characteristics, thereby affecting their applicability [53].
Polysaccharides with vigorous emulsifying activity and large viscosity can also be em-
ployed as potential cosmetic additives, while low-viscosity polysaccharides are advan-
tageous in producing immediate products such as butyrate [60]. Polysaccharides with
low molecular weight, excellent homogeneity, and thermal stability are useful as raw
materials for polysaccharide derivatization including selenylation, esterification and sul-
fation [60,61]. Moreover, Chen et al. [62] used HWE, UAE, EAE, and UEAE techniques
to extract polysaccharides from Crataegus pinnatifida Bunge; the HWE technique had the
highest molecular weight compared to other methods. Although all techniques had iden-
tical monosaccharide compositions, the molar percentages of monosaccharides varied.
Following that, antioxidant activities revealed that the UEAE approach has the best lipid
preventing ability and superoxide radical scavenging ability. Another study demonstrated
the importance of choosing suitable extraction techniques to gather polysaccharides with
preferred bioactivities by comparing the polysaccharides extracted from loquat leaves
using HWE, UHPE, high-speed shearing homogenization extraction, MAE, UAE, UEAE,
or UMAE. The results have shown that polysaccharides extracted by HWE and PWE had a
significant degree of esterification and a high molecular weight, which might lead to their
high (fat, cholesterol and bile acid) binding abilities. The molecular weights, total pheno-
lic contents, and uronic acid contents had substantial inhibitory effects and antioxidant
activities on in vitro α-amylase and β-glucosidase in polysaccharides extracted by MAE
and UAE. Polysaccharides isolated by UMAE had lower viscosities and molecular weights,
contributing to their powerful prebiotic properties [45].
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2.2.2. Purification

Polysaccharides from plants may contain many impurities, including lipids, proteins,
lignin, polynucleotides, minerals and pigments. Therefore, measures have to be adopted
to purify the polysaccharides before being used in food or medicine [63,64]. Natural
polysaccharide products’ purity, quality, and uniformity are not comparable in molecular
weight and structure due to variations in cultivation conditions, geographical location, and
planting techniques [65]. As for removing extra proteins, the most common techniques for
removing proteins are the Sevag method, trichloroacetic acid method, trifluoromethane and
enzymolysis [57], among which the Sevag method is usually used for its simple procedure
and does not readily destroy polysaccharides. However, the removal efficiency is low with
significant sample loss, and it is not environmentally friendly [66]. In order to improve
efficiency, the Sevag-enzyme combination is used to replace a single method. The aqueous
two-phase system is a more practicable separation process that is comparatively recent
due to its effectiveness in removing proteins and enriching polysaccharides at mild con-
ditions without changing the activity of polysaccharides; thus, it is gradually displacing
conventional separation methods [67,68]. Because of the lack of precision, determining
the glucose content of polysaccharide products is challenging due to poor product qual-
ity [69]. The purification methods of polysaccharides can be roughly classified into three
categories according to the purification mechanism and process: physical separation pro-
cess (based on molecular weight and solubility); column chromatography process (based
on intermolecular force); and chemical precipitation methods [46]. Membrane separation
and ultracentrifugation are two methods for physical separation; the first method uses
membranes with varying sources and pore sizes, such as nanofiltration, ultrafiltration,
microfiltration, and reverse osmosis membranes, while the ultracentrifugation method
relies on different deposition ratios. For mixed polysaccharides, membrane separation has
obvious advantages according to molecular weight; for instance, membrane separation
equipment is simple, has low energy consumption, and maintains a good separation effect.
In addition, it does not damage polysaccharide activity, and the separation process does
not introduce chemical test agents, which is pollution-free for polysaccharides themselves.
However, in the process of membrane separation, the decrease in membrane osmotic flow
caused by increasing concentration polarization and membrane pollution is more likely
to produce membrane pollution and blockage, which is difficult to separate and purify
in practical applications. Homogeneous polysaccharides may be separated by ultracen-
trifugation [70]. Organic reagents and salt solutions are used in chemical precipitation.
Stepwise precipitation frequently uses ethanol and methanol; however, methanol is less
often used because of its toxicity. The ethanol precipitation method benefits from the insol-
ubility of polysaccharides in high-concentration alcohol. The amount of alcohol needed to
precipitate polysaccharides with different properties and molecular weights is variable;
therefore, the polysaccharide components can be separated from the sample [63]. Acidic
polysaccharides are widely isolated using sodium, potassium, or quaternary ammonium
salt solutions. Column chromatography is an excellent method for separating and puri-
fying polysaccharides progressively using stationary and mobile phases. Based on the
stationary phase filler principle, column chromatography can be split into ion-exchange
column chromatography, cellulose column chromatography, gel filtration chromatogra-
phy and affinity column chromatography [71]. Column chromatography separates the
polysaccharides progressively using stationary and mobile phases. The most appropriate
mobile and stationary phases for attaining a yield potential of the desired compound are
chosen based on its physicochemical characteristics [72]. Other methods for polysaccha-
ride purification include dialysis, high-performance liquid chromatography (HPLC), and
gas–liquid chromatography [63,64]. Furthermore, the migration speed of polysaccharides
influenced by a magnetic field varies depending on the polysaccharides’ charge, shape,
and size properties. As a result, electrophoresis in the processing zone can be used to
isolate distinct polysaccharides [46]. Figure 3 illustrates the advantages and limitations of
selective purification methods.
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Separation and purification of polysaccharides from the root of Pueraria lobata were
accomplished using a Sephacryl S-100 gel filtration column and a DEAE-Cellulose 52 anion
exchange column. Polysaccharide production was 0.04%, and experimental results revealed
that polysaccharide had a molecular weight of 2584 Da and was a type of glucan [73].
Likewise, the black currant fruit was used to extract a new polysaccharide fraction and
purified using anion-exchange Q-Sepharose FF, chromatography on macroporous resin
D4006, and Sephadex G-100 columns [74]. Furthermore, owing to the difficulty of obtaining
pure polysaccharides using a single technique, a mix of methods is required to accomplish
effective polysaccharide purification. To this end, this procedure should also consider
the sequence and scope of application of each technique. However, potential research
remains challenging and essential to prepare high-purity polysaccharides on a large scale
while preserving their structural similarities and bioactivity. Thus, comprehensive research
of novel techniques and materials is necessary to identify the polysaccharide structural
properties and assist innovative polysaccharide purification.

3. Functionalities and Applications of Plant Polysaccharides in Fermented Foods
3.1. Rheological Properties and Applications as Thickener, Stabilizer and Fat Replacer

Plant polysaccharides are distinguished by their solid structures resulting from intense
covalent interactions, which make them hard to bend in response to pH and temperature
changes. In food technology, polysaccharides are commonly used to alter the texture and
rheology of an aqueous medium due to their strong hydrophilicity and viscosity [19] and
further determine the consistency of food and enable a desired consumer pleasure for
the commodity. Polysaccharides are commonly used in food in low amounts, between
1% and 3% of the formula weight. With the dissolution or diffusion in the food system,
polysaccharides play different roles including thickening, gelling, stabilizing, emulsifying
and moisturizing. On the other hand, these compounds also improve the fiber content and
prolong the starch’s hydrolysis. In frozen foods, polysaccharides regulate the formation
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of ice crystals and provide strength to products undergoing continuous refrigeration
cycles [75]. A previous study has shown that pectin-rich orange fiber impacted yogurt
gels’ rheological, sensorial, and tribological characteristics during fermentation. Based on
the gel categorization criteria, yogurts had either solid or defective gel characteristics.
According to tribological findings, higher friction is caused mainly by coarse fiber yogurt’s
reduced ability to immobilize water under high pressure. The lubrication properties of
plain yogurt are regulated by the protein (casein) network [34]. Another study found that
incorporating pectin into low-fat set yogurt minimized whey loss and enhanced firmness,
texture, rheology, and optimal flavor. There was a substantial enhancement in firmness
and a 16% decrease in whey losses. Moduli variations in yogurts may be attributed to the
density of the protein gel matrix and hydration of the hydrocolloid activity [76].

Okra polysaccharides (OPs) exhibited standard viscoelastic and conductivity prop-
erties associated with shear-thinning. The rheological parameters of OPs revealed pseu-
doplastic activity and were significantly altered by concentration [77]. In this sequence,
Xu et al. [42] studied the effects of four different plant polysaccharides (Okra polysaccha-
ride, konjac glucomannan, sodium alginate, and apple pectin) on gelling characteristics
in yogurt development. The results showed that polysaccharides improved the elasticity,
water-holding ability, and firmness of yogurt. All samples showed shear-thinning activity,
with visible viscosity and flexural strength. Another study discovered that replacing fat
with 3.2% inulin increased the time required to reach pH = 4.8 in 11 min. A total of 3.2%
inulin increased yogurt acidification rate, reduced the time required to reach pH = 4.8
by 12 min, and improved the highest storage modulus and gel firmness. In addition,
spontaneous syneresis was improved by 32% [78].

Plant polysaccharides (xanthan, tara gum, guar gum, and pectin) used in dairy prod-
ucts as fat substitutes, stabilizers, and texturizers had a significant impact on physiochemi-
cal and sensory properties (rheology, viscosity, structure, firmness, consistency, gummi-
ness) [79–84]. For instance, improved sensory properties distinguished yogurt with a 0.3%
strong pectin concentration, a shorter acidification period, and the lowest syneresis in
comparison with the control sample [79]. The addition of inulin and tragacanth gum to
yogurt as stabilizers showed no significant differences in bacterial viability, color, pH, or
total solids were found. Both yogurts with polysaccharides were more compact and denser
than control. They displayed greater firmness and higher observable viscosity with less
syneresis [80]. Polysaccharides generally can interact with milk components (water, whey
proteins and casein) during fermentation and throughout storage, resulting in improved
formation and stabilization of the yogurt gel network, as well as the capacity to retain
the whey phase and network shrinkage. Therefore, they have the potential to produce
improved yogurt that is more appealing to consumers.

As fat replacers, plant polysaccharides can also be used in cheese production to
improve nutritional values. β-glucan, inulin, konjac glucomannan and other plant polysac-
charides were proven to improve the textural and sensory properties (firmness, stickiness,
consistency, adhesion, and gumminess, color, organic acids and better flavor) of reduced-fat
Labneh cheese, Mozzarella cheese, and frescal sheep milk cheese [36,85,86]. Polysaccha-
rides have different effects on several process stages of cheese production (structure, ripen-
ing, rennet coagulation time, taste, syneresis and moisture content), depending on their
specific concentration and characteristics employed. Consequently, cheese’s nutritional and
sensory characteristics (increased perceived moisture, increased breakdown rate, reduced
hardness, mild and milky taste, or nutty flavor) appeal to this interaction as well [87].

Processed meat products have been characterized as refined foods that emphasize
the negative aspects of saturated fat, high salt, additives, and the lack of fiber in their
formulations in consumer diets [88]. Therefore, plant polysaccharides may be added to
these products as thickeners, stabilizers, emulsifiers, texturizers, and gelation agents [17,89]
to increase their nutritional value and help to reduce calories while improving sensory, rhe-
ological, and textural qualities. The use of mango peel pectin and inulin in dried Chinese
sausage and chicken sausages has improved color to redness and yellowness as well as
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brighter to less reddish, respectively. In addition, their physicochemical, microbiological
and sensory attributes remained unaffected [90,91]. Furthermore, the inclusion of resistant
starch, oat fiber and microcrystalline cellulose (MCC) influenced sensory and physicochem-
ical characteristics, including lactic acid bacteria (LAB), water activity, chewiness, hardness,
and thiobarbituric acid reactive substance values of sausage. MCC increased LAB counts,
oat fiber, and MCC exhibited antioxidant properties in a sausage. Sensory parameters
such as pH values, appearance, weight loss, taste and texture, color, and proximate com-
position were unaffected by any dietary fibers. Resistant starch, oat fiber, and MCC were
shown to produce fermented sausage with simultaneous salt (75% NaCl; 25% KCl) and fat
reduction (25%) [92].

Plant polysaccharides are another possibility for meat research due to their potential
effects and barely any side effects on human health, which makes them a promising candi-
date. Incorporating polysaccharides and probiotic strains into fermented meat products has
proven valuable for creating nutritious food [92]. Developing innovative formulations with
added polysaccharides and probiotics and decreased salt, nitrite/nitrate, or cholesterol
content can advance meat product science to produce healthier fermented meat products.

3.2. Biological Activities and Applications

Polysaccharides were proven in recent research to offer a variety of biological benefits,
such as anticoagulant (polysaccharide from green tea), antioxidant (Astragalus polysaccha-
ride, Lycium barbarum polysaccharide), antibiotic (pectin, Calendula Officinalis polysaccha-
ride), immunomodulatory (Ganoderma licidium polysaccharide, Ginseng polysaccharide),
antidiabetic (polysaccharides from adlay and pumpkin), and anti-inflammatory (apple
pectin, Dendrobium officinale polysaccharide) activities [93,94]. These bioactive polysaccha-
rides derived from edible resources are safer, more effective and have fewer side effects
than other sources. They are also more easily accessible and inexpensive. Thus, most bioac-
tive polysaccharides from different plant sources constitute a significant material source
for food and therapeutic applications [95]. For instance, polysaccharides isolated from
psyllium seeds and husk, for example, had the greatest antioxidant and scavenging activity,
with significant concentrations of 347.40 ± 1.79 µg and 362.72 ± 2.75 µg, respectively [96].
Astragalus polysaccharide was shown to enhance the glucose and lipid metabolism of
type 2 diabetes mellitus (T2DM) rats by boosting insulin production through a protective
impact on pancreatic islet beta cells [97]. Furthermore, when two polysaccharides from
Codonopsis pilosula (named CPP1a and CPP1c) were incubated for 48 h at concentrations of
50, 200, and 400 g/mL, they significantly inhibited cell migration in human hepatocellular
carcinoma (HepG2) cells, demonstrating considerable cytotoxicity. Thus, at the molecular
level, altering the cell structure, initiating cell death, and arresting the cell cycle in the
G2/M phase (second growth phase/mitosis phase), along with increasing the Bax/Bcl-2
(apoptosis regulator) protein expression ratio and triggering caspase-3 [98]. Figure 4 below
presents further information regarding the polysaccharides’ bioactivity and biological
behavior, along with typical polysaccharide examples.
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3.2.1. The Health Benefits of Fermented Foods Containing Plant Polysaccharides
and Probiotics
Plant Polysaccharides as Prebiotics

Common plant-based prebiotics include fructooligosaccharides, inulin, high-performance
inulin (inulin HP), xylooligosaccharides, soybean oligosaccharides, isomalto-oligosaccharides,
and lactulose. While numerous plant polysaccharides including coconut residue crude
polysaccharides, Tragacanth gum, Sphallerocarpus gracilis polysaccharides, longan pulp
polysaccharides, loquat leaves polysaccharides [40], dendrobium officinale polysaccharide [42],
kernel polysaccharide [40], and β-glucan [99] also meet the prebiotic requirements based
on a set of criteria as follows: (1) absorbing resistance in the upper gastrointestinal tract;
(2) selective colon fermentation through potentially beneficial bacteria; (3) selective en-
hancement of probiotic growth; (4) preferably induce positive impact on host health; and
(5) stability in a variety of food production conditions [100].

Synbiotic, a synergistic mixture of prebiotics and probiotics, is essential for good colon
health, disease prevention, and alternative methods to reduce disease-related risks and
have become a major concern for food producers and customers by positively affecting the
host by increasing the viability and metabolites of the gastrointestinal microbiota [101,102].
Synbiotics also aim to improve bacterial survival, water retention, starch hydrolysis, and
antibiotic resistance, as well as reduce inflammation, sugar content, fat content and calories.
Therefore, polysaccharides are ideal ingredients to produce functional foods to sustain
well-being and people with dietary needs [103]. Common essential non-dairy products
(containing plant polysaccharides) on the market include soy, fruit juices, cereal and meat
products [104]. The prebiotic dosage depends on their type, the food matrix used, the
microbial physiological structure of individuals, their health condition (healthy, diabetic,
hypercholesterolemic, hypertensive), gender, and age.

Effects of Plant Polysaccharides on the Growth of Probiotics

In general, the most prevalent genera with probiotic properties are Bifidobacterium and
Lactobacillus. LAB are the dominant microorganisms in both food and beverage fermenta-
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tion such as dairy, soybean, meat products, fruits, vegetables and cereal products, resulting
in lactic acid being an essential metabolic product. The fermentation process includes
several variables such as nutritional ingredients, microorganisms and ambient conditions,
resulting in a number of distinct fermented food varieties [105]. Therefore, probiotics
should have therapeutic quantities (106–107 CFU/mL or g) in food when consumed, be
able to endure extreme conditions in the stomach and intestines (enzymes, bile acid), and
be able to connect to the epithelial cells of the gut [106]. The main positive benefits of
prebiotics are increasing bacterial growth, activity (primarily Bifidobacteria and Lactobacillus)
and metabolites associated with health promotion. Saccharomyces boulardii CNCM I-745
is a particular yeast strain with probiotic characteristics, which may experience stressful
situations such as mechanical shearing, cooling and freezing, osmotic pressure, and oxygen
stress in ice cream production and storage. However, the addition of polysaccharides with
prebiotic characteristics has shown a practical approach to maintaining the S. boulardii
CNCM I-745 optimal durability of synbiotic ice cream production during preparation,
freezing, and preservation [107]. Furthermore, prebiotics can decrease the pH level and pre-
vent pathogens’ growth in food products (Salmonella typhimurium, Clostridium perfringens,
Escherichia Coli, Salmonella enteritidis, Campylobacter jejuni, or Enterobacterium ssp) due to
their ability to create undesirable conditions for their growth by synthesizing and secreting
bacteriocin such as nisin [108].

Table 2 below summarizes the influence of plant polysaccharides on the growth of
probiotics in fermented foods, while Figure 5 represents the potential influence of plant
polysaccharides in food fermentation. Dairy products are on top of probiotic food produc-
tion, among which yogurt is becoming more popular than others due to its living LAB,
higher digested nutrients, taste, gel-like texture, and mouthfeel [109]. During fermenta-
tion and refrigerated storage, probiotics can utilize some plant polysaccharides to grow
and improve their survival rate [110]. For example, the prebiotic effect of β-glucan in
yogurt improved the viability and metabolic activity of the probiotic B. animalis subsp. lactis
strain Bb-12 and helped maintain the probiotic levels to deliver their therapeutic effects
(above 7 log CFU/g) to maintain the required level of viable cells [111]. More recently,
Wang et al. [12] have reported the prebiotic effect of Sphallerocarpus gracilis polysaccharides
(SGP) in milk fermentation. The growth of Streptococcus thermophilus, Lactiplantibacillus
plantarum, and Lacticaseibacillus rhamnosus, as well as acidifying activity, were improved by
the addition of crude SGP to milk. Fermented milk supplemented with crude SGP had a
significantly greater viable probiotic population throughout shelf life than fermented milk
supplied with fructooligosaccharides or inulin.

Recent research has shown that fermented soy beverages and soy cheese with synbi-
otics can enhance their beneficial health, texture, and taste [112]. The authors demonstrated
that the lactic acid fermentation method produced synbiotic soymilk that resulted in func-
tional foods with enhanced health advantages, such as an angiotensin-converting enzyme
(ACE) inhibitory action. Furthermore, several synbiotic cereal beverages including syn-
biotic oat-based drinks, maize-blended rice drinks, and pomegranate drinks containing
polysaccharides, mainly as prebiotics, and probiotic bacteria such as L. acidophilus and
Bifidobacterium [113], were introduced and are considered as essential sources of carbohy-
drates, minerals, dietary fiber, protein, and vitamins in human nutrition [114]. Moreover,
these beverages exhibited appropriate sensory qualities (pH, viscosity and titratable acidity)
and biological activities (radical scavenging activity), with significant levels compared to
unfermented drinks. Fruits and vegetables have also been focused on producing fermented
non-dairy synbiotic beverages including carrot-orange juice, orange juice, hibiscus tea
mixed beverages, and nectar mixed with different polysaccharide concentrations [115–119],
and are healthy sources of antioxidants, minerals, and bioactive compounds [120]. Overall,
these studies showed a strong interaction between the polysaccharides (prebiotics) and the
fruit and vegetable beverage matrices. Moreover, the addition of polysaccharides can im-
prove the growth of probiotics, thus keeping their concentration above the recommended
minimum during the processing and storage of beverages, surviving gastrointestinal di-
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gestion, and reaching the intestine. For instance, during 72 h of fermentation and 30 days
of refrigerated storage, apple cider, orange and grape juice fortified with either 4% long-
chain or 4% short-chain inulin fiber attained a mean viable count of at least 107 CFU/mL
of L. rhamnosus GR-1 [121]. Furthermore, millet, rye, and alfata sprouts were combined
with probiotic bacteria and polysaccharides to produce an innovative synbiotic beverage.
After 21 days, the synbiotic beverage included 108 CFU/mL of L. casei, with excellent
survival throughout the storage period (108 CFU/mL) and 106 CFU/mL of L. plantarum.
Inulin and oligofructose increased strain growth and viability in cold storage while also
providing better sensory scores [4].
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Table 2. Influence of plant polysaccharides on probiotic viability in fermented food products.

Product Polysaccharide Probiotics VC Effects References

Dairy Products

Yogurt

inulin

BB, LB, SS, LA 6.40–7.78

Increased the organoleptic properties of low-fat
synthetic yogurt and was comparable to full-fat
probiotic yogurt in its
performance characteristics.

[122]

BL, LA, ST, LB >6.0
There were appropriate sensory quality
attributes and had identical ratings to the control
yogurt study.

[123]

TG, inulin LC, BB 6.0–7.8
The texture of the yogurt was degraded, the
syneresis was increased, and the sensory score
was low.

[14,124]

β-glucan BA >7.0
Sensory characteristics of probiotic yogurts
enhanced hastened acidification and
increased viscosity.

[111]

SGP ST, LB, LPL, LRH >6.0 There was an enhancement of both the
proliferation of LAB and acidifying activity. [12]

Inulin, modified
starch LC >6.0

There was a detrimental effect on product
acceptability (overall impression, flavor,
appearance, and texture).

[125]
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Table 2. Cont.

Product Polysaccharide Probiotics VC Effects References

Probiotic
powder milk Hi-maize starch LPL >8.0

There were consistently maintained viable cell
counts in refrigerated conditions, simulated
gastric and intestinal transit.

[126]

Creamy goat
cheese Inulin LA, BA >6.0

Better consistency and were less firm; increased
fatty acids, lactic acid and essential amino acids
lead to higher acidity and lower pH.

[127]

Ice cream

Inulin SB >6.0 Enhance the physicochemical properties. [107]

Inulin, resistant
starch LPL >7.0

There was a substantially improved probiotic
viability; microcapsules containing inulin
outperformed those containing starch in terms
of probiotic life.

[128]

Non-dairy products

Soymilk Inulin BA, LA, ST >6.0
Fermentation reduced the amount of raffinose
and stachyose. Therefore, there is no impact on
the rate of acidification.

[129]

Fruit and
vegetable
Juices

Inulin

LB >6.0 Fermented fig juices increased polyphenols’
bioavailability and were rich in antioxidants. [130]

LPL, LA >6.0
The quality of juices increased; monosaccharide
concentration remained high, and the best
survival of L. plantarum at 30 days.

[115,116]

LRH >7.0
Overall acceptability due to flavor, texture and
seemed to favor apple cider juice with
long-chain inulin fiber.

[121]

Cereal
beverages Inulin LC, LPL >6.0

There were good sensory qualities and viability
of over 55% for all the strains under
gastric conditions.

[4]

VC: viability count (log CFU/mL or g); TG, Tragacanth gum; SGP, Sphallerocarpus gracilis polysaccharides; SB, Saccharomyces boulardii;
BB, Bifidobacterium bifidum; LB, Lactobacillus bulgaricus; ST, Streptococcus thermophilus; LA, Lactobacillus acidophilus; BL, Bifidobac-
terium lactis; LP, Lactobacillus paracasei; LC, Lactobacillus casei; BA, Bifidobacterium animalis subsp. Lactis; LR, Lactobacillus reuteri;
LRH, Lactobacillus rhamnosus, LF, Lactobacillus fermentum; LPL, Lactobacillus Plantarum.

The Health Benefits of Fermented Foods Containing Plant Polysaccharides and Probiotics

The development of functional foods is growing to help tackle public health issues,
including chronic diseases such as obesity, cardiovascular disease, cancer and diabetes.
Table 3 denotes the studies on the health benefits of fermented foods containing plant
polysaccharides. For example, Ahmad et al. [131] demonstrated an improvement in lipid
profiles, namely lowered total cholesterol, low-density cholesterol lipids, and blood pres-
sure after hypercholesterolemic individuals were given yogurt from sheep and cows
combined with dietary fiber for 30 days. Ice cream combined with water-soluble extracts
from rice by-products and prebiotic ingredients had a better health index such as improved
ACE inhibitory activity and antioxidant activity [132]. A synbiotic yogurt demonstrated
significant hypolipidemic potential through a weekly biological analysis for lipids pro-
file of rabbits with hyperlipidemia after feeding a diet containing varying quantities of
synbiotic yogurt. The total triglyceride levels (155.00 ± 8.88 mg/dL), cholesterol levels
(124.00 ± 7.10 mg/dL), low-density lipoprotein levels (13.27± 0.76 mg/dL), and extremely
low-density lipoprotein levels (57.04 ± 3.27 mg/dL) decreased significantly, while high-
density lipoprotein levels (53.70 ± 0.35 mg/dL) improved [133].

Another study on yogurt consumption with a Korean citrus hallabong peel polysaccha-
ride (RG) showed that yogurt’s daily consumption with RG improved natural killer (NK)
cells’ potential and attenuated the levels of pro-inflammatory cytokines. After 8 weeks of
therapy, the testing group showed considerable decreases in IL-6 and IL-1 levels compared
to the placebo group. These results highlight the possible use of RG yogurt in nutritional
supplements as a route to improve immune efficiency and decrease chronic inflamma-
tion [134]. As a result, adding prebiotic polysaccharides to fermented materials would
boost the products’ anti-hypertensive and anti-diabetic characteristics studied in vitro.
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Table 3. Health benefits of the intake of fermented foods with plant polysaccharides.

Products Polysaccharide Health Effect Condition References

Yogurt

Dietary fiber Fortified yogurts substantially lowered TC, LDL-C, and
blood pressure in hyper cholesterol patients. In vivo [131,135]

Inulin Synbiotic yogurt’s intake strengthened hepatic
characteristics in nonalcoholic fatty liver disease patients. In vivo [136]

Inulin and wheat fiber There was a rise in proteolysis levels resulting in
antioxidant and ACE-inhibitory properties In vitro [137]

PR It intensified the levels of pro-inflammatory cytokines and
improved the activity of NK cells. In vitro [134]

Sheep milk ice
cream Inulin

L. casei had a strong adhesive capacity for Caco-2 cells,
ensuring a therapeutic impact on the host; significant
antioxidant and anti-hypertensive properties increased the
product’s bioactivity.

In vitro [138]

Synbiotic group significantly reduced p53 expression and
apoptosis index in colonic crypts and significantly reduced
micronucleated colon cells.

In vivo [139]

Soy yogurt Inulin
There was a protective effect on milk cultures’ viability, with
decreased pH, total phenolic content and increased acidity
had higher antioxidant activity during storage.

In vitro [112]

Salami

Dietary fibers
There was an increase in antioxidant capacity, production of
SCFAs, the change in gut microbiota structure, and
reduction of intestinal pathogens.

In vitro [140]

Citrus fiber
In four weeks, there were improved inflammatory,
immunological, antioxidant plasmatic markers, and
butyrate production.

In vivo [141]

Sausages Inulin
There was an influence on the intestinal microbiota activity,
elevated levels of SCFAs in fecal and plasma metabolome,
and increased Bifidobacterium.

In vivo [142]

Oat-Banana
Fermented
Beverage

β -glucan

The relative gene expression levels in the selected strains
were related to the L-lactic acid produced in the two media.
The plant matrix promoted greater ldhL gene expression in
the first 4 h of the experiment.

In vitro [143]

TC, Total cholesterol; LDL-C, Low-density lipids cholesterol; ACE, Angiotensin-converting enzyme; SCFAs, Short-chain fatty acids;
NK, Natural killer; PR, Polysaccharide rhamnogalacturonan; ldhL, L-lactate dehydrogenase gene.

3.2.2. Plant Polysaccharides and Microbial Fermentation Products as Sources of
Bioactive Compounds

Fermentation can produce or increase bioactive compounds’ bioavailability [6] and
generate new substances including short-chain fatty acids (SCFAs), B-group vitamins,
organic acids, microbial polysaccharides, ethanol and bacteriocins, with specific functions
such as nutritional supplements, weight loss supplements, and dietary substitutes [6].
The SCFAs (butyrate, propionate and acetate) are the main components of fermentation
products and are easily absorbed by the human body [144], and provide a variety of
health advantages for the host, including immune control [145], regulation of mucosal
inflammation, proliferation, mineral absorption, colorectal carcinogenesis, and nitrogen
compound removal [146].

Asarat et al. [147] collected SCFAs from fermented reconstituted skim milk with
polysaccharides (β-glucan, inulin or resistant starch/hi-maize). It was found that, com-
pared with β-glucan or hi-maize, inulin significantly promoted SCFAs production by
L. rhamnosus. In addition, SCFAs extracts were subsequently used in human peripheral
blood mononuclear cells (PBMCs) in vitro immune modulation trials. SCFAs inhibited the
expression of tumor necrosis factor-alpha, interleukin (IL)-12, interferon-gamma (IFN-g),
and transforming growth factor beta-1 (TGF-b1) in lipopolysaccharide LPS-stimulated
PBMCs, but they increased the expression of IL-4 and IL-10. The study showed that SCFAs
regulated anti-inflammatory cytokines media in LPS-stimulated PBMCs.
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Mangefira pajang polysaccharides and inulin improved the growth of probiotics and
their capacity to generate organic acids (propionic, lactic and acetic acids) during probiotic
yogurt production, but there was no significant difference in organic acid production
between inulin yogurt and Mangefira pajang polysaccharide yogurt [148]. Plant polysac-
charides as prebiotics can enhance the growth of selected bacteria and increase natural
vitamin levels during the fermentation of both dairy and non-dairy products. Albuquerque
et al. [8] assessed the effect of fructooligosaccharide (FOS) and passion fruit by-products
on the fermentation of different soymilk formulations through increasing folate content
using LAB. St. thermophilus provided the most abundant folate in all products, whether
used alone or in combination with lactobacilli strains. The findings were viewed as a less
costly technical method to increase folate in non-dairy fermented foods. Regarding folate
supplements, are mainly synthetic folate form (folic acid), which is synthesized chemically.
More than 60 countries worldwide are undertaking mandatory folate fortification programs
that rely on these synthetic vitamins to reduce the incidence of neural tube defects [149].
Consequently, high folic acid consumption was linked to several negative side effects,
including hiding symptoms of vitamin B12 insufficiency and potentially promoting the
development of colorectal cancer, while folates naturally found in foods or synthesized
by probiotics and prebiotics do not have these detrimental effects due to its relatively low
absorption rate [150].

4. Conclusions and Future Perspectives

Plant polysaccharides are used in fermented foods such as dairy products (fermented
milk, yogurt, ice cream, and cheese), fruits and vegetables, soy and cereal products, as well
as meat products due to their functionalities and biological activities. Their suitability in
terms of improving food properties (acceptability, flavor, appearance, and texture), stimulat-
ing the growth of probiotic bacteria (LAB and Bifidobacteria), and helping to strengthen the
gastrointestinal and immune systems, primarily as prebiotics, with promising results for
anti-hypertensive and anti-diabetic properties, increased blood pressure lipid composition,
and enhancement of ACE inhibitory activity, was proven in vivo or in vitro.

Despite tremendous advances in plant polysaccharide research in fermented foods,
there are still more challenges in practical applications. Foremost, extraction is a crucial
step in producing usable plant polysaccharides. Their purity and extraction rates have
improved from one method to another; nevertheless, specific methods are unfriendly to
the environment, time-consuming and require high temperature, resulting in low polysac-
charide yield and quality. Since obtaining pure polysaccharides with a single approach is
inefficient, combining techniques is necessary to maintain the yield, consistency, chemical
structure, and biological activity of polysaccharides. Moreover, it is essential to produce
high-purity polysaccharides on a wide scale to satisfy the requirements as processed food
ingredients or additives while maintaining their structural stabilities and bioactivities.

The next consideration is meat products, which accentuate the negative features of
saturated fat, excessive salt, chemicals, and lack of fiber in consumer diets. Therefore,
adding polysaccharides and probiotic strains to fermented meat products has proven
beneficial. More research is required on using plant polysaccharides (prebiotics) in meat
products to improve nutritional qualities due to their potential effects and no side effects on
human health. Innovative formulations with increased polysaccharides and probiotics and
lower salt, nitrite/nitrate, or cholesterol content may enhance meat product technology
and result in more nutritional fermented meat products.

Furthermore, people nowadays are increasingly interested in consuming nutritious
foods that can improve their lives. Another area of interest for future research of plant
polysaccharides is determining their synbiotic advantages with probiotics in producing
biological components such as vitamins (folate), enzymes (β-glycosidase), and other com-
pounds in fermented dairy and non-dairy products. For example, more than 60 countries
have adopted mandatory folic acid fortification programs, which are chemically synthe-
sized, and high doses of folic acid intake were associated with several adverse effects,
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including hiding symptoms of vitamin B12 deficiency and the possibility of colon can-
cer. Natural folate production by combining polysaccharides and lactic acid bacteria in
fermented milk is a promising approach to increase folates content in foods. In a word,
given the prevalence of non-communicable diseases, functional foods containing plant
polysaccharides are the most unique approach to preventive or complementary therapies.
In this review, we found few studies on the therapeutic effects of plant polysaccharides in
fermented foods. Therefore, additional clinical trials are needed to evaluate whether the
benefits of these foods will be sustained in longer-term treatments.
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Acronyms Used:

LAB Lactic acid bacteria UHPE Ultra-high pressure extraction
MW Molecular weight TC Total cholesterol
FOS Fructooligosaccharide LDL-C Low-density lipids cholesterol
SCFAs Short-chain fatty acids ACE Angiotensin-converting enzyme
UAE Ultrasonic-assisted extraction PR Polysaccharide rhamnogalacturonan
ASE Alkaline solvent extraction OP Okra polysaccharide
EAE Enzymatic-assisted extraction KP Kernel polysaccharide
UAEE Ultrasonic-assisted enzymatic extraction DOP Dendrobium Officinale polysaccharide
MAE Microwave-assisted extraction TG Tragacanth gum
UMAE Ultrasound-microwave assisted extraction ldhL L-lactate dehydrogenase gene
HPLC High-performance liquid chromatography PBMCs peripheral blood mononuclear cells
T2DM type 2 diabetes mellitus
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