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Abstract: Liver fibrosis is a common feature of chronic liver disease. Activated hepatic stellate cells
(HSCs) are the main drivers of extracellular matrix accumulation in liver fibrosis. Hence, a strategy
for regulating HSC activation is crucial in treating liver fibrosis. Mesenchymal stem cells (MSCs) are
multipotent stem cells derived from various post-natal organs. Therapeutic approaches involving
MSCs have been studied extensively in various diseases, including liver disease. MSCs modulate
hepatic inflammation and fibrosis and/or differentiate into hepatocytes by interacting directly with
immune cells, HSCs, and hepatocytes and secreting modulators, thereby contributing to reduced
liver fibrosis. Cell-free therapy including MSC-released secretomes and extracellular vesicles has
elicited extensive attention because they could overcome MSC transplantation limitations. Herein,
we provide basic information on hepatic fibrogenesis and the therapeutic potential of MSCs. We
also review findings presenting the effects of MSC itself and MSC-based cell-free treatments in
liver fibrosis, focusing on HSC activation. Growing evidence supports the anti-fibrotic function of
either MSC itself or MSC modulators, although the mechanism underpinning their effects on liver
fibrosis has not been established. Further studies are required to investigate the detailed mechanism
explaining their functions to expand MSC therapies using the cell itself and cell-free treatments for
liver fibrosis.

Keywords: hepatic stellate cells; liver fibrosis; mesenchymal stem cells; cell-free therapy;
extracellular vesicles

1. Introduction

Chronic liver disease caused by hepatitis C virus infection, alcohol abuse, metabolic
disease, or nonalcoholic hepatitis is a global health threat [1–4]. In fact, the number of
patients suffering from liver disease is growing rapidly, and approximately 2 million
people die from it worldwide every year [5–7]. Liver fibrosis is a result of chronic damage
and inflammation, characterized by the excessive accumulation of extracellular matrix
(ECM) [8–10]. Persistent damage replaces functional hepatic cells with ECM proteins
that distort the liver structure and functions, leading to cirrhosis or liver cancer [11–14].
Hepatic stellate cells (HSCs) are the major contributors to liver fibrosis [15]. In a damaged
liver, HSCs transdifferentiate into activated HSCs that produce ECM proteins, such as
collagen and fibronectin [16,17]. Hence, regulating HSC activation has been considered as
a potential strategy to prevent the progression of liver disease [18]. However, an effective
treatment for liver fibrosis has not yet been established to date, although several therapies
to modulate HSC activity have been attempted for the treatment of liver fibrosis.

Among various efforts to alleviate liver fibrosis, stem cell therapy is considered to
be a promising therapeutic approach. Mesenchymal stem cells (MSCs) are post-natal

Biomedicines 2021, 9, 1598. https://doi.org/10.3390/biomedicines9111598 https://www.mdpi.com/journal/biomedicines

https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-9271-7241
https://doi.org/10.3390/biomedicines9111598
https://doi.org/10.3390/biomedicines9111598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedicines9111598
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines9111598?type=check_update&version=1


Biomedicines 2021, 9, 1598 2 of 19

stem cells found in almost all tissues and have therapeutic potential for the treatment
of liver fibrosis [19]. They possess self-renewal capacity, differentiate into multiple cell
types, and secrete anti-apoptotic and immunomodulatory molecules [20–23]. Given these
abilities, many clinical trials using MSCs have been conducted for various diseases, such
as neurological disorders, diabetes, cardiac infarction, and liver disease [24–27]. Several
experimental and clinical studies have supported that MSC-mediated therapy has potential
benefits for treating liver fibrosis/cirrhosis. For instance, Jang et al. [28] reported that the
treatment of bone marrow (BM)-derived MSCs alleviated alcohol-related hepatic fibrosis
in humans. Yao et al. [29] showed that transplantation of human placental MSC relieved
carbon tetrachloride (CCl4)-induced liver fibrosis and HSC activation by increasing caveo-
lae 1. Notably, in addition to treatments using the MSCs themselves, MSC-released factors
have proven their therapeutic potential for liver diseases. Herein, we summarized the
pathogenesis of liver fibrosis focusing on HSCs and reviewed MSC applications for the
treatment of liver fibrosis to elucidate their therapeutic potential.

2. Pathogenesis of Liver Fibrosis and Activation of HSCs

Liver fibrosis is a wound-healing process that occurs in response to liver damage [15].
However, continuous and/or severe damage would impair the hepatic function and
architecture, leading to liver fibrosis defined as excessive ECM accumulation [9–11]. The
liver is mostly composed of hepatocytes that perform a wide range of hepatic functions,
such as detoxification, bile acid synthesis, and various metabolism processes [11,30]. These
are the first cells exposed to most types of hepatic injuries [31]. In response to mild injury,
hepatocytes proliferate and replace the damaged tissues. However, persistent and/or
severe injury would exceed the regeneration capacity of the hepatocytes and give rise
to a massive hepatocyte death [15,32]. Instead of hepatocytes, non-parenchymal cells
proliferate and fill the parenchymal areas where the hepatocytes were originally situated
with excessive ECM proteins, leading to liver fibrosis. Hence, liver fibrosis impairs the
hepatic function and architecture, leading to death from liver failure (Figure 1).
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Figure 1. Cellular and molecular pathophysiology of liver fibrosis. In healthy liver, hepatic stellate cells (HSCs) that reside
in the subendothelial space are non-proliferative and quiescent. When the liver is damaged, apoptotic hepatocytes release
various cytokines and reactive oxygen species (ROS), which induce recruitment of inflammatory cells and HSC activation.
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Activated HSCs and have proliferative phenotype and act as a main producers of extracellular matrix (ECM) proteins
such as collagen (Col), and α-smooth muscle actin (α-SMA). The recruited inflammatory cells produce pro-inflammatory
cytokines such as interleukin (IL)-1β and IL-6 to trigger activation of HSCs. HSC activation is initiated by stimulation by
paracrine signals secreted by surrounding cells. Activated HSCs maintain an activated phenotype in response to pro-fibrotic
factors such as transforming growth factor-β (TGF-β) and hedgehog (Hh) in an autocrine manner. These profibrotic factors
also induce morphological alterations in hepatocytes through the epithelial-mesenchymal transition (EMT), accelerating the
accumulation of ECM proteins. Eventually, excessive deposition of ECM proteins produced by activated HSCs impairs
hepatic functions and structure, leading to liver fibrosis and cirrhosis.

HSCs are the main producers of ECM proteins in the liver [15]. In a normal liver, HSCs
are located at the subendothelial space between the hepatocytes and the sinusoidal endothe-
lial cells in a quiescent state [33]. Quiescent HSCs are non-proliferative and are character-
ized by storing retinoic esters and expressing glial fibrillary acidic protein [34,35]. With the
occurrence of liver damage, HSCs gradually lose these distinctive features. They undergo
transdifferentiation into myofibroblast-like HSCs in a process called activation [16,36]. Acti-
vated HSCs have higher capacities for contractility, proliferation, and migration and exhibit
a concurrent immense alternation of the gene expression profile. These cells are able to syn-
thesize ECM proteins such as collagen type I (Col I), fibronectin, and α-smooth muscle actin
(α-SMA) [17]. HSC activation is triggered first by paracrine stimulation from neighboring
cells in the damaged liver. Injured hepatocytes release various cytokines/chemokines and
reactive oxygen species, which recruit immune cells into the injured lesion and stimu-
late HSC activation [15,37,38]. Recruited immune cells and Kupffer cells, liver-resident
macrophages produce inflammatory cytokines such as interleukin (IL)-1β and IL-6 [8].
These cytokines are important paracrine signals to promote HSC activation. Activated
HSCs maintain their activated status in an autocrine manner by secreting profibrotic factors
and enhancing hepatic fibrosis [39]. Numerous pro-fibrotic factors, such as transforming
growth factor-β (TGF-β), Hedgehog (Hh), and platelet-derived growth factor (PDGF),
are known to promote the transcription of fibrotic genes in HSCs [40–42]. TGF-β plays
a crucial role in controlling HSC activation and ECM accumulation in the liver [43,44].
TGF-β induces the phosphorylation of SMAD, the downstream signaling molecule of
TGF-β [40]. The phosphorylated SMAD translocates into the nucleus, where it promotes
the transcription of fibrotic genes, such as collagen, α-SMA, and tissue inhibitor of metal-
loproteinases (TIMPs), during HSC activation. In addition, TGF-β enhances autophagy
influx in HSCs through ERK and JNK pathways, and leads to HSC activation [45]. Hh
ligands released from dying hepatocytes stimulate the activation and/or proliferation of
Hh-responsive cells, such as immune cells, HSCs, and progenitors [46–49]. Upon binding
of the Hh ligand to Patched, a receptor of Hh ligands, another receptor called Smoothened
(Smo) is activated to induce the translocation of a Gli-krüppel family member (Gli) into the
nucleus, acting as a transcriptional factor for Hh signaling and profibrotic genes [41,50]. In
a fibrotic microenvironment, hepatocytes that escaped the TGF-β killing become respon-
sive to Hh and undergo epithelial-mesenchymal transition (EMT) [51–54]. During EMT,
Hh-responsive hepatocytes lose their adhesion capacity and acquire an ECM-producing
myofibroblast phenotype, functioning as a source of EMT production. In addition, Hh
signaling recruits inflammatory cells and upregulates their production of pro-inflammatory
cytokines, such as IL-6, tumor necrosis factor (TNF)-α, and TGF-β, eventually contributing
to the accumulation of fibrous ECM in the liver [53,55,56].

3. Basic Information of MSCs Focusing on Therapeutic Potential

MSCs are one of the adult stem cells that can be isolated from almost all tissues,
including the BM, adipose tissue, placenta, umbilical cord, and other tissues [57]. They
were first introduced from BM by Friedenstein and his colleagues in 1968 [58]. These cells
proliferate in vitro as plastic-adherent heterogenous cells with spindle-shaped fibroblast-
like morphology [59]. MSCs express the antigen cluster of differentiation (CD)105, CD73,
and CD90, but they lack CD45, CD34, and human leukocyte antigen (HLA) class II. MSCs
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are multipotent cells that have the potential for self-renewal and the ability to differentiate
into mesoderm lineages, including adipocytes, chondroblasts, and osteoblasts [21,60].
Furthermore, MSCs are capable of differentiating into several somatic cells, such as neural
cells, myoblasts, and hepatocytes [61–63]. Unlike embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs), MSCs are easily isolated from various tissues and safely
harvested without ethical issues [64]. In addition, MSCs can avoid T cell recognition and
immune responses due to their low expression of major histocompatibility complex (MHC)
class II and immunosuppressive effects [23,65]. These unique immunotolerant phenotypes
of MSCs allow the possibility of using allograft for patients. Hence, MSC administration
has emerged as a promising therapeutic candidate for stem cell-based therapy because of
its powerful advantages for clinical use as regenerative medicine.

Growing evidence demonstrates that MSC administration has therapeutic benefits
for liver disease. In 70% partially hepatectomized rats, MSC was shown to enhance
liver regenerative capacities by facilitating glucose and lipid metabolism [66,67]. The
transplantation of human adipose-derived MSC reduced hepatic ischemia-reperfusion
injury by improving cell proliferation in rats [68]. Umbilical cord-derived MSC suppressed
lipid accumulation in obese type 2 diabetic mice by promoting β-oxidation and suppressing
lipogenesis [69]. Meanwhile, tonsil-derived MSCs alleviated liver fibrosis through the
exosomes [70]. In this section, we reviewed the therapeutic effects of MSCs themselves and
MSC-derived factors on reducing liver fibrosis, specifically focusing on HSC activation.

4. MSC Administration for Liver Fibrosis

The transdifferentiation of quiescent HSCs into myofibroblastic HSCs is a major event
leading to liver fibrosis. Hence, regulating HSC activation has been considered as the
therapeutic target of liver fibrosis. Recent findings show that MSCs inhibit HSC activation
by either suppressing proliferation or stimulating apoptosis, exerting an anti-fibrotic action
(Figure 2). In a culture system that allowed MSCs to be in contact directly with HSCs,
the MSCs suppressed HSC proliferation by upregulating the Notch 1 expression and
downregulating the PI3K/Akt pathway, a critical pathway inducing HSC proliferation in
HSCs, although the exact mechanism by which Notch1 decreased p-Akt in HSCs has not
been elucidated [71]. It has also been reported that MSCs prevented HSCs from entering
the S phase by upregulating the inhibitors of cell proliferation, such as p27Kip1 and p21Cip1,
and downregulating the accelerators of cell cycle, namely, cyclin D and p-ERK [72]. The
phosphorylated ERK1/2 that is highly associated with HSC proliferation was also found
to be reduced in HSCs co-cultured with MSCs. In addition, the apoptosis of activated
HSCs is promoted, and their viability is significantly alleviated through direct or indirect
contact with MSCs. When activated HSCs were co-cultured with human BM-MSCs, the
HSCs exhibited a significant increase of pro-apoptotic proteins, including Bax and cleaved
caspase-3, compared with the single cultured cells [73]. Lin et al. [74] demonstrated that
increased apoptosis of HSCs after being co-cultured with MSCs was mediated by the
nerve growth factor (NGF) signaling. In NGF signaling, the NGF secreted from MSCs
inhibited nuclear factor kappa B (NF-κB) and reduced the expression of anti-apoptosis
gene B cell leukemia-xl (Bcl-xl). MSCs also release the hepatocyte growth factor (HGF),
which inhibited the NF-κB pathway and attenuate fibrogenic characteristics in LX2, a
well-established human HSC line [75]. Consistent with in vitro results, the transplantation
of MSCs ameliorated the formation of liver fibrosis in CCl4-injected rats by inhibiting the
proliferation and promoting the apoptosis of HSCs [76].

MSCs indirectly suppress HSC activation by interacting with immune cells or changing
themselves (Figure 2). To reduce profibrotic stimulation from immune cells toward HSCs,
MSCs alleviate immune responses by using their immunosuppressive feature and/or differ-
entiation ability into hepatocytes to replace damaged hepatocytes. The immunosuppressive
property of MSCs is well documented, and treatments using MSC immunomodulation
have been widely studied in various diseases, including diabetes, Alzheimer’s, inflam-
matory bowel disease, and osteoporosis [77–80]. In liver fibrosis, MSCs have been shown
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to alleviate the expression of inflammatory factors inducing HSC activation [81]. MSCs
also exert anti-inflammatory properties by releasing anti-inflammatory cytokines IL-4 and
IL-10, promoting immune cells to secret anti-inflammatory cytokines [82–85]. Furthermore,
they inhibit the synthesis of pro-inflammatory cytokines such as TNF-α, interferon (IFN)-γ,
and IL-17 in various types of immune cells, including T cells, natural killer (NK) cells,
neutrophils, and Kupffer cells [85]. In CCl4-induced liver fibrosis mice, intravenously
injected mouse BM-MSCs successfully migrated to the damaged liver and significantly
relieved liver fibrosis by decreasing IL-17 and increasing IL-10 [86]. The immunomodula-
tory capacity of MSCs is further evidenced by the production of major effector molecules
prostaglandin E2 (PGE2) and indoleamine 2,3-dioxygenase (IDO). The increased release
of PGE2 by MSCs significantly suppresses the proliferation and/or activation of T cells,
monocytes, NK cells, and macrophages including Kupffer cells [87–90]. IDO is known
to be an important suppressor of effector T cells by metabolizing tryptophan, which is
essential for T cell effector function [86]. In an MSC-transplanted liver with fibrotic injury,
the serum level of IDO increased, the amount of IL-17, a key cytokine for T cell activation
and neutrophil mobilization, decreased, and proliferation of T helper 17 (Th17) cells was
suppressed [91]. Eventually, immune response was alleviated. In addition, MSCs them-
selves contribute to immunosuppression by escaping from immunity because of low MHC
class molecule expression [23,65].
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Figure 2. MSC-based therapeutic approaches in liver fibrosis. Administration of mesenchymal stem cells (MSCs) exerts
therapeutic effects for the liver fibrosis through various mechanisms. MSCs can replace dying hepatocytes by differentiate
into hepatocyte-like cells. MSC-derived hepatocyte-like cells express hepatocyte markers, and show hepatocytic functions in-
cluding glycogen synthesis, albumin secretion, low-density lipoprotein (LDL) uptake, urea production and drug metabolism.
MSCs inhibit HSC activation by suppressing proliferation of and stimulating apoptosis of activated HSCs. MSCs upregulate
the inhibitors of cell proliferation and downregulates the accelerators of cell cycle. Increased proapoptotic proteins by MSCs
also reduce viability of activated HSCs viability. In addition, MSCs alleviate immune responses by interacting immune
cells. MSCs exert anti-inflammatory properties by suppressing the synthesis of pro-inflammatory cytokines such as tumor
necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-17, and promoting production of anti-inflammatory cytokines, IL-4 and
IL-10, in immune cells such as T cell, natural killer (NK) cells, neutrophils and Kupffer cells. In addition, MSCs significantly
reduce proliferation and/or activation of immune cells to suppress immune response.
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Given that hepatic fibrosis is initially induced by the death of hepatocytes, the re-
placement of damaged hepatocytes can be a fundamental therapy for hepatic fibrosis.
Since MSCs can differentiate into diverse types of cells, the differentiation of MSCs into
hepatocyte-like cells is a promising strategy to replace damaged or dying hepatocytes. A
treatment involving a combination of factors including HGF, fibroblast growth factor (FGF)
2/4, and dexamethasone induces MSCs to differentiate into hepatocyte-like cells [63,92,93].
In in vitro systems, differentiation induces MSCs to express hepatocyte markers, such as
albumin and α-fetoprotein, and show hepatocytic functions including glycogen synthesis,
albumin secretion, low-density lipoprotein (LDL) uptake, urea production, and activa-
tion of cytochrome P450 activity which is critical for drug metabolism [63,94,95]. Several
groups have also demonstrated the hepatic differentiation of MSCs in experimental animal
models and humans. Transplantation of MSC-derived hepatocyte-like cells attenuated
liver fibrosis and improved liver function in CCl4-injured mice [96]. All of these findings
clearly prove that MSCs exert therapeutic effects on HSCs directly or indirectly through cell-
to-cell contact and paracrine signaling. MSC-based experiments have been summarized
in Table 1.

Table 1. Summary of MSC administration for liver fibrosis.

Type Treatment Target/Experimental
Model Mechanism Outcome Ref

In vitro

Direct contact
with MSCs HSCs Upregulating Notch1 expression

Downregulating PI3K/Akt pathway Suppression of HSC
proliferation

[71]

Co-culture with MSCs HSCs Upregulating p27kip1 and p21cip1

Downregulating cyclin D and p-ERK
[72]

Co-culture with MSCs HSCs Increasing pro-apoptotic proteins
(Bax and cleaved caspase-3)

Increase of apoptosis
of activated HSCs

[73]

Co-culture with MSCs HSCs Secreting NGF; inhibition of NF-κB
Decrease of Bcl-xl expression [74]

Direct contact or
co-culture with MSCs LX2 Releasing HGF; inhibition of NF-κB [75]

Co-culture with MSCs KCs Promoting secretion of
anti-inflammatory cytokines Alleviation of

immune response

[82]

Co-culture with MSCs NK cells Producing PGE2; impairment of
proliferation and activation of NK cells [89]

Hepatocyte
differentiating factors Hepatocytes

Inducing expression of
hepatocyte markers

(albumin, α-fetoprotein)

Differentiation of
MSCs into functional

hepatocytes
[63,92–95]

In vivo

MSC transplantation CCl4-induced
liver fibrosis in rats

Inhibiting proliferation and promoting
apoptosis of activated HSCs

Amelioration of
liver fibrosis [76]

MSC transplantation DMN-induced
liver fibrosis in rats Releasing IL-4 and IL-10

Alleviation of
immune response
and liver fibrosis

[82]

MSC transplantation CCl4-induced
liver fibrosis in mice

Decreasing IL-17
Increasing IL-10 [86]

MSC transplantation CCl4-induced
liver fibrosis in mice

Increasing IDO level and decreasing
IL-17; decrease of proliferation of

Th17 cells
[91]

MSCs derived
hepatocyte-like cells

transplantation

CCl4-induced
liver fibrosis in mice Mimicking hepatocyte functions

Amelioration of
liver fibrosis

Improvement of
liver function

[96]

MSC, Mesenchymal stem cell; HSC, Hepatic stellate cell; HGF, Hepatocyte growth factor; NF-κB, Nuclear factor kappa B; Bcl-xl, B cell
leukemia-xl; KC, Kupffer cell; IL, Interleukin; Th17, T helper 17; NK, Natural killer; CCl4, Carbon tetrachloride; DMN, Dimethylnitrosamine;
PGE2, prostaglandin E2; IDO, Indoleamine 2,3-dioxygenase.

MSC engineering that modifies gene expression or metabolic process impacting bi-
ological functions of MSCs could increase proliferative and immunomodulatory proper-
ties of MSCs, enhancing their therapeutic function. Among factors engineering MSCs,
TGF-β was shown to remarkably increase MSC proliferation [97–100]. TGF-β1 treatment
elevated BM-MSCs proliferation by promoting nuclear localization of β-catenin in Smad3-
dependent manner [99]. Kim et al. [100] reported that TGF-β1 stimulated expression of
runt-related transcription factor 1, and extended self-renewal and proliferation of MSCs.
MSCs engineered with TGF-β also reinforced their therapeutic efficacy for several dis-
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eases, such as type 1 diabetes, sepsis and renal ischemia/reperfusion injury, by increasing
their immunomodulatory potential, although they rarely had effect on liver fibrosis. TGF-
β-manipulated MSCs increased the insulin production and inhibited the expressions of
pro-inflammatory cytokines in mice with type 1 diabetes [101]. Liu et al. [102] revealed
that MSCs overexpressing TGF-β have more favorable therapeutic effects by decreasing
macrophage infiltration in cecal ligation and puncture-induced sepsis mice than MSCs.
Administration of TGF-β-overexpressed MSCs restored renal function and attenuated
inflammation against renal ischemia/reperfusion injury [103]. In addition, autophagy is
known to be a cell protection mechanism against various harmful damages, suggesting
that autophagy influx promotes MSC viability, and contributes to the enhanced therapeutic
potential of MSCs. Regmi et al. [104] demonstrate that elevated autophagy increases cell
viability and decreases ROS generation of three-dimensional cultured MSCs (MSC3D), and
the MSC3D alleviates dextran sulfate sodium-induced colitis damage more effectively than
two-dimensional cultured MSCs (MSC2D) do. It was also shown that MSC3D had more
resistance to severe oxidative stress than MSC2D did, and that MSC3D effectively modulated
inflammation and improved therapeutic effect in the acute liver failure model [105]. In
addition, autophagy regulates immunomodulatory effect of MSCs. Gao et al. [106] have
revealed that rapamycin (autophagy inducer) increased immunosuppressive potential
of MSCs, whereas 3-MA (autophagy inhibitor) reduced it. These findings suggest that
enhanced autophagy influx in MSCs increase the therapeutic potential of MSCs. However,
Wang et al. [107] presented that suppression of Beclin-1, essential mediator of autophagy, in
MSC improved therapeutic and immunomodulatory properties of MSCs in CCl4-induced
liver fibrosis model. The results are contrary to other findings. Therefore, further study is
required to determine the effect of autophagy in MSC efficacy.

Although the transplantation of MSCs is considered a safe and efficient application
for chronic liver fibrosis, there are still several limitations. Cell-based therapy, including
stem cell therapy, satisfies complex but appropriate regulations, such as safety, purity, and
potency, for human applications [108,109]. Furthermore, MSC transplantation requires a
large number of cells, reaching as many as hundreds of millions, and takes about 10 weeks
to reach the needed number of MSC before transplantation [110–112]. Furthermore, the
efficacy of MSC treatment is still questionable due to low engraftment, abnormal differ-
entiation, and risk of tumor growth after transplantation [113–116]. The MSC-mediated
inhibition of HSC activation has been mainly proven in relatively constant in vitro systems.
However, the anti-fibrotic effect of MSCs differs depending on the employed animal models
and the experimental methods of MSC transplantation. In light of the foregoing, further
studies are required to overcome the obstacles in applying MSC-based therapies for the
treatment of liver fibrosis.

5. MSCs-Based Clinical Application for Liver Disease

Fifty-six clinical trials using MSCs for liver disease, such as cirrhosis, acute liver fail-
ure, and hepatitis, have been reported and the majority of these were registered in Asian
countries [117]. MSCs that are mostly obtained from bone marrow, umbilical cord, and
adipose tissue are used in clinical trials of the liver, and injected through the peripheral
vein or the hepatic artery [118]. The number of cells and frequency of injection varies,
and the MSC effect on liver fibrosis is inconsistent. Body-weight-based dosing within the
range (0.5 × 106–3 × 106 cells/kg) for a single dose is used in most clinical trials, where
some studies use total MSC quantity (1 × 107–20 × 107 cells). Doses as low as 1 × 107

MSCs showed the significant attenuation of liver fibrosis in some cases [119], while a
higher dose of 2 × 108 MSCs rarely improved liver fibrosis in others [120]. However, more
than 2 × 108 MSCs reduced liver damage in patients with liver cirrhosis [121]. In most
clinical studies, one-time doses were administrated, but had no significant difference in
treating liver cirrhosis compared with two doses a month apart [122]. Nevertheless, most
clinical trials have shown that MSC-based therapies have beneficial effects on liver fibrosis
(Table 2). In patients with alcoholic liver cirrhosis, hepatic arterial injection of BM-MSCs
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significantly improved liver function and reduced collagen accumulation [28,123]. Patients
with HBV-induced liver cirrhosis exhibited alleviated expression of fibrotic markers and
remarkable decrease of model of end-stage liver disease (MELD) score at 48 weeks after
MSC injection, although the level of HBV DNA in serum was not changed [124,125]. It was
also reported that MSC treatment attenuated liver cirrhosis by exerting their immunomod-
ulatory properties. MSC transplantation upregulated immunomodulatory factors, such
as serum M-colony stimulating factor, macrophage migration inhibitory factor, and IL-18,
and regulated imbalance of Treg/Th17 cell [119,126]. In addition, the protective effect
of hepatocyte-like cells differentiated from MSCs was reported in several clinical trials.
Hepatocyte-lineage committed MSCs presented similar protective effects like undiffer-
entiated MSCs [127], and they improved liver function in patients with liver cirrhosis or
end-stage of liver disease [127–129]. Furthermore, no side effects or complications were
observed in the above clinical studies except for mild fever that occurred after MSC injec-
tion. The mild fever disappeared within 12 h after MSC treatment. However, two papers
have reported that MSCs rarely have therapeutic effect in patients with liver cirrhosis.
Mohamadnejad et al. [120] presented that MSC injection hardly reduced liver damage
compared with the placebo group at 48 weeks after injection. Kantarcioglu et al. [130]
also showed that scores of MELD and Child-Pugh in cirrhosis patients did not change
before and after MSC treatment. Therefore, it is necessary to conduct further study for
large-scaled clinical trials encompassing multiple conditions, such as a wider range of doses
and frequencies, and various administration routes, to establish the effective therapeutic
dose and frequency for the clinically safe and long-term effect of MSC in liver disease.

Table 2. Summary of clinical trials using MSCs for liver disease.

Clinical Trials
Patients Dose/Frequency Administration Route Outcome Ref

Therapeutic effects

MSC injection

11 patients with
alcoholic cirrhosis

5 × 107 MSCs
Two times

Hepatic artery

Decrease of MELD and
Child-Pugh score

Downregulation of collagen
accumulation

[28]

55 patients with
alcoholic cirrhosis

5 × 107 MSCs
One or two times

Hepatic artery

Decrease of Child-Pugh score
Decrease of ALP

Downregulation of
collagen accumulation

[123]

45 patients with HBV
liver cirrhosis

0.5 × 106 MSCs/kg
Three times

Peripheral vein

Increase of serum albumin
Decrease of total bilirubin

Decrease of MELD Na score
Downregulation of serum laminin

[124]

43 patients with
HBV-induced

acute-on-chronic
liver failure

0.5 × 106 MSCs/kg
Three times

Peripheral vein

Increase of serum
albumin, cholinesterase

Decrease of total bilirubin and ALT
Increase of survival rate
Decrease of MELD score

[125]

39 patients with HBV
liver cirrhosis Unknown Hepatic artery

Increase of serum albumin
Decrease of total bilirubin
Decrease of MELD score

Ameliorating imbalance of
Treg/Th17 cells

[119]

4 patients with
liver cirrhosis

3.3 or 6.6 × 105

MSCs/kg
One time

Hepatic artery
Increase of serum albumin

Elevating immunomodulatory
factors

[126]

Administration of hepatocyte-like differentiated MSCs

25 patients with HCV
liver cirrhosis

1 × 106 cells/kg
One time

Peripheral vein

Increase of serum albumin
Decrease of serum creatinine,

total bilirubin
Decrease of MELD score

[127]

8 patients with end-
stage of liver disease

3–5 × 107 cells
One time

Peripheral vein Decrease of serum creatinine
Decrease of MELD score [128]

40 patients with
HCV-induced

end-stage liver disease

2 × 107 cells
One time

Intrasplenic or
intrahepatic

Increase of serum albumin
Decrease MELD and

Child-Pugh score
[129]
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Table 2. Cont.

Clinical Trials
Patients Dose/Frequency Administration Route Outcome Ref

No effect

27 patients with
liver cirrhosis

1.2–2.95 × 108 MSCs
One time

Peripheral vein No changes in serum albumin,
ALT and MELD scores [120]

25 patients with
liver cirrhosis

1 × 106 MSCs/kg
One time

Peripheral vein
No change in serum ALT, ALP,

total bilirubin MELD, and
Child-Pugh scores

[130]

MSC, mesenchymal stem cell; MELD, model for end-stage liver disease; ALP, alkaline phosphatase; HCV, hepatitis C virus; HBV, hepatitis
B virus; ALT, alanine aminotransferase; Treg, regulatory T cells; Th17, T helper 17; IL, interleukin.

6. MSC Cell-Free Therapy for Liver Fibrosis

MSCs have been shown to reduce liver fibrosis and promote liver regeneration despite
their low engraftment, and their therapeutic potential is based on the paracrine effect.
Conditioned media (CM) from MSCs are known to regulate HSC activation and reduce liver
fibrosis. MSC-CM inhibit HSC activation by reducing pro-fibrotic gene expressions, such
as α-SMA, Col I, and matrix metalloproteinase (MMP) 2, in TGF-β-treated human primary
HSCs [131]. This in vitro finding has also been proven in in vivo models by presenting
reduced collagen accumulation and inflammation, as well as elevated hepatocyte survival
in the livers of CCl4-injected mice treated with MSC-CM [132]. These data clearly indicate
that MSC-CM contains many beneficial substances, suggesting that their use can be an
alternative approach for MSC transplantation because the problems caused by using
MSCs themselves can be avoided. MSC-free therapies are more economical and safer for
clinical applications.

MSCs secrete a variety of factors, such as cytokines/chemokines, free nucleic acids,
extracellular vesicles (EVs), and lipids in response to physiological or pathological stim-
uli [133,134]. These MSC-derived secretomes and EVs have similar therapeutic functions
as MSC-based therapies (Figure 3, Table 3). The tumor necrosis factor-inducible gene 6
protein (TSG-6) is one of the anti-inflammatory cytokines secreted by MSCs [135]. Recently,
it has been demonstrated that TSG-6 decreases HSC activation and promotes the transd-
ifferentiation of activated human primary HSCs into functional stem-like cells, thereby
alleviating liver fibrosis [136]. The treatment of TSG-6 has also been shown to induce M2
polarization and MMP12 expression in macrophages [137]. Increased MMP12 suppresses
HSC activation by restraining the release of pro-inflammatory cytokines. Notably, the anti-
fibrotic effect of TSG-6 has been confirmed by other groups presenting that TSG-6-depleted
MSCs lost their anti-fibrotic action in fibrotic livers of mice. The milk fat globule EGF factor
8 protein, a cytokine released from MSCs, downregulated the expression of the TGF-β
receptor TGFβR1 by binding αvβ3 integrin to the HSCs, thus protecting against hepatic
fibrosis [138].

EVs are membrane-bound vesicles that include apoptotic bodies (50–4000 nm), mi-
crovesicles (100–1000 nm), and exosomes (40–100 nm) [139]. EVs are proven to have similar
beneficial functions as their parental MSCs and play a critical role in cell–cell communica-
tion [140,141]. Growing evidence shows that EVs derived from MSCs have a therapeutic
effect in liver fibrosis. Exosomes derived from MSCs significantly reduced hepatocyte death
and oxidative stress in a CCl4-induced liver fibrosis model [142]. Moreover, MSC-exosomes
have been shown to alleviate liver fibrosis by inactivating the TGF-β/SMAD signaling
pathway in CCl4-damaged liver [143]. In addition, Rong et al. [144] reported that MSC-
derived exosomes inhibited HSC activation and improved liver function by suppressing
the Wnt/β-catenin pathway in both activated HSCs and fibrotic tissues, and even their
effects were significantly better than using MSC itself. In addition, EVs exerted a protective
effect by transferring their various beneficial cargoes, such as microRNA (miR) and soluble
proteins, to the target cells and tissues. Anti-oxidative glutathione peroxidase 1 delivered
by the MSC-exosomes decreased oxidative stress and increased hepatocyte proliferation in
CCl4-injured liver [145]. Furthermore, the treatment of MSCs-EV containing miR-150-5p
reduced the expression of CXC chemokine-ligand-1, one of the profibrotic chemokines in
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HSCs, and attenuated liver fibrosis [146]. The miR-1246 contained in MSC-exosomes was
shown to protect hepatocytes from ischemia-reperfusion injury and modulate the balance
of regulatory T cells and Th17 cells to suppress inflammation and maintain immune toler-
ance [147]. Our group also reported that MSC-derived EVs had a high level of miR-486-5p,
and the delivery of miR-486-5p to the fibrotic livers of mice attenuated HSC activation
and liver fibrosis by abrogating Hh signaling [148]. The miR-125b in MSC-exosomes was
reported to target Smo and inactivate HSCs by blocking Hh signaling [149].
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and EVs targeting HSC also ameliorate liver fibrosis. Tumor necrosis factor-inducible gene 6 protein (TSG-6) induces
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In addition, MSC-EVs regulate the proportion of T cell by decreasing T helper 17 (Th17) cells and increasing regulatory T
(Treg) cells. In macrophage, TSG-6 triggers polarization of M2 macrophage and upregulates MMP12 which suppresses
HSC activation.

Although MSC-EVs retain various cargoes with biologically beneficial effects, MSC-
derived EVs are at the early stages of applications in clinical trials for various diseases.
However, there are currently no clinical trials for liver disease. Many major obstacles,
such as their application strategies and treatment efficacies, as well as the stable and
consistent obtainment of EVs, remain to be resolved [150,151]. MSC-derived EVs are highly
dynamic because EV production and their bioactive cargos in EVs are closely related to the
biological microenvironment of the parent cells, namely, the MSCs [152,153]. This implies
that EV production and its contents change depending on the biological status of the
MSCs. The current technologies for EV isolation, including chromatography, ultrafiltration,
centrifugation, and chemical precipitation, have very low yields and require a long time
and a large-scale MSC culture system to obtain a defined dose of EVs for investigating
therapeutic effects [112,154]. Therefore, the standardization of an experimental approach
securing an optimal quality and quantity of EVs to ensure a consistent therapeutic effect of
MSC-derived EVs is necessary. In in vivo models, EVs are mainly delivered to the liver,
intestine, lung, and spleen [155]. It is worth mentioning that EV distribution depends on
the dose and injection route. Therefore, EV delivery efficiency needs to be enhanced so that
they can be delivered to the potential target cells/tissues. In addition, due to the lack of
studies on the precise molecular mechanism through which the injected EVs are accepted
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by the target cells, organ- or cell-specific molecular signatures that recognize EVs should
be elucidated.

Table 3. Summary of MSC cell-free therapy for liver fibrosis.

Type Treatment Target/Experimental
Model Mechanism Outcome Ref

In vitro

MSC-CM HSCs Reducing expressions of
pro-fibrotic genes

Inhibition of
HSCs activation [131]

Cytokine, TSG-6 HSCs

Decreasing HSC activation
Promoting the transdifferentiation of

activated HSCs into
stem-like cells

Amelioration of
liver fibrosis [136]

MSC-exosomes HSCs Inhibiting Wnt/β-catenin signaling Inhibition of
HSC activation [144]

Co-culture with miR-125b
manipulated MSCs LX2 Targeting Smo;

suppression of Hh signaling
Inhibition of

HSC activation [149]

In vivo

MSC-CM CCl4-induced liver
fibrosis in mice

Reducing collagen accumulation
and inflammation

Elevating hepatocyte survival

Amelioration of
liver fibrosis [132]

Cytokine, TSG-6 CCl4-induced liver
fibrosis in mice

Inducing M2 polarization
Upregulating MMP12 expression

in macrophages

Amelioration of
liver fibrosis [137]

Cytokine, MFGE 8 TAA or CCl4-induced
liver fibrosis in mice

Downregulating the expression of
TGFβR1 of HSC

Amelioration of
liver fibrosis [138]

MSC-exosomes

CCl4-induced liver
fibrosis in mice

Reducing hepatocyte death
Decreasing oxidative stress

Amelioration of
liver fibrosis [142]

CCl4-induced liver
fibrosis in mice

Inactivating TGF-β/SMAD
signaling pathway

Amelioration of
liver fibrosis [143]

CCl4-induced liver
fibrosis in rats

Suppressing Wnt/β-catenin
signaling

Improvement of
liver function [144]

GPX1 delivered by the
MSC-exosomes

CCl4-induced liver
fibrosis in mice

Decreasing oxidative stress
Increasing hepatocyte proliferation

Amelioration of
liver fibrosis [145]

miR-150-5p contained in
MSC-exosomes

CCl4-induced liver
fibrosis in mice Reducing the expression of CXCL-1 Amelioration of

liver fibrosis [14]

miR-1246 contained in
MSC-exosomes

ischemia/reperfusion-
induced liver injury

in mice

Modulating the balance of
regulatory T cells and Th17 cells

Protection of
hepatocytes

Suppression of
inflammation

[147]

miR-486-5p contained in
MSC-exosomes

CCl4-induced liver
fibrosis in mice Suppressing Hh signaling Amelioration of

liver fibrosis
[148,149]

miR-125b contained in
MSC-exosomes

CCl4-induced liver
fibrosis in rats

MSC, Mesenchymal stem cell; HSC, Hepatic stellate cell; CM, Conditioned media; TSG-6, Tumor necrosis factor-inducible gene 6 protein;
miR, MicroRNA; Hh, Hedgehog; Smo, Smoothened; MMP12, Matrix metalloproteinase 12; MFGE8, Milk fat globule EGF factor 8 protein;
CCl4, Carbon tetrachloride; TAA, Thioacetamide; TGFβR1, Transforming growth factor beta-receptor 1; TGF-β, Transforming growth factor
beta; GPX1, Glutathione peroxidase 1; Th17, T helper 17; CXCL-1, CXC chemokine-ligand-1.

To overcome the multiple challenges for the therapeutic application of MSC-EVs,
researchers have attempted to improve the yield and effectiveness of EVs. For example,
to increase the amount of EVs obtained, tangential flow filtration (TFF), which induces
EVs to pass through membranes to filter specific EVs, has emerged as a powerful and
scalable technique [156,157]. TFF reportedly produces higher-yield and higher-activity EVs
than ultracentrifugation does [158,159]. To boost the therapeutic potential of MSC-EVs,
engineering MSC-EVs have been manufactured. These EVs have enhanced stability and
more beneficial cargo. MiR-122-loaded MSC-EVs inhibit the proliferation of HSCs by
suppressing the target genes, such as insulin-like growth factor receptor 1 and Cyclin
G1 [160]. In addition, miR-181-5p-modified EVs derived from MSCs have been reported
to inhibit HSC activation by targeting Bcl-2 and STAT3 [161]. Manipulated EVs loading
a higher level of Insulin growth factor like-1 showed remarkable anti-fibrotic effects by
inactivating the HSCs and reducing the production of pro-inflammatory cytokines in
macrophages compared with native EVs [162]. In addition, EVs covered with polyethylene
glycol hydrogel were shown to have increased bioavailability and anti-fibrotic effects
compared with native EVs [163]. The membrane modification of EVs also seems to be
applied to enhance their delivery efficacy. Yang et al. [164] demonstrated that membrane-
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edited EVs harboring the virus fusogen increased cargo transfer into the target cells by
interacting with LDL receptors. Modified EVs with cationized pullulan showed enhanced
accumulation in the liver, especially in the hepatocytes, rather than in other organs, thereby
reducing liver inflammation [165].

7. Conclusions

Liver fibrosis is one of the public health burdens for which effective drugs for revers-
ing/eliminating ECM accumulation are unavailable [7]. In particular, considering that
liver fibrosis is accompanied in most liver diseases, the development of a therapeutic agent
for liver fibrosis is urgent and essential. Until recently, liver transplantation has been the
most effective way to treat end-stage liver fibrosis. However, it could cause side effects,
such as higher recipient demand compared with the number of liver donors, infection, and
immune rejection [166,167]. Hence, studies exploring effective strategies that regulate the
activation of HSCs are warranted to lay the foundation for the development of therapeutics
against liver fibrosis.

MSCs have emerged as an attractive application with therapeutic potential for the
treatment of liver disease, including liver fibrosis. Accumulating evidence demonstrates
that MSC-based therapy is a clinically relevant solution based on its interesting properties,
including its abilities of differentiation and immunomodulation and the availability and
ease of harvesting. However, there are obstacles in clinical applications due to the limita-
tions of MSCs. Further studies are required to overcome these limitations by finding the
most functional and accessible sources of cells, determining the optimal transplantation
conditions, and increasing the regenerative abilities of transplanted MSCs in the dam-
aged tissues. MSC-released secretomes and EVs have emerged as acellular regenerative
medicines that go beyond the limitations of MSC-based therapy. However, current studies
have not fully deciphered the biological active molecules and the mechanisms underlying
their anti-fibrotic effects. Before adopting them as a clinical approach, further investigations
should be conducted to understand the characteristics, therapeutic potential, and quantifi-
cation of MSC-secretomes and EVs. In conclusion, all of the successful achievements in
this field to date indicate the possibility of MSCs constituting an effective therapeutic agent
for liver fibrosis. The development of safer and highly effective strategies emphasizing the
anti-fibrotic effects of MSCs is required.
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