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Molecular detection of
fluoroquinolone-resistant
Neisseria meningitidis by
using mismatched
PCR-restriction fragment length
polymorphism technique

Yusuke Ota1, Reina Okada1,
Hideyuki Takahashi2 and Ryoichi Saito1*

1Department of Molecular Microbiology, Graduate School of Medicine and Dental Science, Tokyo
Medical and Dental University, Tokyo, Japan, 2Department of Bacteriology I, National Institute of
Infectious Diseases, Tokyo, Japan
Ciprofloxacin (CIP) is a commonly used antibiotic for meningococcal

chemoprophylaxis, and the mutations in the quinolone resistance-

determining region of gyrA are associated with CIP-resistant Neisseria

meningitidis. Here, we established a mismatched PCR-restriction fragment

length polymorphism (RFLP) assay to detect a mutation at codon 91 of gyrA,

followed by high-level CIP-resistant meningococci. We designed PCR-RFLP

primers to detect the T91I mutation in gyrA by introducing an artificial AciI

cleavage site. This assay was performed using 26 N. meningitidis strains whose

gyrA sequences have been characterized. The amplified 160 bp PCR product

from gyrA was digested into three fragments (80, 66, and 14 bp) when there

was no mutation, or two fragments (146 and 14 bp) when there was a mutation

at codon 91. A correlation was observed between the mismatched PCR-RFLP

assay and gyrA sequencing. This rapid, simple, and accurate assay has the

potential to detect CIP-resistant N. meningitidis in clinical microbiology

laboratories, contributing to the appropriate antibiotic selection for

meningococcal chemoprophylaxis, will help maintain an effective treatment

for close contacts of IMD patients, and prevent the spread of CIP-resistant

N. meningitidis.

KEYWORDS

gyrA, Neisseria meningitidis, Acil, PCR-RFLP, fluoroquinolone resistance
Abbreviations: CLSI, Clinical and Laboratory Standards Institute; CIP, ciprofloxacin; IMD, invasive

meningococcal disease; QRDR, quinolone resistance determining region; RFLP, restriction fragment

length polymorphism.
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Introduction

Neisseria meningitidis is a major cause of life-threatening sepsis

and meningitis. Globally, N. meningitidis is responsible for at least

1.2 million invasive meningococcal disease (IMD) cases, causing

135,000 deaths every year (Jafri et al., 2013). Therefore, adequate

and quick management of IMD is necessary to control the spread of

infection. Close contacts of patients are at an increased risk for IMD

as the bacteria are easily transmitted from one person to another

through respiratory or throat secretions (Cohn et al., 2013).

According to the Center for Disease Control and Prevention

recommendations, meningococcal chemoprophylaxis should be

implemented for close contacts of patients with IMD to prevent

its secondary cases, and ciprofloxacin (CIP) is one of the three

antibiotics recommended for chemoprophylaxis (McNamara et al.,

2018). It has been reported that CIP administration within 72 hours

of case notification reduced the overall meningitis attack rate in a

clinical trial of CIP chemoprophylaxis for contacts of IMD patients

(Coldiron et al., 2018). However, several CIP-resistant N.

meningitidis isolates have been reported worldwide (Shultz et al.,

2000; Alcala et al., 2004; Corso et al., 2005; Mehta and Goyal, 2007;

Singhal et al., 2007; Enriquez et al., 2008; Strahilevitz et al., 2008;Wu

et al., 2009; Du Plessis et al., 2010; Bukovski et al., 2016; Tsang et al.,

2017; Gorla et al., 2018; Kawasaki et al., 2018). There was a case

reported in which CIP was administered for IMD close contacts

before antibiotic susceptibility result was available, but CIP

resistance was later confirmed and the patient was switched to

the remaining agents in the chemoprophylaxis recommendation

(Kawasaki et al., 2018). The hot-spot region of the gyrA in CIP-

resistant meningococci is codon 91 in the quinolone resistance-

determining region (QRDR), (Alcala et al., 2004; Singhal et al., 2007;

Enriquez et al., 2008; Strahilevitz et al., 2008; Wu et al., 2009; Du

Plessis et al., 2010; Hong et al., 2013; Chen et al., 2015; Bukovski

et al., 2016; Tsang et al., 2017; Gorla et al., 2018; Kawasaki et al.,

2018; Chen et al., 2020; McNamara et al., 2020; Zhao et al., 2020),

thus a rapid and accurate diagnostic tool to detect such mutations is

needed for maintaining efficacious treatment for close contacts of

IMD in clinical microbiology laboratories.

Most clinical laboratories use culture-based phenotypic

methods, such as disc diffusion and broth microdilution, to

detect CIP-resistant isolates, as described by the guidelines of

the Clinical and Laboratory Standards Institute (CLSI) (Clinical

and Laboratory Standards Institute, 2022). Enriquez et al. also

suggested that using the disc diffusion method with nalidixic acid

may predict isolates with gyrAmutations that decrease the activity

of fluoroquinolones (Enriquez et al., 2009). Another study

reported that the T91I mutation in gyrA may be responsible for

in vivo CIP resistance, indicating that a reliable screening method

by sequencing gyrA is required (Hong et al., 2013). Although

phenotypic or gyrA sequencing methods can detect CIP resistance,

these methods are time-consuming, and require more than a day

to complete from pure-cultured colonies. PCR-restriction
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fragment length polymorphism (RFLP) detects minor variations

in a gene, where a single-base substitution creates or abolishes a

recognition site for the restriction enzyme (Hashim and Al-

Shuhaib, 2019). A PCR-RFLP-based rapid assay has been used

to detect mutations linked to fluoroquinolone resistance in many

species of bacteria (Alonso et al., 2004; Zhao et al., 2012; Nakano

et al., 2013; Sierra-Arguello et al., 2018; Kakuta et al., 2020), but

the assay for detecting gyrA mutations has not been reported for

use in N. meningitidis.

In this study, we established a novel PCR-RFLP technique

for the detection of gyrA mutations associated with high-level

CIP-resistant N. meningitidis. This assay will contribute to

adequate antibiotic selection for the prevention of secondary

infection by IMD.
Materials and methods

Bacterial isolates

Neisseria meningitidisMC58 was obtained from the American

Type Culture Collection (Manassas, VA, USA) and was used as a

control strain with wild-type gyrA. We also used CIP-susceptible

N. gonorrhoeae clinical isolate and six major causative organisms

of meningitis (Escherichia coli ATCC 25922, Pseudomonas

aeruginosa ATCC 27853, Haemophilus influenzae ATCC 49247,

Streptococcus pneumoniae ATCC 49619, Streptococcus agalactiae

clinical strain, and Listeria monocytogenes clinical strain) to

estimate the specificity of our method. We analyzed all available

CIP-intermediate (n = 5) and CIP-resistant (n = 6)N.meningitidis

isolates and randomly selected CIP-susceptible N. meningitidis

strains (n = 14) obtained between 1998 and 2018 at the National

Institute of Infectious Diseases, Japan. These 25 non-duplicate N.

meningitidis strains were isolated from clinical specimens (17

sterile and 8 non-sterile samples). Each strain was inoculated on

chocolate agar plates and incubated at 37°C with 5% CO2.

Ciprofloxacin susceptibility was previously determined using the

E-test strip (bioMérieux, Marcy IEtoile, France) (Saito et al., 2022;

Clinical and Laboratory Standards Institute, 2022) (Table 1).

Single nucleotide polymorphisms within the QRDR of gyrA

were determined by sequencing analysis using specific primers

(Wu et al., 2009).

Development of the mismatched PCR-
RFLP assay

Based on the DNA sequence of gyrA of N. meningitidis

MC58 (GenBank accession number: AE002098.2) and clinical N.

meningitidis isolates, we designed PCR-RFLP primers to detect

the T91I mutation in gyrA by introducing an artificial AciI

(CCGC) (New England Biolabs, MA, USA) cleavage site into the

PCR products, generating DNA fragments of sizes that may be
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identified by electrophoresis (Figure 1A). The nucleotides were

used in the forward primer NM_gyrA_AciI-F1 (5 ′-
AACAACTGGAATKCCGCCTACA-3′) and reverse primer

NM_gyrA_AciI-R2 (5′-CGAAGTTGCCYTGWCCGTC-3′).
The primer sequences and PCR conditions were expected to

yield 160 bp DNA fragments for gyrA. The amplified PCR

product was digested with AciI restriction enzyme, resulting in

80, 66, and 14 bp fragments in isolates with wild-type gyrA, and

146 and 14 bp fragments in isolates with a T91I mutation in

gyrA (Figure 1B).
Determining the gyrA mutation using
mismatched PCR-RFLP assay

The genomic DNA of each bacterial isolate was extracted

from the overnight culture on the agar plate using NucleoSpin®

Tissue (TaKaRa, Shiga, Japan) according to the manufacturer’s

instructions. The PCR was carried out in a 20 mL reaction

mixture containing 10 mL of EmeraldAmp MAX PCR Master

Mix (TaKaRa), 1 mL (10 pmol) of each primer, 7 mL of deionized

distilled water, and 1 mL of extracted template DNA.
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Amplification was performed using an Applied Biosystems

thermal cycler (Foster City, CA, USA) under the following

amplification conditions: 30 cycles of denaturation at 98 °C for

10 s, annealing at 55 °C for 30 s, and extension at 72 °C for 1 min.

The PCR products were digested with AciI. The reaction mixture

contained 5 mL of PCR product, 1 mL of AciI, 1 mL of CutSmart

buffer (New England Biolabs), and 3 mL of deionized distilled

water and was carried out at 37 °C for 10 min. The digested DNA

fragments were electrophoresed on a 3.0% agarose gel (PrimeGel
™ Agarose LE 1-20K, TaKaRa) and band patterns were

visualized using a UV transilluminator (ATTO, Tokyo, Japan)

after ethidium bromide staining.
Results

Mutations in QRDR of gyrA

The DNA sequence analysis showed that all CIP-

intermediate and -resistant strains had mutations in QRDR of

the gyrA (Table 1). Seven strains showed T91I caused by point

mutations of C272T and C273T or a mutation of C272T. Four
TABLE 1 Distribution of CIP susceptibility, GyrA substitution, and AciI digestion pattern in meningococcal strains.

Strain CIP susceptibility (mg/mL) GyrA substitution AciI digestion Accession number

MC58 0.003 (S) – + AE002098.2

NIID416 ≦0.002 (S) – + ON382529

NIID536 ≦0.002 (S) – + ON382535

NIID287 0.003 (S) – + ON382523

NIID289 0.003 (S) – + ON382524

NIID345 0.003 (S) – + ON382525

NIID358 0.003 (S) – + ON382526

NIID411 0.003 (S) – + ON382528

NIID418 0.003 (S) – + ON382531

NIID471 0.003 (S) – + ON382532

NIID507 0.003 (S) – + ON382533

NIID560 0.003 (S) – + ON382536

NIID599 0.003 (S) – + ON382539

NIID375 0.004 (S) – + ON382527

NIID535 0.008 (S) – + ON382534

NIID584 0.064 (I) D95Y (G283T) + ON382538

NIID624 0.064 (I) D95Y (G283T) + ON382543

NIID699 0.064 (I) D95Y (G283T) + ON382546

NIID620 0.094 (I) T91I (C272T, C273T) – ON382542

NIID727 0.094 (I) D95Y (G283T) + ON382547

NIID417 0.125 (R) T91I (C272T, C273T) – ON382530

NIID576 0.125 (R) T91I (C272T, C273T) – ON382537

NIID614 0.125 (R) T91I (C272T, C273T) – ON382541

NIID600 0.190 (R) T91I (C272T, C273T) – ON382540

NIID670 0.190 (R) T91I (C272T, C273T) – ON382545

NIID652 0.250 (R) T91I (C272T) – ON382544
S, susceptible; I, intermediate; R, resistant.
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strains indicated a point mutation at codon 95 (GAC!TAC),

leading to the replacement of Asp by Tyr. These mutations were

not detected in any of the remaining 14 isolates. The AciI

recognition site was abolished only by the mutations of T91I.
Mismatched PCR-RFLP assay

The results of the mismatched PCR-RFLP assay for gyrA are

shown in Figure 2 and Table 1. The PCR amplification products

with an expected size of 160 bp for gyrA were successfully

obtained for all N. meningitidis strains. When the amplicon

was digested with AciI, isolates with wild-type gyrA showed two

fragments of size 80 and 66 bp. However, following digestion

with AciI, isolates that had a T91I mutation in gyrA produced a

146 bp fragment. The 14 bp fragment produced following AciI

digestion was not visible in any of the meningococcal isolates. A

correlation was observed between the mismatched PCR-RFLP

assay and gyrA sequencing.
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Comparing the results to CIP susceptibility, all 15 CIP-

susceptible strains with wild-type gyrA showed positive AciI

digestion results. All 6 CIP-resistant strains carrying a T91I

mutation in gyrA indicated a negative AciI digestion pattern.

Four of the five CIP-intermediate strains with D95Y in gyrA

exhibited positive AciI digestion results, while the remaining one

strain which had a T91I mutation in gyrA showed a

negative result.

The DNA of major meningitis-causing organisms other than

N. meningitidis was not amplified by the primers used in this

study (Supplementary Figure 1). Besides, CIP-susceptible N.

gonorrhoeae showed a PCR product of about 160 bp by PCR

amplification, and the product was digested with AciI, leading to

possessing wild-type gyrA (Supplementary Figure 1).
Discussion

Administration of appropriate antibiotics in the control of

IMD as well as prompt assay to detect antimicrobial resistance in
A
B

FIGURE 1

Schematic representation of the mismatched PCR-RFLP assay. (A) AciI recognition in isolates with wild-type gyrA. (B) The predicted fragment
pattern after AciI digestion. The vertical line represents the AciI recognition site.
FIGURE 2

PCR-RFLP patterns obtained after digestion with AciI for gyrA. Lane 1: negative control; lanes 2, 7, and 9: isolates with wild-type gyrA; lanes 3-6:
91 codon ACC ! ATT; lane 8: 91 codon ACC ! ATC; lane MW: 50 bp ladder molecular-mass standard.
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a microbiology laboratory are essential. In the present study, we

describe a novel mismatched PCR-RFLP assay for detecting CIP-

resistant N. meningitidis. Our results indicate that the assay

detects a mutation in codon 91 of gyrA, followed by high-level

CIP resistance with 100% sensitivity and specificity in

meningococci. Furthermore, this assay provides results within

4 h, which is much faster than conventional methods. In a

previous study that evaluated the utility of rapid susceptibility

testing in bloodstream infections caused by gram-negative

bacteria, the time to effective antibiotic was shorter in the

rapid testing group (Anton-Vazquez et al., 2022). Therefore,

our accurate and rapid assay could be useful for adequate

antibiotic selection in clinical microbiology laboratories.

In this assay, the restriction enzyme AciI recognizes and

digests the last two nucleotides of codon 91 and the first two

nucleotides of codon 92 of gyrA, in isolates with no mutations in

this region. In contrast, isolates with the second nucleotide

substitution (C272T) of codon 91 of gyrA, resulting in the

T91I mutation, exhibit an undigested pattern. Thus, the assay

can detect the T91I mutation leading to CIP resistance in our

isolates with high accuracy. However, the predicted 14 bp band

was not visible in our results. This fragment related AciI

recognition site on the forward primer is not directly involved

in the T91 mutation, suggesting that the 14 bp fragment does not

affect CIP resistance. Although no PCR amplified bands were

observed in major meningitis-causing organisms, CIP-

susceptible N. gonorrhoeae showed a PCR product using our

primer set, suggesting that our PCR primers are not specific to

N. meningitidis.

The number of resistant pathogens increases every year,

mainly because of antibiotic misuse (Aslam et al., 2018).

Therefore, the administration of adequate antibiotics against

the target microbes and prompt antimicrobial resistance testing

are essential (Frickmann et al., 2014). Ciprofloxacin and

rifampicin are the primary antibiotics recommended for oral

chemoprophylaxis of meningococcal disease for close contacts of

IMD patients (McNamara et al., 2018). Lodi et al. reported the

case of an IMD with rifampicin resistance secondary to

chemoprophylaxis, resulting in limited antibiotic options

available for the IMD case (Lodi et al., 2020). Although

meningococcal resistance to CIP is uncommon, CIP-resistant

isolates have emerged worldwide, which is a serious concern for

chemoprophylaxis failure (Shultz et al., 2000; Alcala et al., 2004;

Corso et al., 2005; Mehta and Goyal, 2007; Singhal et al., 2007;

Enriquez et al., 2008; Strahilevitz et al., 2008; Wu et al., 2009; Du

Plessis et al., 2010; Bukovski et al., 2016; Tsang et al., 2017; Gorla

et al., 2018; Kawasaki et al., 2018). Quinolone and its derivatives,

such as CIP, inhibit the action of DNA gyrase (GyrA/GyrB) and

topoisomerase IV (ParC/ParE). Amino acid substitutions in

these enzymes are involved in the development of quinolone

resistance (Ruiz, 2003). In a previous study, mutations within the

QRDRs gyrA, gyrB, parC, and parE were analyzed to characterize

fluoroquinolone resistance mechanisms in N. meningitidis
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(Corso et al., 2005; Chen et al., 2015; Tsang et al., 2017;

Kawasaki et al., 2018; Chen et al., 2020). Meningococcal CIP

resistance is mainly due to point mutations in the QRDR of

gyrA, but no mutations in the QRDRs of gyrB, parC, and parE

have been found (Corso et al., 2005; Chen et al., 2015; Tsang

et al., 2017). Although few studies have reported that CIP-

resistant N. meningitidis isolates have point mutations in gyrB,

parC, and parE, the isolates also showed T91I mutations in gyrA

(Kawasaki et al., 2018; Chen et al., 2020). Collectively, we suggest

that our mismatched PCR-RFLP assay, which can identify

significant T91I mutations in gyrA, has high sensitivity for the

detection of CIP-resistant meningococci.

The gold standard method for identifying gene mutations is

direct DNA sequencing, and many studies have used this

approach to detect gyrA mutations affecting fluoroquinolone-

resistant N. meningitidis (Alcala et al., 2004; Singhal et al., 2007;

Enriquez et al., 2008; Strahilevitz et al., 2008; Wu et al., 2009; Du

Plessis et al., 2010; Hong et al., 2013; Chen et al., 2015; Bukovski

et al., 2016; Tsang et al., 2017; Gorla et al., 2018; Kawasaki et al.,

2018; Chen et al., 2020; McNamara et al., 2020; Zhao et al.,

2020). Sequencing of DNA is the most reliable technique for

determining nucleotide mutations; however, its routine use

requires specialized instruments and extensive training of

laboratory staff. The simple and cost-effective PCR-RFLP

assay, which works based on the presence or absence of

recognition sequences, offers an alternative means to

characterize single nucleotide polymorphisms (Hashim and

Al-Shuhaib, 2019) and is used to assess antimicrobial

resistance among bacterial isolates (Alonso et al., 2004; Zhao

et al., 2012; Nakano et al., 2013; Sierra-Arguello et al., 2018;

Kakuta et al., 2020). We developed a PCR-RFLP methodology to

detect single nucleotide substitutions associated with CIP-

resistant meningococci. This simplification of measurement is

important for practical use in the microbiology laboratory as a

new testing method (Maurer et al., 2017). The other studies with

a related species, N. gonorrhoeae, reported that detection of

antibiotic resistance as point-of-care testing by a simple assay

may extend the usefulness of existing antibiotics for treatment

(Tuite et al., 2017; Turner et al., 2017). An integrated PCR

system, which performs automated sample preparation and fast

PCR, has been developed for application in point-of-care testing,

suggesting that we might be able to further reduce the operation

time of our PCR-RFLP assay by taking advantage of such a

technique (Lee et al., 2021).

The increasing number of cases of CIP-resistantN. meningitidis

demonstrate that reduced CIP susceptibility can be developed in N.

meningitidis populations (Potts et al., 2021; Saito et al., 2022). In

Japan, the geometric mean MICs tended to increase for CIP every

seven years, due to the increasing rate of CIP-intermediate and

-resistant isolates between 2012 and 2018 (Saito et al., 2022).

Moreover, 11 penicillin- and CIP-resistant isolates containing

blaROB-1 and a gyrA T91I mutation were identified in the USA

after December 2018 (Potts et al., 2021). These epidemiological data
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suggest the need for a wider understanding of the problems of

developing the CIP-resistant N. meningitidis population using

simple assays available in resource-limited laboratories and areas

and our method can contribute to obtain detailed epidemiological

information worldwide.

A limitation of this study is that the proposed method

cannot detect mutations at other gyrA locations. Residue D95

mutation of gyrA has also been reported to be associated with

decreased susceptibility to CIP (Shultz et al., 2000). Our four

meningococcal isolates with this mutation showed intermediate

level of CIP resistance. Other studies have also reported that the

D95 mutation of gyrA lead to an increase in minimum inhibitory

concentration to an intermediate level in N. meningitidis (Corso

et al., 2005; Chen et al., 2015). Therefore, these data suggest that

our assay is a useful tool for detecting highly CIP-resistant N.

meningitidis isolates, and some low-level CIP-resistant isolates.

However, CIP-resistant N. meningitidis isolates without the T91I

mutation of gyrA, which may have multiple mutations in

QRDRs, have been reported (Shultz et al., 2000; Enriquez

et al., 2008; Strahilevitz et al., 2008). It is necessary to further

optimize this method to detect other gyrA mutations in

future studies.

In conclusion, we established a mismatched PCR-RFLP

assay for detecting a mutation in codon 91 of gyrA, that is

associated with high-level CIP-resistant N. meningitidis. A

prompt method to detect CIP resistance is in high demand to

prevent secondary cases of IMD. This rapid, simple, and

accurate assay has the potential to be used daily for the

detection of CIP-resistant meningococci in clinical

microbiological laboratories, contributing to maintaining

effective management of IMD cases for infection control and

preventing the spread of CIP-resistant N. meningitidis.
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