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Abstract

In response to the outbreak of the coronavirus disease 2019 (Covid-19), governments
worldwide have introduced multiple restriction policies, known as non-pharmaceutical inter-
ventions (NPIs). However, the relative impact of control measures and the long-term causal
contribution of each NP1 are still a topic of debate. We present a method to rigorously study
the effectiveness of interventions on the rate of the time-varying reproduction number R;
and on human mobility, considered here as a proxy measure of policy adherence and social
distancing. We frame our model using a causal inference approach to quantify the impact of
five governmental interventions introduced until June 2020 to control the outbreak in 113
countries: confinement, school closure, mask wearing, cultural closure, and work restric-
tions. Our results indicate that mobility changes are more accurately predicted when com-
pared to reproduction number. All NPIs, except for mask wearing, significantly affected
human mobility trends. From these, schools and cultural closure mandates showed the larg-
est effect on social distancing. We also found that closing schools, issuing face mask
usage, and work-from-home mandates also caused a persistent reduction on R; after their
initiation, which was not observed with the other social distancing measures. Our results are
robust and consistent across different model specifications and can shed more light on the
impact of individual NPIs.

Introduction

The coronavirus disease 2019 (Covid-19) pandemic has caused an enormous impact on the
economy and on global public health. As of January 1* 2022, the disease had over 290 million
cases and more than 5 million deaths recorded in over 200 countries and territories [1]. In
response to the state of emergency declared by the World Health Organization (WHO) in Jan-
uary 2020, governments worldwide have introduced multiple restriction policies, known as
non-pharmaceutical interventions (NPI), to mitigate the spread of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Today, two years from the first outbreak registered in
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Wuhan China, the relative impact of control measures and the long-term causal contribution
of each NPI are still a topic of debate.

In June 2020, Flaxman and colleagues [2] pioneered the challenge of estimating the effec-
tiveness of major interventions on the transmission of SARS-CoV-2. On the basis of mortality
data and a Bayesian hierarchical model, they concluded that lockdowns had been effective in
most European countries that were studied. Since then, due to the increased widespread adop-
tion of restrictions, several studies have attempted to disentangle the effect of individual NPIs
in several countries [3-10] or in the US alone [11-17]. Overall, most previous mathematical
modeling suggest that public health interventions were associated with a reduction of Covid-
19 incidence. Nonetheless, the conclusions regarding the effect of each specific intervention
are not unequivocal. For example, [4, 5, 7, 8, 18] point out that school closures had a significant
effect on the transmission of new infections, while a review conducted by [19] suggested that
closing schools did not contribute to controlling the pandemic in countries like China, Hong
Kong, and Singapore. In fact, existing evidence for the impact of policies is not consistent in
the literature, as NPI effectiveness may vary across regions depending on the local context
[16]. However, even with heterogeneous effects across countries, we found that estimating an
overall effectiveness of interventions was possible due to generalization power encountered in
cross-country data, which also contained a large enough sample size to detect a causal effect.

In this study, we provide a comprehensive analysis of the employment of five NPIs—
confinement, school closure, mask wearing, cultural closure, and work restrictions—in 113
countries during the first 5 months of 2020. We observed that during the first-wave period
there was a great deal of consistency in the set of restriction measures imposed throughout the
world, which was substantially reduced in the subsequent waves. Thus, we focus on the initial
outbreak period, when the long-term consequences of the virus were still poorly understood,
vaccines were still not available, and policy-makers were not certain which control measures
would be effective. With this approach, we hope to suggest a method to infer the efficiency of
restriction measures and to inform future urgent preparedness response plans in the time-crit-
ical phase of a pandemic.

We estimate the impact of individual NPIs on social distancing and Covid-19 spread using
causal analysis methodology, taking into account confounding factors such as concurrent
NPIs, Covid-19 morbidity measures, and country-level socio-economic and demographics fac-
tors. We tested two different variables as outcomes in the causal effect estimation. First, we
analysed how NPIs influence the mobility trends across different categories of places such as
residential and retail/recreation areas. In the second approach, we evaluated the effect on the
growth rate of the reproduction number R;, i.e., the rate by which the pandemic spreads. To
the best of our knowledge, this is the first study to quantify NPI effectiveness using a causal
inference framework in such a wide geography coverage, while accounting for confounding
biases and performing sensitivity analyses to assess the robustness of our findings.

Materials and methods
Data collection and pre-processing

Non-pharmaceutical interventions. We extracted the data on the restriction policies in
113 countries using the Worldwide Non-pharmaceutical Interventions Tracker for Covid-19
(WNTRAC) [20], a comprehensive database consisting of over 8, 000 Covid-19-related NPIs
implemented worldwide. WNTRAC was updated periodically until October 5 2021, and we
use the latest release for the analyses described hereby, which covers the period until the day
before. For our experiments, we selected a subset of the five most well-defined and frequently
imposed NPIs in the data: confinement, entertainment/cultural sector closure, work
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Table 1. Description of the five NPIs used in this study.

NPI Description

School closure Closing of any school category: kindergartens/daycares, primary/secondary schools or
universities.

Cultural closure Closing of any cultural establishment: bars, restaurants, night clubs, museums, theaters,
cinema, libraries, festivities, parks and public gardens, gyms and pools, or churches.

Confinement Physical distancing and universal lockdown measures. Considered as imposed when it is
mandatory for the entire population.

Work-from-home Work restrictions and mandatory work-from-home orders for all nonessential workers.

order

Mask wearing Facial coverings or mask wearing. Considered as imposed if it was mandatory or

recommended in public spaces.

https://doi.org/10.1371/journal.pone.0265289.t001

restrictions, mask-wearing, and school closure. Table 1 shows each NPI with its respective
description.

Mobility trends. To infer people’s dynamic behavioral response to restriction policies, we
obtained Google mobility data [21]. These reports include the per-day change in movement
across different categories of places compared to a baseline day before the pandemic outbreak.
Similar to [17], we chose the change in duration of time spent in residential areas as a primary
metric to measure social distancing and policy adherence. We additionally considered the
effect of NPIs on the changes of movement in retail and recreation areas, generally seen as
nonessential visits. For each category, we smoothed weekly patterns by using the seven-day
rolling averaged mobility. When values were missing, we performed a linear interpolation. We
used country-level information for all countries in our analysis, except for the US, which con-
tained state-level data for both NPI and mobility data.

Socio-economical and health indicators. We used development indicators compiled
from officially recognized international sources to account for heterogeneity in terms of socio-
economic and health factors within individual countries. From the World Bank’s World
Development Indicators (WDI) [22], we selected a subset of variables, including access to elec-
tricity, outdoor air pollution, and forest area. We also included country-level health informa-
tion, ranging from life expectancy at birth, smoking rate, and prevalence of
undernourishment. As we have indicators per year, we take the most recent metrics available
per country. Similar covariates were used in previous works [3, 4].

We also included variables describing population distribution, age-structure, and human
development index from Our World in Data (OWID) [23]. To avoid producing highly biased
estimates with missing values imputation, we only analysed countries with data available for at
least 70% of the WDI and OWID variables and imputed the remaining missing features with
the mean. We characterize each country with a cluster ID obtained through DBSCAN cluster-
ing [24] (scikit-learn, version 1.0.1) performed on the vector of socio-economical and health
features (see S1 Table in S1 Appendix with the final set of features, S1 Fig in Appendix E1 of S1
Appendix for a detailed explanation on the clustering method and S2 Fig in Appendix E2 of S1
Appendix for analysis on the robustness of missing values imputation).

Covid-19-related variables. Our model used daily cumulative confirmed cases and deaths
from the WHO reports [25]. Before estimating R, we smoothed the number of new cases over
time with a local polynomial regression using a window size of 14 days and a polynomial
degree of 1 to minimize the impact on the edges. The 14 day span (7 days forward and back-
ward) was used to ensure that an equal number of weekdays was used for smoothing and to
account for a time lag between exposure, testing, and documenting case reports. We used the
R package EpiEstim developed by Cori and colleagues [26] and extended by Thompson et al.
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[27]. We chose a gamma distributed serial interval (mean, 3.96 days [SD, 4.75 days]; this inter-
val was constant across periods and derived from previous epidemiological surveys on Covid-
19 [28]), to estimate R, and its 95% credible interval on each day via a 7-day moving average.
EpiEstim was chosen due to its statistically robust analytical estimates and extensive use in the
disease epidemiology literature.

Because estimating the serial interval distribution may not be possible in the early phase of
an outbreak, or may be associated with significant uncertainty as countries still had to establish
their documentation practices, we exclude the period before 100 cumulative cases of each
country from our dataset. Therefore, the window of analysis for each country starts on the day
the cumulative cases exceeded 100 and ends on June 1% 2020. When concatenating all data
sources, we found an intersection of 113 countries that were used in our final analysis. Coun-
tries like China, Iran and part of central African countries were excluded due to missing
mobility data (see geography selection in Appendix E3 of S1 Appendix).

Statistical analysis

Outcome prediction. To investigate whether the observed variables (Covid-19 morbidity
measures, socio-economical factors and status of NPIs) contained the predictive power for the
outcomes of interest, we built prediction models to estimate R; and the change in mobility. We
split the dataset into two non-overlapping sets: 70% of samples used for training and 30% for
validation. We used the gradient boosted trees algorithm with the XGBoost [29] package (ver-
sion 1.2.0; https://xgboost.ai), with hyperparameters tuned using 5-fold cross validation on the
train dataset, via a randomized grid search. The TreeExplainer from the SHapley Additive
exPlanations (SHAP) [30] package was fit on the validation set to estimate the association and
contribution of each feature to the XGBoost model.

We evaluated the accuracy of the predictions using the mean-squared error (MSE). To
compare between the performance of different models at different scales, we normalized the
estimates and the observed values in the test set before computing the MSE. The 95% confi-
dence intervals (CI) were obtained with 100 bootstrapping iterations.

Potential outcome framework. We formulated causal effects in terms of the potential
outcome framework [31].

Each country i at each point in time ¢ is characterized by a feature vector X;,, consisting of
dynamic variables—the cumulative and new number of cases/deaths per million—and a static
variable—a socioeconomic cluster ID, which is country-specific and constant over time. In
addition, we included information regarding the status of the restrictions. This is a feature vec-
tor containing a set of binary features corresponding to whether other NPIs are in place at that

time point. We denote Y as the potential outcome in a given country i on day ¢ for binary
treatment a.

We were interested in two possible outcomes: (i) ij), the difference in the country-level
mobility defined as in [32] and (ii) Rfj) , the change in SARS-CoV-2 transmission represented

by a ratio of the reproduction number R;, defined as in [9]. We evaluated the outcomes with
respect to a time-lag w (in days), as follows:

M =M

it+w

- M, (1)

R,
R('a) _ _httw 2
it R,“t ( )
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In this study, we considered the effect on the outcomes 2 weeks after the NPIs were
enacted + 1 week (i.e., w =7, 14 and 21). Our goal was to estimate the Average Treatment
Effect on the Treated (ATT), defined as

ATTy, = Ex~x\A:1 [Y|A = 17X} - ]Ex~X\A:1 [Y‘A = O,X]

and

Ex~X\A:1 [Y|A =1, X]

ATT, =
: ]ExNX\A:l[Y|A = O7X]

where ATT,;and ATTy denote the causal effects of human mobility trends and Ry, respec-
tively. Thus, a null effect of NPIs on mobility would be equivalent to ATT), = 0. Similarly, a
null effect on R; corresponds to ATTy = 1.

To identify such a causal effect, we make several assumptions: (i) conditional exchangeabil-
ity (ii) Stable Unit Treatment Value Assumption (SUTVA) and (iii) positivity. Identifying the
ATT requires a weaker version of the assumptions above, as we are only estimating potential
outcomes for the treated part of the population. A detailed discussion about the assumptions
can be found in Appendix E5 of SI Appendix.

Study design. A crucial component for estimating causal effect from observational studies
is the ability to conceptualize and to emulate randomized experiments. To this end, we
designed a cohort study exclusively separating samples (in this case, days) from the treatment
and control groups. For each NPI k € K, we defined an event as the day NPI k was enacted in a
certain country, given that this intervention was not in action the day before. We denote this
day t;. We defined the treatment group for NPI k as the set of ; in the 113 countries during
their respective period of analysis (Fig 1). The control group includes all days in the cohort
except t; £ wVk where w is the number of days before and after the event, and it is also the
same time-lag period defined in Eqs 1 and 2. The control cohort represents a period where
none of the five NPIs were enacted (an event did not occur), but they might still be in place
during that period. Unlike the treatment groups, which are NPI-specific, the control groups
are the same for all NPIs used as treatment.

Covariate balancing. We used Adversarial Balancing (AdvBal) [33] to estimate the mean
potential outcome of the control group. In brief, AdvBal borrows principles from generative
adversarial networks to assign weight to each sample in some source data, such that the result-
ing weighted data becomes similar to a given target data. Unlike the original paper, we defined
only the treated group as the target population, and not the entire population, i.e., we fixed the
weights of the treated samples and adjusted the weights of the control in order to balance the
groups. The implementation of AdvBal and the resulting balancing evaluation of the models
were done with the Python package causallib [34] (version 0.7.1; https://github.com/IBM/
causallib). The final effects and the associated 95% confidence intervals were computed with 1,
000 bootstrap samples.

Sensitivity analysis. We performed sensitivity analyses to test our conclusions under dif-
ferent scenarios. First, we reran our framework with a different model to estimate treatment
effect from observational data. We used inverse probability weighting (IPW) [35], a longstand-
ing popular method that overcomes confounding by weighting samples by the inverse of their
probability of being assigned to their treatment, conditioned on their covariates. These proba-
bility parameters were estimated with a logistic regression model. Once confounding was
adjusted and the weights were computed, we estimated the causal effect on the treated sample
as a weighted average of the outcome.
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Fig 1. Schematic presentation of the study design. Vertical lines represent days. We denote day #; (in red) as the day when NPI k was enacted,
considering that this NPI was not active the day before (i.e., event date). The treatment group for NPI k consists of t; across all countries. The control group
are the remaining days (in blue) outside the time interval f; = w, where w is a lag period.

https://doi.org/10.1371/journal.pone.0265289.g001

Second, we performed a complementary analysis to test whether the estimated effects were
consistent when using an alternative study design. In this approach, the treatment groups are
the same as in the original study (Fig 1). On the other hand, the control group consists of
events from the remaining NPIs (apart from the NPI used as treatment). For example, if we
were to estimate the effects of NPI k € K, the treated group would contain only the events for
this specific NP, t;, whereas the control group would be the events of all other NPIs K , as
long as these events do not overlap with ¢;.

The entire workflow of our study is simplified in Fig 2.

Results
NPI employment statistics

As a preliminary step, we examined the frequency at which each NPI was imposed in the 113
countries (Fig 3). Since governments introduced and lifted lockdowns and social distancing
measures consistently throughout time, we observed a continuous growth in the number of
confinement events (Fig 3A). This behavior was the opposite for mask wearing events, which
had a swift and sustained increase until October 2020, and then stayed constant for the rest of
the period. By the end of March 2020, over 60% of all documented NPI events until October
2021 had already happened. We then analysed the distribution of NPIs across different coun-
tries before and after June 1% 2020 (S6 Fig in Appendix E9 of S1 Appendix). We discovered
that in the first wave, most countries imposed a large and diverse set of NPIs, which was greatly
reduced in the following waves. For example, European countries like Spain and Italy intro-
duced very similar government policies during their first waves, but adopted different strate-
gies in the subsequent period: while Italy imposed similar preventive measures with less
frequency, Spain placed more emphasis on lockdowns. Overall, throughout 2021, countries
had to choose the appropriate NPIs that best fit their socio-economic circumstances and grad-
ually lifted restrictions to avoid negative impacts in the economy [36].

Because a large number of restriction measures were initiated simultaneously in multiple
countries within a short period of time, we analysed the events’ coincidence per country until
end of May 2020. The co-occurrence matrix in Fig 3B shows that the NPIs are co-linear in this
period, i.e., they frequently co-occurred. For example, out of 57 confinement events, 12 of
them occurred within a period of two weeks (seven days earlier or later) of a work restriction
event in the same country. When high co-linearity exists, individual effect estimates are more
challenging, as it is harder to identify what in fact drives the change in SARS-CoV-2 transmis-
sion. To overcome this problem and to control for the influence of individual NPIs on the
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Data collection and pre-processing
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Fig 2. Study workflow. The study can be divided into three main parts: data collection and pre-processing, outcome prediction and causal effect
estimation.

https://doi.org/10.1371/journal.pone.0265289.9002

estimated effects, we opted to add the status of NPIs as confounders to our causal model (recall
section Potential outcome framework).

Predictors of mobility change and Covid-19 R,

The prediction performance on the validation dataset of both outcomes and their feature con-
tribution plots are summarized in Fig 4 (see S3 Table in Appendix E4 of S1 Appendix for tech-
nical specifications of the XGBoost algorithms). To evaluate the performance of the XGBoost
models, we compared their accuracy to the one of a model based on permutation tests [37].
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This model generates a null distribution by calculating the normalized MSE under the null
hypothesis, where in each bootstrap replicate the features are kept the same but the outcomes
undergo different permutations. We found that for all scenarios considered in this study (dif-
ferent time lags and different outcome variables), the features we utilized showed enough sta-
tistical power to allow a good prediction (Fig 4C). Associations between the outcome variables
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Fig 4. Important predictors of outcome and accuracy of prediction for different time-lags. (A) Identification of top-10 predictive variables affecting R,
estimation. (B) Top-10 most contributing features for residential mobility estimation. SHAP analysis in A and B is based on predictions using a time-lag of
7 days. Each dot represents a single data sample in the validation set (i.e., country at a date). The dot color represents the feature value (red = high,

blue = low). The farther a dot is from 0 on the x-axis, the more effect (positive or negative) this feature had on the prediction model for this particular
sample. (C) Model performance (log of normalized MSE) of R, (solid dark blue line) and residential mobility (solid green lines) in the validation set for
different time lags. The dashed lines of the same color correspond to random prediction derived by permutation tests with their respective models. Both

models significantly outperformed random prediction.
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and baseline features can be visualized using SHAP “beeswarm” plots, that show the top-10
contributing features for the outcomes prediction using a time-lag of 7 days (Fig 4A and 4B).
The strongest predictor of R, was its own value 7 days before, implying a clear positive associa-
tion between R, measures within a one-week period (Fig 4A). Such strong a association was
not observed with other important features, such as confirmed cases and deaths. Changes in
mobility within several categories also impacted the R, prediction. In particular, an increase in
mobility in workplaces and retail contributed to a higher SARS-CoV-2 transmission. The fea-
ture importance analysis of residential mobility prediction revealed that mobility categories
are highly correlated: as the time spent at home increases, the movement outside residence
decreases (Fig 4B).

Estimated effect of interventions on policy adherence and SARS-CoV-2
transmission

We derived causal effect estimates using balancing weights that minimized the confounding
biases. The absolute standard mean difference (ASMD) was used as a measure to compare the
distribution of observed baseline covariates between treated and untreated groups. The AdvBal
algorithm could significantly decrease differences between covariate distributions, bringing
the ASMD to less than 0.25 for all covariates (S3 Fig in Appendix E6 of S1 Appendix). This
value is considered a reasonable cutoff for acceptable standardized biases, indicating that the
effect estimates are reliable and robust to confounding [38].

We report the estimated causal effects ATT wand ATT » Without balancing weights
(unadjusted) and with balancing weights generated by the AdvBal algorithm and IPW (Fig 5).
The estimated effects were compared with different models to show how the results change
under different scenarios, and to strengthen our analysis by providing strong corroboration

Mobility in residential areas Reproduction number
7 days i e - 7 days
Confinement - 14 days H % — = 14 days - Confinement
21 days [ = e® 21 days
7 days e =& 7 days
Cultural closure - 14 days a. ~ S 14 days - Cultural closure
21 days & = & 21 days
7 days > & 7 days
Mask wearing - 14 days e & 14 days - Mask wearing
21 days S = 3 21 days
7 days H 8- o=0—i 7 days
School closure - 14 days i = & @ i 14 days - School closure
21 days i &= = e i 21 days
7 days 1 e~ =8 7 days
Work restrictions - 14 days H e - ® AdvBal a @ i ® AdvBal 14 days - Work restrictions
21 days H & - @ Pw - & o PwW 21 days
| @ Unadjusted @ Unadjusted
-3 0 3 6 9 12 15 18 21 24 0’6 08 1.0 12 14
ATT ATT

Fig 5. Estimated causal effects of NPIs over time on residential mobility (left) and reproduction number rate
(right). In both plots, the opacity of the markers represents the ability of the balancing weights method to balance the
treatment groups: the smaller the ASMD is, the more opaque the markers are. Fully opaque markers indicate an
ASMD <0.1, half-transparent markers indicate 0.1 < ASMD < 0.25 and most transparent ones represent

ASMD > 0.25. Apart from mask wearing mandates, all NPIs caused a significant increase in time spent at home. Of
those, school and cultural closures were the most effective. Closing schools, issuing face mask usage, and work-from-
home mandates also caused a persistent reduction in R, after their initiation, which was not observed with the other
social distancing measures. Code used for generating figure is available at https://github.com/barakm-ki/symptoms-
dynamics-of-COVID-19-infection/blob/master.

https://doi.org/10.1371/journal.pone.0265289.g005
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for the correction of bias. All estimates are presented with 95% confidence intervals and
were obtained after assessing whether the balancing weights approaches were able to reduce
biases.

Our results suggest that the full extent of NPIs, except mask wearing, significantly affected
human mobility change as early as 7 days after their initiation. However, changes in mobility
varied between these 4 restrictions. School and cultural closures caused a quick and sustained
increase in the time spent inside the home, whereas confinement and work-from-home orders
had a slower and plateauing effect over time. Estimates from the AdvBal algorithm suggest
that, following the introduction of NPIs, the time spent at home 14 days later was estimated to
increase by 9.06% [95% CI: 6.86%, 11.10%], 9.22% [95% CI: 6.90%, 11.66%], 13.29% [95%CI:
10.57%, 15.95%] and 11.38% [95%CI: 8.83%, 13.80%], in response to confinement, work
restrictions, school and cultural closure, respectively. Since people already spent a lot of time
in their residence before the pandemic, movement changes in residential areas were likely to
be smaller compared to outside locations, such as recreation and retail areas (S4 Fig in Appen-
dix E7 of S1 Appendix).

From the five interventions considered, all except cultural closure and confinement
caused a significant decline in the transmission of SARS-CoV-2, but within different time

lags. It took an estimated 7 days after initiation of school closures to bring ATT r below 1, as
opposed to 14 days for face mask mandates, and 21 days for work restrictions. By the end of
3 weeks, school closures had continuously reduced R, until 0.81 [95% CI: 0.63, 0.98], mask
wearing caused a decrease until 0.81 [95% CI: 0.73, 0.88], and work-from-home orders led to
R reduction of 0.84 [95% CI: 0.75, 0.93]. Overall, the confidence intervals for the individual
effects of all restrictions overlapped, suggesting a comparable effect between each other.
IPW and the AdvBal algorithm showed similar trends in their resulting effects, but the bal-
ancing of covariates was marginally better on the latter (S3 Fig in Appendix E6 of S1
Appendix).

Results of a complementary analysis based on an alternative study design are described in
Appendix E8. We found that under a stricter cohort design, where we compare the effect of
NPIs with respect to the other NPIs, school closure had the greatest impact on increasing
mobility in residences and in reducing R, 14 days after its initiation (S5 Fig in S1 Appendix).

Discussion

We constructed a dataset that combines rich information about countries and their reaction to
the urgent need to control the pandemic spread. The data include information on social-eco-
nomics and health benefits, NPIs, and mobility data from more than 100 countries. We
showed that the data have predictive power, and that the prediction of changes in mobility
after imposing NPIs is more accurate than the prediction of the reproduction number. We
employed a causal inference approach to quantify the effect of NPIs on the rate of R, (i.e.,
transmission of SARS-CoV-2) and on the change of human mobility, which is considered a
proxy measure of population adherence and social distancing. The purpose of this study was
to help infer the efficiency of interventions in the early months of a pandemic, when a number
of control measures had already been imposed by multiple countries in the absence of
vaccines.

The most common use of causal inference seeks to estimate the average treatment effect
(ATE). Such an analysis would answer questions such as “what would have happened if every
country applied the NPI?”. However, in this case an analysis of this type proved to be unfeasi-
ble, since it was not possible to balance the confounding differences between the treated and
untreated countries. We therefore opted to measuring the impact of NPIs in the countries that
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chose to impose the NPIs, which is known as the average effect on treated (ATT). This answers
the question of “what was the effect of applying the NPIs in the countries that applied it?”. This
approach allowed covariate balancing, which provided more reliable estimates of the effect of
NPIs.

Our findings showed that mask wearing did not significantly impact mobility patterns in
the first wave. Although a number of countries favored face mask usage early in their out-
breaks [39], the main reason people changed their behavior was social distancing policies. We
found that issuing confinement, work-from-home orders, or school/cultural closure mandates
resulted in high levels of policy compliance even one week after their initiation, as measured
by changes in movement in residential areas. This result was consistent with recent findings
[32, 40].

The estimated effect on R, showed that not all NPIs significantly contributed to a decrease
in SARS-CoV-2 transmission. In particular, school closure achieved a sustained decline on the
rate of R, similar to what was found in observational studies of the first wave [4, 5, 7-9] and
second European wave [41]. Because infected children can experience mild or no symptoms
more frequently than older individuals [42] and tend to have more social contact than adults
[43], it is expected that closing schools would considerably contribute to reduce the transmis-
sion. In contrast, on its own, closing cultural establishments does not seem to have an effect on
the reproduction number, nor do work restrictions in the first 14 days after imposing the
NPIs. Notably, we did not find substantial differences in the results when performing sensitiv-
ity analysis.

Our study extends previous first-wave estimate studies [2, 4, 5, 7-10] in a number of ways.
First, we used the potential outcome framework to infer NPI effects. In its simplest form, our
causal model made use of standard causal inference methods to correct observed biases and
obtain valid effects with more transparent confidence intervals. Second, we addressed the issue
of concurring NPIs by using their status as covariates in the causal model. By ensuring that all
NPI-related covariates are well balanced between treatment groups, we enhanced the power to
detect independent NPI effects. Third, we account for heterogeneity of countries by including
a social economical cluster indicator in the dataset. Fourth, we conducted complementary
analyses under alternative scenarios to test our conclusions not only with a different cohort
study design, but also with another balancing weights generation approach.

We acknowledge several limitations in our analyses. Even with data from multiple countries
that had diverse sets of interventions in place, inferring NPT effects still remained a challenging
task. First, the R estimation was based on epidemiological parameters that are only known
with uncertainty, due to many mild or asymptomatic cases that make it difficult to model the
timing for the onset of symptoms and serial interval distributions. On top of that, R, also relies
on the data of confirmed cases, which were generally unreliable in the early days of the pan-
demic due to lack of testing availability and not-established documentation practices. To
account for this, we began our analysis at each country’s 100" case. Secondly, the data are ret-
rospective and observational, meaning that unobserved factors could confound the results.
Third, we were unable to assess the effect of lifting interventions. Since the NPI events in
WNTRAC are automatically extracted from Wikipedia articles, which report the introduction
of NPIs more frequently than their relaxation, the number of lifting events documented in the
database did not have enough statistical power for causal inference. Yet, we believe we set the
ground for a thorough analysis of NPIs and we were able to draw conclusions regarding the
effect different NPIs had on the pandemic spread. Future work can assess the causal effect of
the post-vaccine newly defined NPIs where health certificate notions were introduced in some-
what similar ways across different countries.

PLOS ONE | https://doi.org/10.1371/journal.pone.0265289 September 28, 2022 11/14


https://doi.org/10.1371/journal.pone.0265289

PLOS ONE

A causal inference approach for estimating effects of NPIs

Code availability

The source code for the causal inference evaluation of NPIs is available in a public GitHub
repository at https://github.com/IBM/causallib. Please refer to the README file in the reposi-
tory for further instructions on using the code. Requests for the code used to generate the
results and the plots should be directed to the corresponding author.

Supporting information

S1 Appendix.
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