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In this paper, we discuss the interplay between beta-amyloid (Aβ) peptide, Tau fragments, oxidative stress, and mitochondria
in the neuronal model of cerebellar granule neurons (CGNs) in which the molecular events reminiscent of AD are activated.
The identification of the death route and the cause/effect relationships between the events leading to death could be helpful to
manage the progression of apoptosis in neurodegeneration and to define antiapoptotic treatments acting on precocious steps
of the death process. Mitochondrial dysfunction is among the earliest events linked to AD and might play a causative role in
disease onset and progression. Recent studies on CGNs have shown that adenine nucleotide translocator (ANT) impairment,
due to interaction with toxic N-ter Tau fragment, contributes in a significant manner to bioenergetic failure and mitochondrial
dysfunction. These findings open a window for new therapeutic strategies aimed at preserving and/or improving mitochondrial
function.

1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative
disorder characterized by altered processing of specific
proteins, formation of neurofibrillary tangles, imbalance
of redox homeostasis, and degeneration of synapses and
neurons. Although the mechanism of neurodegeneration
in AD is not clearly understood, several studies presently
indicate that apoptosis might occur and contribute to AD
onset and progression [1–5]. Though it remains to be
determined whether true apoptosis is a necessary event in
neurodegeneration, a growing number of studies support the
activation of apoptosis in general, and caspases specifically,
as an early event that contributes to neurodegeneration and
promote the pathological hallmarks associate with AD [6].

Transgenic animal models have been useful tools to study
AD, but currently many of them do not fully replicate the
cascade of amyloid deposition, neurofibrillary tangles, and
neurodegeneration that characterize the human disease [7].
Thus, as far as the studies about AD are concerned, the

lack of an animal model that sufficiently resembles this
disease is the reason why research should still proceed along
parallel lines: studies carried out in animal models should be
integrated and correlated to ad hoc-devised neuronal models
in which the identification of single molecular steps is made
possible.

Rat cerebellar granule neurons (CGNs) are a neuronal
model widely used to study events linking apoptosis and
neurodegeneration [8, 9] due to the ease of CGN culture
production, their high degree of cellular homogeneity, and
the findings revealing that during the onset of apoptosis
several molecular events reminiscent of AD are activated
[10].

In this paper, the role of key players of the neuronal
apoptotic process is discussed with particular attention to
the results obtained in CGNs. The production, effect, and
interplay of beta-amyloid (Aβ), Tau protein and its fragments
are discussed together with the action of these proteins on
mitochondria, and this is integrated in the scenario of CGN
apoptosis.
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2. The Experimental Model of CGNs:
A Useful Model to Elucidate
Neurodegenerative Mechanism(s)

CGNs survive and differentiate in vitro in the presence of
depolarizing concentrations of KCl (25 mM) without addi-
tional need for neurotrophic factors [11]. The mechanism
of action of KCl is still controversial but, generally, it is
believed that the increase in intracellular Ca2+ concentration
[12, 13] and the activation of mitogen-activated protein
kinase (MAPK) [14] induced by depolarization are involved.

If the serum is removed, and the concentration of KCl is
kept below depolarizing levels (K5), the majority of CGNs
die by an apoptotic process [12]. Under these conditions,
that are equivalent to in vivo deafferentation, neuronal death
is initiated and follows a general scheme that has been
extensively characterized in recent years (for a review see
[15]). The production of reactive oxygen species (ROS) and
nitric oxide (NO), the increase in proteasome, antioxidant
enzyme, and nitric oxide synthase (NOS) activities, and
release of cytochrome c (cyt c) into the cytosol are some of
the main events taking place soon after apoptosis induction
in CGNs and for which a cause-effect relationship has been
defined. In the early phase of apoptosis, ROS, NO, and cGMP
production increases as well as the activities of antioxidant
enzymes and NOS [16–20], as the cell’s attempt to counteract
the ongoing oxidative stress [18]. However, due to superoxide
production, cyt c is released into the cytosol where it carries
out a triple function since it acts (i) as an antioxidant
compound and an ROS scavenger, (ii) as a respiratory sub-
strate which can generate the mitochondrial transmembrane
potential, and (iii) as the activator of the caspase cascade
[21–23]. As a consequence of both NO and superoxide anion
production, an increase in the levels of nitrated proteins has
been found in the late phase (ranging from 3 to 15 hours after
apoptosis induction) [19]. With apoptosis progression, the
oxidative damage proceeds, antioxidant enzymes are inacti-
vated by caspases and proteasome [18, 24], and, at the mito-
chondrial level, the adenine nucleotide translocator (ANT)
is progressively impaired thus contributing to the transition
pore opening in the late phase of the death process [25, 26].

Furthermore, it has been demonstrated that during the
onset of apoptosis of CGNs, several molecular events remi-
niscent of AD are induced. An amyloidogenic process is acti-
vated with an increased production of Aβ which initiates a
sort of autocrine toxic loop [27]. Contextually to the increase
in Aβ deposition, Tau protein, which is the main constituent
of AD neurofibrillary tangles, is cleaved by the concerted
action of calpain and caspases with the production of toxic
fragments [28, 29]. The mechanism of action of a Tau toxic
fragment has been elucidated, and ANT has been identified
as the specific mitochondrial target of such fragment [30].

3. Formation of Aβ and
Tau Protein Fragments in AD

One of the central points in the physiopathology of AD is
the altered function and/or structure of two “Alzheimer’s

proteins,” namely the amyloid precursor protein (APP)
and Tau.

APP is a membrane glycoprotein, which undergoes
complex intracellular trafficking. The biological function of
APP is still not fully clear. Roles in cell adhesion, neuronal
migration, cell proliferation, neurite outgrowth, axonal
transport, neuroprotection, and signal transduction have
been proposed [31]. The abnormal cleavage of APP leads to
the production of Aβ which is the main component of senile
plaques in AD and per se can induce neuronal cell death.

Tau is a neuron-specific microtubule-associated protein
and a critical component of the neuronal cytoskeleton which
progressively disaggregates during apoptosis. The proper
function of Tau depends upon a precise equilibrium between
different isoforms and its state of phosphorylation. In AD,
as well as in other human dementias, Tau undergoes a series
of posttranslational changes including abnormal phospho-
rylation, glycosylation, glycation, and truncation (see [32]),
which may render Tau more prone to form aggregated
structures, the neurofibrillary tangles, which constitute a
major hallmark of AD. Following such aggregation, the
microtubules disintegrate, collapsing the neuron’s transport
system, with consequent altered communication between
neurons, eventually ending in cell death.

Interestingly, in the experimental model of CGNs, it
has been proposed that Tau and APP form a complex in
vivo via the adaptor protein Fe65 [33] which is abundantly
expressed in the central nervous system of mammals and
in particular in the cerebellum and hippocampus [34]. As a
consequence, the full-length Tau can play a role in regulating
the proper localization of APP and of its partners. During
apoptosis, the disruption of the Tau-Fe65 interaction leads
to a mislocalization of the APP-Fe65 complex within the cell
that in turn could induce a change in the proteolytic fate of
both APP and Tau proteins (Figure 1).

As far as Aβ production is concerned, it has been reported
that in the commitment phase (6 hours) of CGN apoptosis,
an amyloidogenic process is activated which rapidly and
irreversibly leads to increased production of Aβ [27]. Aβ
may be released outside the cell and act as a soluble and
diffusible apoptotic death mediator, affecting neighbouring
healthy neurons and activating a toxic loop that further
accelerates and propagates the process of neurodegenera-
tion. Accordingly, it has been found that coincubation of
CGN apoptotic cultures with antibodies directed against
Aβ significantly slows down the extension of cell death
and quantitatively increases the neuronal survival rate [27].
Studies carried out on CGNs as well as on various cell
models indicate that both nonaggregated and, to a greater
extent, aggregated Aβ peptides of the short toxic fragment
Aβ25–35 can induce apoptosis when externally added to cell
cultures [35, 36] and that different Aβ aggregation forms
(monomers, protofibrillar intermediate, and mature fibrils)
can have diverse effects [37–39].

In the same experimental model (i.e., CGNs), Aβ25–35-
induced apoptosis has been found to be associated with the
activation of multiple executioner caspases (caspases-2, -3,
and -6) [40], and the shorter Aβ fragment (Aβ31–35) is
able to induce neurodegeneration with an early increase in
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Figure 1: Schematic overview of Aβ peptide and Tau fragments production in CGNs. Aβ is produced intracellularly or taken up from
extracellular sources and together with Tau fragments has various pathological effects on cell function.

bax mRNA level followed by delayed caspase-3 activation
[41]. Finally, it has been reported that Aβ may interfere
with K+ channel trafficking [42, 43], altering K+ currents
and therefore causing an increase in cell death as a result of
a decrease in cytoplasmic K+ concentrations. Consistently,
the selective upregulation of the expression of two voltage-
dependent potassium channel subunits (Kv4.2 and Kv4.3)
has been found in CGNs after Aβ25–35 exposure [44].

In CGNs, contextually to the significant increase in
amyloidogenic metabolism of APP, Tau also undergoes
posttranslational modifications. As soon as 6 hours after
apoptosis induction, a change in Tau phosphorylation state
occurs in concomitance with caspase and calpain-mediated
cleavages (Figure 1). As a consequence, several fragments
of Tau protein are produced during apoptosis, the most
abundant of which is a 17 kDa residual fragment, probably
located at the NH2-terminus of Tau, which is unable to bind
to microtubules and is diagnostic for the ongoing apoptotic
process [28].

Truncated forms of Tau, besides being produced during
apoptosis, can also be effectors of apoptosis by themselves
and operate as toxic fragments that further induce cell death
so contributing to the progression of neurodegeneration
by an “autocatalytic process” [29, 45–47]. Both C-ter and
N-ter Tau fragments have been analyzed for their neuro-
toxicity. While the microtubule-binding capacity of the C-
ter fragment is well documented, relatively little is known
about the function of the N-terminal domain. Transfection
of neuronal cells with C-terminal Tau fragments induces
cell death [46, 47] while exogenous overexpression of N-
ter Tau fragments in CGNs can be either neuroprotective or
neurotoxic depending on its length [29]. The long N-ter Tau

fragment (1–230) is antiapoptotic and promotes the prosur-
vival effect of the AKT pathway. On the other hand, the short
N-ter Tau fragment (1–44) exerts a toxic action involving
glutamate receptors. Moreover, further analysis performed
in the CGN model system further narrowed the extent of
the aminoacid stretch which is toxic to the cells, and the N-
ter-26–44 Tau fragment was found to be the minimal active
moiety which retained a marked neurotoxic effect. On the
other hand, the NH2-1–25 Tau fragment was inactive [48].

4. Aβ and N-ter Tau Fragments Interaction
with Mitochondria

Mounting evidence indicates that mitochondrial dysfunction
occurs early in AD, worsens with clinical deterioration, and is
associated with impairment of energy homeostasis; deficit in
the function of complexes of the respiratory chains reduced
ATP synthesis as well as altered mitochondrial structure [49–
51]. Consistently, a reduced activity of the cytochrome c
oxidase (Complex IV of respiratory chain) has been reported
in different brain regions [51] as well as in platelets [52]
and fibroblasts [53] of AD patients, but the involvement of
other mitochondrial oxidative phosphorylation complexes
is less documented and more controversial. Cardoso and
collaborators [54] found a decreased ATP level in AD cybrids,
and other authors report that the activity of Complex IV, but
not the activity of F1F0-ATPase (Complex V), decreases in
the hippocampus and platelets of AD cases [55, 56]. Because
mitochondria are the powerhouse of cells, damage to mito-
chondria, such as impairment of Complex IV activity, could
have functional consequences on energy metabolism [56].
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Figure 2: Proposed mechanism of Aβ peptide and N-ter Tau fragment interaction with mitochondria; for further details see text. mom, mito-
chondrial outer membrane; mim, mitochondrial inner membrane; TOM, translocase of the outer membrane; I–V, respiratory chain com-
plexes; cyt c, cytochrome c; ANT, adenine nucleotide translocator; CyD, cyclophilin D; mPTP, mitochondrial permeability transition pore.

Furthermore, mitochondrial dysfunction has been pro-
posed to be the link between the histopathological hallmarks
of AD, caused by Aβ and Tau deposition, and neuronal and
synaptic loss [57]. The emerging picture is one in which,
at the level of mitochondria, both Alzheimer’s proteins
exhibit synergistic effects finally leading to the acceleration
of neurodegenerative mechanisms (Figure 2).

As far as Aβ is concerned, although the classical view
is that Aβ is deposited extracellularly, both cellular and
biochemical studies carried out in different models of AD
and aging have provided evidence that this peptide can
also accumulate inside neurons, target mitochondria, and
contribute to disease progression [58–61]. By using in vivo
and in vitro approaches, it has been demonstrated that
Aβ is transported into rat mitochondria via the translocase
of the outer membrane (TOM) [62] and localizes within
the mitochondrial cristae. A similar distribution pattern of
Aβ in mitochondria has been shown by immunoelectron
microscopy in human cortical brain biopsies [62].

Interaction of Aβ with mitochondria could be consid-
ered a general route common to different cell types since
both in dividing cells (i.e., neuroblastoma cells) and in
terminally differentiated neurons (i.e., primary neuronal
cultures), either extracellulary applied or secreted Aβ can be
internalized, and it colocalizes with mitochondrial markers
[62, 63] (Figure 2). Interaction of Aβ with the matrix protein
ABAD (amyloid-binding alcohol dehydrogenase) has been
described [64], whereas Caspersen et al. [65] reported that
in mouse and human brain samples from AD patients, Aβ

colocalizes with the mitochondrial matrix protein Hsp60.
Recent biochemical studies imply that the formation of
the mitochondrial permeability transition pore (mPTP) is
involved in Aβ-mediated mitochondrial dysfunction [66],
and by using a computational approach and predictive
analysis tools, it has been hypothesized that Aβ can strongly
interact in the inner membrane with ANT and Cyclophilin
D, two components of the mPTP [67].

A connection between Tau protein and mitochondria
has recently been proposed; by overexpressing the N-ter Tau
fragment truncated at Asp-421 to mimic caspase cleavage in
immortalized neurons, it was possible to induce mitochon-
drial fragmentation and elevated oxidative stress levels [68].

To the best of our knowledge, the toxicity of N-ter Tau
fragments on mitochondria has been deeply investigated
only in the CGN model system and has been found to involve
a mitochondrial dysfunction with impairment of oxidative
phosphorylation [30] (Figure 2). Both Complex IV and ANT
proved to be targets of the short NH2-26–44 Tau fragment,
but ANT is the only mitochondrial target responsible
for the impairment of oxidative phosphorylation. Detailed
biochemical studies have revealed that inhibition of ANT
is noncompetitive, suggesting that the NH2-26–44 Tau
fragment does not interact with the catalytic site but with
some other site of the enzyme which could distort the
enzyme structure thus also affecting the catalytic binding site.

This finding is consistent with the picture of the apop-
totic process in CGN that to date has been built up: in late
apoptosis, a noncompetitive-like inhibition of ANT has been
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Figure 3: Schematic representation of the time-dependent, dual role of nitric oxide in CGN apoptosis; see text for details. GC, guanylil
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found, probably due to caspase activity [26], but it is not
dependent on a direct caspase–ANT interaction. However
since NH2-26–44 Tau fragment is likely to be generated dur-
ing apoptosis given that the N-terminal domain of Tau con-
tains consensus sequences suitable for cleavage by caspase(s)
[28, 45], which are activated in apoptotic degenerating
neurons in AD [69, 70], the possibility exists that caspase(s)
gradually inhibit/s ANT as a result of NH2-Tau cleavage and
the generation of toxic NH2-26–44 Tau fragment. In this
case, NH2-26–44 Tau fragment should directly bind ANT.

5. Nitric Oxide and AD: Interplay between
Alzheimer’s Proteins, Nitrosative/Oxidative
Stress, and Mitochondria

NO produced by NOS, is a molecule endowed with a double
role acting as either a prosurvival or a toxic molecule. As a
prosurvival molecule, NO plays a role in cell signaling in the
nervous system and in synaptic plasticity [71, 72], and it may
be involved in diverse biological functions acting through
either cGMP-dependent or -independent pathways.

When the role of the NO/NOS system was investigated
in CGNs, it was found that NO exerts its dual and opposite
effects on the neurodegenerative process, depending on the
time after induction of apoptosis (Figure 3). In an early
phase, up to 3 h of apoptosis, there is an increase in the
expression of the neuronal isoform of NOS (nNOS) as well as
in the production of NO, which in turn supports the survival
of CGNs through a cGMP-dependent mechanism.

Consistently with these results, it has also been reported
that: (i) NO may be responsible for neuroprotection during

Aβ-induced cell death [73, 74], (ii) low concentration of
NO produced by a healthy cerebrovascular endothelium was
found to influence the parenchymal brain cells in a protective
way [75], and (iii) in cultured human neuroblastoma cells,
low concentrations of NO upregulate the expression of
alpha-secretase, while downregulating that of beta-secretase,
suggesting that, in the relative absence of superoxide, cere-
brovascular NO might act to suppress brain production of
Aβ [76].

On the other hand, sustained generation of NO has
been implicated in the cellular death occurring in different
neurodegenerative diseases as well as in AD [77]. As far as the
experimental system of CGNs is concerned (Figure 3), it was
found that, in the late phase of the apoptotic program, after
3 h, nNOS expression and activity decreased, resulting in the
shut down of NO and cGMP production, and the toxic role
of nitric oxide prevailed due to the reaction with superoxide
anions to produce peroxynitrite (ONOO−) which in turn is
able to induce neuronal injury mainly through nitration of
tyrosine residues in cellular proteins, whose level increases.
These events together with other apoptotic events already
described in this cell model [15, 23, 25, 26] would commit
these cells irreversibly to death.

Thus, it can be assumed that once accumulated inside
the cell, NO can play different roles, depending on its level,
cell context, and amount of superoxide anion. In Figure 4,
a general picture is shown which takes into account the
main findings on the involvement of nitrosative stress in the
neurodegenerative process. In brains from AD patients, an
early and striking upregulation of all three isoforms of NOS
has been reported [78, 79]. This finding is further supported
by experimental data obtained in different systems, ranging
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from in vivo animals to cell lines, which indicates that NO
is responsible for Aβ toxicity and highlights a link between
NO/NOS level and Aβ-induced brain dysfunction [80, 81].
Activation of the neuronal isoform of NOS (nNOS) [82] and
an increased production of NO [83] were also found in rat
cerebral cortex and hippocampus after intracerebroventricu-
lar administration of Aβ25–30 and in APP-transfected cells,
respectively.

In an early phase, NO could induce a cGMP-mediated
prosurvival signaling pathway in an attempt to counteract
the ongoing neurodegenerative process [19, 84]. However,
NO can also directly trigger mitochondrial dysfunction, a
process which is believed to play a causative role in AD
onset and progression. Indeed it has been reported that NO
both induces a bioenergetic failure, with impairment in the
function of Complex IV [85], and triggers mitochondrial
fission/fragmentation thus causing cell death in primary
culture of cortical neurons [86, 87]. S-nitrosylation, a
covalent redox reaction of NO with specific protein thiol
groups, could be one mechanism contributing to the NO-
induced mitochondrial fragmentation. Accordingly, it has
been reported that in AD patients and animal model,
NO induces S-nitrosylation of dynamin-related protein 1
(Drp1), a protein specifically involved in mitochondrial
fission [88, 89]. On the other hand, Bossy et al. [90] found
that NO can also induce Drp1 inactivation by increasing
its phosphorylation. Although there are no data on the

involvement of Drp1 in the CGN model, it has been recently
reported that mitochondrial fragmentation occurs as an early
event in response to injury in CGNs, and increased activation
of mitofusin 2 (Mfn2), a protein involved in mitochondrial
fusion, blocks mitochondrial fragmentation and protects
neurons against cell death [91, 92].

In addition to NO, oxidative damage has been reported in
aging and age-related neurodegenerative diseases, including
AD [93, 94], and superoxide anion production has been
induced by Aβ-treatment in neurons [95, 96]. It is known
that in the course of neurodegeneration, the superoxide
anion can act directly on mitochondria thus inducing cyt
c release and precocious impairment of ANT (see [18] and
references therein).

On the other hand, NO readily reacts with superoxide
anions to form the strong oxidant ONOO− which in turn
induces protein nitration. Consistently, an increase in protein
nitration has been found in brain tissue from cases of AD
which correlates with neurodegeneration [97]. Tau protein
can also undergo a ONOO−-mediated process, and nitration
of the Tyr29 residue has been proposed as a specific disease-
related event [98]. Furthermore, peroxynitrite can also
induce AD-like Tau hyperphosphorylation via activation of
both glycogen synthase kinase-3beta (GSK3beta) and p38
MAPKs [99].

Nitration, as well as phosphorylation, of Tau protein
induces conformational changes that facilitate aberrant Tau
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assembly. Consistently, it has been reported that nitrated
Tau is colocalized with neurofibrillary tangle in AD brain,
shows a significantly decreased binding activity to micro-
tubules, and is involved in the formation of filamentous
Tau inclusions [100]. In these conditions, Tau fragmentation
might occur, and N-ter Tau fragments, together with Aβ and
superoxide, can further decrease mitochondrial efficiency
thus contributing to mitochondrial dysfunction.

6. Implication of Genistein on
Preventing Aβ and Tau Toxicity

The main goal in AD treatment is focused on a preventive
approach. Treatment of declared AD with any compounds
may have either a poor effect due to the severe neuronal
death occurring in AD or a questionable risk/benefit ratio
such as in the case of estrogen. In this regard, estrogen
has been shown to block Aβ-induced neuronal cell death
in several studies thus suggesting that estradiol replacement
therapy should show improvement in patients with AD
[101]. However, the efficiency of estradiol in the treatment of
AD has been seriously questioned due to its fourth unwanted
side effect, that is, proliferative and oncogenic effects on non-
neuronal cells [102].

A clear point emerging from the bulk of studies dealing
with AD etiopathology is that all factors involved in AD are
associated with oxidative stress [103]. In the light of this,
natural oxidants have recently received much attention as
promising agents for reducing the risk of oxidative stress-
related diseases. Among them genistein received a lot of
attention.

Genistein (4′.5.7-trihydroxyisoflavone) is the most active
compound of soy isoflavones, the one which reaches the
highest concentration in human blood [104], possesses an
antioxidant activity, shows an affinity to estrogen receptors,
thus acting as an estrogen-like compound but without the
negative effects of estrogens, and is able to cross the blood-
brain barrier (see [105]).

There is considerable literature about the effect of genis-
tein on the progression of neurodegeneration. It has been
reported that in the nervous system, isoflavones attenuate
primary neuronal apoptosis by activating estrogen receptors
[106] and genistein is able both to suppress Aβ25–35-
induced ROS overproduction in isolated rat brain synapto-
somes [107] and to increase cell viability in cooperation with
other trophic factor such as folic acid in cortical neurons
[108]. Consistently, Zeng et al. [105] describe the protec-
tive effect of genistein on cultured hippocampal neurons
against Aβ-induced apoptosis and have demonstrated that
genistein inhibits the elevation of intracellular free Ca2+, the
production of oxidant free radicals caused by Aβ25–35, the
DNA fragmentation, and the activation of caspase-3, thus
suggesting that genistein acts upstream of caspase-3 to block
apoptosis (Figure 4).

Genistein may also decrease the hyperphosphorylation
of Tau protein by inactivating GSK3beta, the kinase involved
in Tau phosphorylation in homocysteine-mediated neurode-
generation in SH-SY5Y human neuroblastoma cells [109].

Recently, in CGNs undergoing apoptosis, the effect of
genistein was studied at subcellular level and for the first time
at mitochondrial level [110]. Genistein and to a lesser extent
its analogue daidzein, both used at dietary concentrations,
can prevent low potassium-dependent apoptosis in CGNs by
reducing the impairment of both aerobic glucose metabolism
and mitochondrial uncoupling, two processes occurring in
CGN apoptosis [16]. Furthermore, genistein is also able to
prevent cyt c release, ANT alteration, and mPTP opening;
that is, some steps of the mitochondrial pathway to apoptosis
that are somehow related to the ROS production which takes
place during apoptosis.

Thus, since both genistein and daidzein have been proved
to decrease ROS levels, it has been suggested that the
prevention of apoptosis is essentially due to the antioxi-
dant properties of these flavonoids [110]. Nonetheless, the
effect of genistein proved to be rather specific since other
flavonoids such as catechin and epicatechin failed to prevent
CGN death in spite of their shared antioxidant capability.

Consistently, genistein also abolishes neuronal ROS pro-
duction induced by Aβ administration to primary culture of
cortical neurons [111] and enhances the activities of other
antioxidant molecules and enzymes (superoxide dismutase,
glutathione peroxidase and reductase) both in vitro and in
vivo [112, 113].

7. Conclusions

The etiology of Alzheimer’s disease is complex and not fully
elucidated. On the other hand, it is important to develop a
better understanding of the different biochemical pathways,
their role, and their link with the amyloid hypothesis in
AD, since it may lead to the development of more effective
treatment strategies for this disease. It seems clear then
that promising developments as for the prevention and/or
delay of the onset of AD can be derived from definition
of antiapoptotic treatments acting on the precocious steps
of the death process, such as blockade of generation of
reactive oxygen species and implementation of the NO
prosurvival signaling pathway that, although not able to fully
prevent the disease, can at least delay onset or reduce the
severity of neurodegeneration. In this regard, genistein and
its analogue daidzein may perhaps be of use in neuropro-
tection. Furthermore, the knowledge emerging from studies
conducted on CGNs, that ANT impairment contributes in a
significant manner to bioenergetic failure and mitochondrial
dysfunction in the course of neurodegeneration, may open
a window for new therapeutic strategies aimed at preserving
and/or improving mitochondrial function, representing an
exciting challenge for biochemists. More studies are required
to determine whether phytoestrogens, protease inhibitors
and mitochondrial-targeted compounds could fulfill these
expectations.
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