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The Co3O4 nanoparticle-modified indium tin oxide-coated glass slide (ITO)

electrodes are successfully prepared using dicarboxylic acid as the self-

assembled monolayer through a surface esterification reaction. The ITO-

SAM-Co3O4 (SAM = dicarboxylic acid) are active to electrochemically

catalyze oxygen evolution reaction (OER) in acid. The most active assembly,

with Co loading at 3.31 × 10−8 mol cm−2, exhibits 374 mV onset overpotential

and 497 mV overpotential to reach 1 mA cm−2 OER current in 0.1 M HClO4. The

electron transfer rate constant (k) is acquired using Laviron’s approach, and the

results show that k is not affected by the carbon chain lengths of the SAM (up to

18 -CH2 groups) and that an increase in the average diameter of Co3O4

nanoparticles enhances the k. In addition, shorter carbon chains and smaller

Co3O4 nanoparticles can increase the turn-over frequency (TOF) of Co sites

toward OER. The Co3O4 nanoparticles tethered to the ITO surface show both a

higher number of electrochemically active Co sites and a higher TOF of OER

than the Co3O4 nanoparticles bound to ITO using Nafion.
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Introduction

Electrodes with self-assembled monolayers (SAMs) have broad applications in the

fields of sensing, catalysis, and energy storage and conversion. Understanding the electron

transfer dynamics between the electrode substrate and the attached monolayer is crucial

in designing interfaces for these applications (Kellon et al., 2019; Xie et al., 2019).

Electrodes with tethered nanoparticles by the SAM feature low loadings and high atomic
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utilization of nanoparticles, both of which are desirable in the

field of catalysis (Young et al., 2016; Shermukhamedov et al.,

2020; Lachmanová et al., 2021). Chazalviel and Allongue (2011)

established a theory in describing the relationship between the

insulating layer (SAM) thickness and electron transfer dynamics

in the substrate-SAM-nanoparticle, where the electron transfer

rate is unhindered until a threshold thickness of the SAM is

reached. Later, Hill et al., 2015 proposed a model to qualitatively

calculate the current of the substrate-SAM-nanoparticle

assembly by considering the electron tunneling, reaction

kinetics, and mass transport (Hill et al., 2015). Evidences

supporting these theories using gold nanoparticles as the

electron mediator are extensively reported (Wang et al., 2010;

Barfidokht et al., 2013; Kizling et al., 2018; Liu et al., 2019).

However, gold nanoparticles are catalytically inert in most cases,

and nanoparticles with catalytic activities are desirable to be

assembled onto the electrode surface in catalysis.

The main bottle-neck of hydrogen production by

electrochemical water splitting is the anodic oxygen evolution

reaction (OER, 2 H2O→ 4 H+ + O2 + 4 e−, Eo = 1.23 V). The four

coupled electron and proton transfer processes cause the sluggish

kinetics of the OER, and active electrocatalysts and interfaces are

required to reduce the large overpotential of the OER (Walter

et al., 2010). The nanoparticle-attached electrodes have been

constructed via SAM for OER. For example, iridium oxide

nanoparticles (IrOx) and ruthenium oxide nanoparticles

(RuOx) have been attached to the indium tin oxide-coated

glass slide (ITO) surface via esterification reaction using

polycarboxylic acids and pyrophosphoric acid as the linker,

and the resulting electrodes are applied to catalyze the OER in

acid (Gambardella et al., 2012; Tian et al., 2021). Consistent with

the theory established by Chazalviel and Allongue (2011) the

apparent electron transfer rates of the IrOx-modified electrodes

are unhindered using the linkers with short carbon-chains, and

the electron tunneling rate does not limit the OER rate

(Gambardella et al., 2012; Tian et al., 2021). Since iridium is a

precious metal, interfaces with nonprecious metal nanoparticles

are highly desirable to catalyze the OER. Spinel-type cobalt oxide

nanoparticles (Co3O4) have been adopted to catalyze the OER in

acid and are a promising candidate in replacing in part the

precious metal catalysts (Lai et al., 2021; Natarajan et al., 2021).

Co3O4 is usually electrodeposited on the substrate surface or is

bonded to the substrate surface using Nafion (Liu et al., 2013).

These methods inevitably lead to low percentage of utilization of

electrochemically active Co atoms as the active sites, as some

nanoparticles are not in direct contact with the electrolyte. The

substrate-SAM-Co3O4 assembly offers a promising route in fine-

tuning the surface structure of the catalytic active surface, with a

maximum percentage of Co exposed. Therefore, we report the

construction of the ITO-SAM-Co3O4 (SAM = dicarboxylic acid)

assembly, and the constructed interface is active toward the OER

in acid. The influences of SAM chain lengths and the average

diameters of the Co3O4 on the electron transfer kinetics and on

the electrocatalytic OER activities are investigated. Also,

comparisons to the electrode with Nafion-bound Co3O4 are

made, and the Co3O4 tethered by SAM show significantly

enhanced number of electrochemically active Co sites and

increased OER activity per active site.

Experimental section

Preparation of Co3O4

Chemicals used are listed in the Supplementary Information.

The surfactant-free Co3O4 were synthesized based on the

literature report (Dong et al., 2007). The procedure to prepare

Co3O4 with an average diameter of 3.5 nm is as follows. The 0.5 g

cobalt (II) acetate tetrahydrate (Co(ac)2 4 H2O) was dissolved in

25 ml ethanol, and 2.5 ml 25% NH3·H2O was added under

vigorous stirring. The solution was stirred for 10 min in air

and was transferred into a Teflon-lined stainless-steel. The

autoclave was kept at 150°C for 3 h. The colloidal solution

was centrifuged at 10,000 rpm for 15 min to acquire the

Co3O4 precipitates. The precipitates were washed twice with

distilled water and dried in the oven at 60°C for 4 h. The Co3O4

with various sizes were synthesized following the same

procedure, but different amounts of the reactants (Co(ac)2
4 H2O, C2H5OH, H2O, and NH3·H2O) were added according

to Supplementary Table S1. The XRD and TEM images of the as-

synthesized Co3O4 with various sizes are shown in the

Supplementary Information (Supplementary Figures S1, S3).

Preparation of the ITO-SAM-Co3O4

The ITO was cleaned with water and ethanol under sonication

and was dried. Then, the ITO was immersed in 5 ml of acetone

containing dicarboxylic acid (glutaric acid, 1,8-octanedioic acid,

1,16-hexadecanedioic acid, or 1,20-eicosanedioic acid) for 3 h to

allow the adsorption of the acid onto the ITO surface. The ITO-

SAM (ITO-Glu, ITO-Oct, ITO-Hex, or ITO-Eic) was washed with

acetone and dried in air. The acid-adsorbed ITO was immersed in

the 5 ml colloidal solution (pH adjusted to 2.0 using HCl)

containing 3.5 nm Co3O4 (4.6 mg ml−1) for 4 h. After being

taken out from the solution, the ITO-SAM-Co3O4 was washed

with 0.1 M HClO4. Electrodes prepared using glutaric acid, 1,8-

octanedioic acid, 1,16-hexadecanedioic acid, and 1,20-

eicosanedioic acid are labeled as ITO-Glu-Co3O4, ITO-Oct-

Co3O4, ITO-Hex-Co3O4, and ITO-Eic-Co3O4, respectively. The

concentrations of the carboxylic acids in acetone are listed in

Supplementary Table S2 in the Supplementary Information.

Surface loadings of Co are checked by ICP-AES and are in the

range of 2.0–5.5 × 10−8 mol cm−2.

To prepare ITO-Oct-Co3O4 with different sizes of Co3O4

attached, the ITO-Oct was immersed in a 5 ml colloidal solution
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(pH 2.0) containing Co3O4 with different sizes for 4 h. Electrodes

prepared using Co3O4 with average diameters of 11 and 19 nm

are labeled as ITO-Oct-Co3O4 (11) and (19), respectively. The

ITO-Co3O4 was prepared by directly immersing a bare ITO into

a Co3O4 colloidal solution for 4 h, and the ITO-Oct-CoCl2 was

fabricated by immersing the ITO-Oct in a 5 ml 0.0016 M CoCl2
aqueous solution.

Preparation of the Co3O4/Nafion
electrode

The ink was prepared by dispersing 0.0011 g Co3O4 with

3.5 nm average diameter into 20 ml of absolute ethanol, with

30 μl of 0.5% Nafion added. After sonication for 30 min, 50 μl of

the solution was drop-coated on the ITO surface with ~1 cm2

covered. After being dried in air, the Co3O4/Nafion electrode is

used for electrochemical tests. The loading of the Co on the ITO-

Oct-Co3O4 and Co3O4/Nafion electrodes is the same (3.31 ×

10−8 mol cm−2).

Electrochemical method

The CHI660E and ParSTAT MC potentiostats are used to

carry out the electrochemical tests in the three-electrode system.

A saturated calomel electrode (SCE) is used as the reference and a

polished graphite rod as the counter. The geometric surface area

of the working electrode in the electrolyte is controlled to 1 cm2.

All potentials reported are relative to the reversible hydrogen

electrode. The linear sweep voltammograms (LSVs) are corrected

for the solution resistance. Other information about the

instrumentation is provided in the Supplementary Information.

Results and discussion

Scheme 1 illustrates the procedure to fabricate the ITO-SAM-

Co3O4 (SAM = dicarboxylic acid). In acetone solution containing

the dicarboxylic acid, surface hydroxyl groups of ITO can react

with the carboxylic acid groups to form ester bonds. Then, the

ITO-SAM (SAM = dicarboxylic acid) is immersed in the acidic

solution containing Co3O4 to allow the esterification between the

adsorbed carboxylic acid groups and the hydroxyl groups of

Co3O4. Hydroxyl groups on the Co3O4 surface have been

observed previously (Anantharaj et al., 2019), and the

interaction of carboxylic acid groups with the Co3O4 surface

hydroxyl groups has also been reported (Kollhoff et al., 2018).

Dicarboxylic acids with different numbers of carbon chains are

adopted. The Co3O4 with various average diameters (3.5, 11, and

19 nm) are synthesized, and the TEM (Supplementary Figure S3)

and XRD (Supplementary Figure S1) of the Co3O4 powders are

shown in the Supplementary Information. All XRD patterns

show diffraction peaks that correspond to the face-centered

cubic phase of Co3O4 (JCPDS 09-0418) (Dong et al., 2007),

and Co3O4 with larger average diameters show increased XRD

peak intensities, which suggests their better crystallinities. The

pH of the Co3O4-containing solution (pH = 2.0) is lower than the

pKa1 values of the polycarboxylic acids adopted [glutaric acid

4.34 (Canari and Eyal, 2003), 1,8-octanedioic acid 4.5 (Hullar and

Anastasio, 2011), 1,16-hexadecanedioic acid 4.65 (Kanicky and

Shah, 2002), and 1,20-eicosanedioic acid 5.5 (Mukerjee and

Ostrow, 2010)]; therefore, carboxylic acid groups remain in

the -COOH form to allow the esterification reaction to happen.

We first used cyclic voltammetry (CV) to probe the surface

change during the fabrication of the ITO-Oct-Co3O4. Figure 1

shows the results. For the ITO-Oct-Co3O4, a couple of redox

peaks are shown at ~ 1.58 V, which can be assigned to the Co3+/4+

SCHEME 1
Procedure to prepare ITO-SAM-Co3O4 (SAM = dicarboxylic acid).
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redox couple in acid (Xiao et al., 2020; Han et al., 2021; Natarajan

et al., 2021). The charge under the anodic Co3+/4+ peak is

integrated, and the number of electrochemically active Co

atoms (Γ) is estimated to be 4.6 × 10−10 mol cm−2 based on

the integrated charge, assuming a 1 e− transfer process. The

total amount of Co on the ITO-Oct-Co3O4 is 3.31 ×

10−8 mol cm−2 acquired using ICP-AES. These values indicate

that 1.4% of the Co on the electrode is electrochemically active.

Starting at 1.65 V, the OER process happens. In comparison, the

CV of the bare ITO and ITO-Oct is identical (Figure 1A inset)

and lack the characteristic Co3+/4+ redox peaks and the OER

process. Electrodes prepared by simply immersing the ITO into

the Co3O4 colloidal solution (ITO-Co3O4) give rise to a higher

CV current than bare ITO and show redox features, but the

current is still negligible compared to the ITO-Oct-Co3O4. We

also observed a strong dependence of the coverage of the Co3O4

on the pH of the esterification reaction (Supplementary Figure

S4), which implies that the ester bonds formed are the major

driving force to anchor the Co3O4 to the surface, while the ionic

interaction, hydrogen bonding, and chelation between the acid

and the defected cationic centers contribute insignificantly to the

surface bonding as they are less dependent on pH. Immersing the

ITO-Oct in CoCl2 solution (ITO-Oct-CoCl2) leads to formation

of Co2+ coordinated to the carboxylic acid groups at the surface,

and the CV lacks the unique feature for Co3+/4+ redox couple but

shows a slight increase in the OER current at high potentials.

These show that the Co3O4, rather than Co ionic species, are

tethered to the ITO in case of the ITO-Oct-Co3O4. Figure 1B

displays the CV of the ITO-Oct-Co3O4 at various scan rates in

0.1 M HClO4. All the CV show distinct Co3+/4+ redox peaks, and

by plotting the log ip versus log v (Supplementary Figure S5), the

slope is close to 1, which implies that the redox active species are

confined to the electrode surface (Silva et al., 2014).

Figure 2A shows the deconvoluted XPS spectrum of the Co

2p region of the ITO-Oct-Co3O4. The Co 2p3/2 peak can be

deconvoluted into two components at 781.5 and 779.5 eV,

which originate from the Co2+ and Co3+ in the Co3O4,

respectively (Zhang et al., 2018). The deconvoluted Co 2p1/2

FIGURE 1
(A) CV of the bare ITO, ITO-Oct, ITO-Co3O4, ITO-Oct-Co3O4, and ITO-Oct-CoCl2 at 50 mV s−1 in 0.1 M HClO4; (B) CV of the ITO-Oct-Co3O4

at various scan rates (10–500 mV s−1) in 0.1 M HClO4.

FIGURE 2
Deconvoluted high-resolution XPS spectra of the (A) Co 2p, (B) C 1s, and (C) O 1s regions of the ITO-Oct-Co3O4.
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peak also shows the contribution from the Co2+ (796.8 eV) and

Co3+ (794.7 eV) components. The deconvoluted C 1s spectrum

in Figure 2B displays three peaks at 284.6, 286.1, and 288.2 eV,

which correspond to the C-C, C-O, and C=O bonds,

respectively (Dwivedi et al., 2015). The deconvoluted O 1s

peak in Figure 2C shows three components at 529.4, 532.0,

and 533.4 eV, which match the Co-O bond in the Co3O4,

surface -OH structure, and the C-O and C=O bonds,

respectively (Yang et al., 2009). The existence of C=O and

C-O structures in both C 1s and O 1s spectra indicates the

formation of ester bonds. The XRD pattern of the ITO-Oct-

Co3O4 shows only crystalline peaks assigned to the ITO

substrate (Supplementary Figure S2), suggesting the loading

of crystalline Co3O4 is low. Both the XPS and CV show that the

Co3O4 are successfully tethered to the ITO surface using the

dicarboxylic acid as SAM.

Figure 3A compares the OER activity of the ITO-Oct-Co3O4

with bare ITO, ITO-Oct, ITO-Co3O4, and ITO-Oct-CoCl2 in

0.1 M HClO4 at 5 mV s−1. Significantly higher OER current is

observed at the high-potential region (>1.65 V) for the ITO-Oct-
Co3O4, while the ITO and ITO-Oct exhibit negligible current in

the similar region. This indicates that the attached Co3O4 is

responsible for the observed OER activity. The OER onset

overpotential of the ITO-Oct-Co3O4 is 374 mV, and the

overpotential to reach 1, 5, and 10 mA cm−2 current densities

is 497, 562, and 570 mV, respectively. The Tafel plot and the

corresponding Tafel slope value of the ITO-Oct-Co3O4 are

displayed in Figure 3B. The Tafel slope value acquired is

70 mV dec−1, consistent with the reported Tafel slopes of

Co3O4 in acid (Mondschein et al., 2017; Han et al., 2021).

The turn-over frequency (TOF) at 1.72 V is calculated based

on Eq. 1

TOF � j/4FΓ (1)

to be 4.06 s−1. The key electrochemical parameters of the ITO-

Oct-Co3O4 are summarized in Table 1.

FIGURE 3
(A) LSV of the bare ITO, ITO-Oct, ITO-Co3O4, ITO-Oct-Co3O4, and ITO-Oct-CoCl2 at 5 mV s−1 in 0.1 M HClO4; (B) Tafel plot of the ITO-Oct-
Co3O4.

TABLE 1 Summary of the key electrochemical parameters of the ITO-SAM-Co3O4 (SAM = dicarboxylic acid).

SAM Γcv/
nmol
cm−2

ηonset/
mV

η@
1 mA cm−2/mV

η@
5 mA cm−2/mV

Tafel
Slope/mV
dec−1

TOF@
1.72 V/s−1

k/s−1

ITO-Glu-
Co3O4

HOOC(CH2)3COOH 0.39 433 ± 1 514 ± 1 597 ± 4 98 3.87 ± 0.03 1.12 ±
0.07

ITO-Oct-Co3O4 HOOC(CH2)6COOH 0.46 374 ± 4 497 ± 2 562 ± 3 70 4.06 ± 0.04 1.11 ±
0.04

ITO-Hex-
Co3O4

HOOC(CH2)14COOH 0.55 402 ± 1 514 ± 1 590 ± 4 109 2.70 ± 0.01 1.10 ±
0.02

ITO-Eic-Co3O4 HOOC(CH2)18COOH 0.32 444 ± 1 529 ± 1 598 ± 6 91 2.87 ± 0.01 1.14 ±
0.08

ITO-Oct-
Co3O4 (11)

HOOC(CH2)6COOH 0.33 449 ± 2 525 ± 1 590 ± 3 112 3.02 ± 0.07 1.15 ±
0.09

ITO-Oct-
Co3O4 (19)

HOOC(CH2)6COOH 0.33 451 ± 1 533 ± 1 623 ± 2 84 2.88 ± 0.04 1.35 ±
0.07
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We also prepared the Co3O4 (3.5 nm in average diameter

bound by Nafion on ITO, and the amount of Co deposited on the

ITO is controlled to 3.31 × 10−8 mol cm−2, same as the ITO-Oct-

Co3O4. Figure 4A shows the CV of the electrode at 50 mV s−1 in

0.1 M HClO4. Weak Co3+/4+ redox peaks are shown centered at

1.63 V. By integrating the charge under the Co3+/4+ anodic peak of

the Co3O4/Nafion electrode, assuming a 1 e− transfer process, the

Γ is estimated to be 6.66 × 10−11 mol cm−2. This indicates that the

ITO-Oct-Co3O4 exposes seven times higher amount of the

electrochemically active Co atoms than the Co3O4/Nafion

electrode with the same Co3O4 loading. This is consistent

with previous observations using IrOx and Au nanoparticles

and can be caused by the inhomogeneous distribution of

Nafion bound Co3O4 at the ITO surface, as aggregation is

constantly observed on the Nafion bound nanoparticles

(Moghaddam et al., 2015). In addition, different

substrate–nanoparticle interactions and parallel interactions

can account for the observed differences in the Γ. Figure 4B

shows the LSV of the Co3O4/Nafion electrode. The OER process

is also observed starting ~480 mV overpotential, but the OER

current at 1.72 V is significantly lower than that of the ITO-Oct-

Co3O4, in part attributed to the lower Γ. The TOF at 1.72 V for

the Co3O4/Nafion electrode is calculated to be 0.058 s−1, 69 times

lower than that of the ITO-Oct-Co3O4. Figure 4C shows the Tafel

plot of the Co3O4/Nafion electrode. The Tafel slope value of the

Co3O4/Nafion electrode is 165 mV dec−1. This suggests sluggish

OER kinetics of the Co3O4/Nafion electrode. Both the lower TOF

and the higher Tafel slope value for the Co3O4/Nafion electrode

indicate inferior electrocatalytic activity per active Co site for the

electrode with Nafion-bound Co3O4. As we adopted the same

Co3O4, the surface structure of the active sites is similar. The

observed inferior activity per active Co site is probably caused by

the hindered electron or proton transport for the OER process.

This proposal agrees with the results acquired by Young et al.

(2016), where molecular tether facilitates the Au nanoparticle-

mediated electron transfer process (Young et al., 2016).

Therefore, the dicarboxylic acid-tethered Co3O4 exposed

significantly higher amount of electrochemically active Co

atoms than the Nafion bound Co3O4, and the electrocatalytic

OER activities of nanoparticles acquired using the Nafion as the

binder can be a severe underestimation.

The surface modification process is further conducted using

carboxylic acids with different chain lengths. Figure 5 A–C

shows the CV at various scan rates of the ITO-Glu-Co3O4, ITO-

Hex-Co3O4, and ITO-Eic-Co3O4, respectively, in 0.1 M HClO4.

All electrodes show distinct Co3+/4+ redox peaks, which suggests

the successful attachment of the Co3O4 to ITO. The CV at

50 mV s−1 was used to estimate the Γ, and the results are

summarized in Table 1. Figure 5D displays the LSV for the

ITO-Glu-Co3O4, ITO-Hex-Co3O4, and ITO-Eic-Co3O4 from

1.3–1.9 V at 10 mV s−1. All electrodes display electrocatalytic

OER activities that originate from the Co3O4. The

corresponding Tafel plots are shown in Figure 5E, and

similar Tafel slope values for all three electrodes are

observed, which suggests similar OER mechanistic pathways.

The Tafel slope values, overpotentials at 1 and 5 mA cm−2, and

the TOF at 1.72 V of these electrodes are summarized in

Table 1. The electron transfer rate constants (k) are analyzed

using the peak separations from CV at various scan rates based

on Laviron’s approach (Lavagnini et al., 2004; Lachmanová

et al., 2021). The Epeak−E
0’ is related to ln v by Eq. 2,

Epeak − E0′ � − RT

αnF
ln(αnFv

RTk
), (2)

where Epeak is the redox peak potential, E0’ is the formal redox

potential, α is the transfer coefficient, n is the number of electrons

transferred, and other symbols have their standard meanings. By

plotting the Epeak−E
0’ against the ln v, the fitted line intercepts

with the x-axis, and the k can be calculated based on Eq. 3.

k � αnFv

RT
. (3)

FIGURE 4
(A) CV of the Co3O4 bound by Nafion on ITO at 50 mV s−1 in 0.1 M HClO4; (B) LSV of the electrode at 5 mV s−1 in 0.1 M HClO4; (C) Tafel plot of
the electrode.
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Figure 5F shows the Epeak−E
0’ versus ln v plot for the ITO-

Glu-Co3O4, ITO-Hex-Co3O4, and ITO-Eic-Co3O4. The

calculated k values are close and are summarized in Table 1.

By utilizing Co3O4 with different average diameters, ITO-

Oct-Co3O4 (11) and (19) are constructed. Figures 6A,B display

the CV at various scan rates in 0.1 M HClO4 for the ITO-Oct-

Co3O4 (11) and (19), respectively. Both electrodes show Co3+/4+

redox peaks, and the Γ are calculated and summarized in Table 1.

Figure 6C shows the LSV of these electrodes. Both electrodes are

active toward OER, and the OER onset overpotential and

overpotentials to reach 1 and 5 mA cm−2 and the TOF at

1.72 V are all summarized in Table 1. Figure 6D shows the

Tafel slope of these two electrodes. The Tafel slope values for the

ITO-Oct-Co3O4 (11) and (19) are 112 and 84 mV dec−1,

respectively. Figure 6E shows the Epeak−E
0’ versus ln v plots

for the ITO-Oct-Co3O4 (11) and (19), together with the ITO-

Oct-Co3O4 (the one with 3.5 nm average diameter. The

calculated k values are summarized in Figure 6F and in Table 1.

From Table 1, we observe a dependence of k on the

nanoparticle size, as k increases with the increased average

diameter of the Co3O4. Based on the Marcus theory of

electron transfer, the k is related to the reorganization energy

(λ) and the extent of electron coupling. For an NP with a radius r,

the λ is related to nanoparticle radius (r) by Eq. 4 (Chazalviel and

Allongue, 2011),

λ � q2

4πε0r
, (4)

where q is the unit charge and ε0 is the vacuum permittivity. A

larger r of the nanoparticle would entail a lower λ, which

increases the rate of electron transfer. The dependence of k on

the carboxylic acid chain lengths is not obvious as all k of the

FIGURE 5
(A–C) CV of the ITO-Glu-Co3O4, ITO-Hex-Co3O4, and ITO-Eic-Co3O4 at various scan rates in 0.1 M HClO4; (D) LSV of these electrodes at
5 mV s−1 in 0.1 M HClO4; (E) Corresponding Tafel plots and the Tafel slope values of these electrodes; (F) Plots of anodic (Epeak−E

0’) against ln v of
these electrodes.
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ITO-Glu-Co3O4, ITO-Oct-Co3O4, ITO-Hex-Co3O4, and ITO-

Eic-Co3O4 are in the range of 1.10–1.14 s−1. This phenomenon is

consistent with Chazalviel’s theory describing the relationship

between the insulating layer thickness and the k in the

substrate–SAM–nanoparticle assembly (Chazalviel and

Allongue, 2011). Based on their theory, nanoparticles with

3.5 nm in diameter in the substrate–SAM–nanoparticle

assembly would require approximately 20 −CH2- units in the

carbon chain to reach the critical point, above which electron

transfer would become hindered. In our case, no hindered

electron transfer is observed using carboxylic acids with 18 or

fewer −CH2- units. Also, this observation is in accordance with

Bard’s model where the tunneling current, though it decreases

with increased distance between the substrate surface and the

nanoparticle, is still higher than the kinetic current of the Co3+/4+

oxidation process. The k values reported are close to the literature

value where Wang et al. fabricated the electrodeposited Co3O4

nanosheet on Ti foil in 1 M KOH and observed the k at 0.29 s−1

(Xiao et al., 2020).

The electrocatalytic OER mechanism of Co3O4 is proposed

through four consecutive proton-coupled electron transfer

(PCET) processes in acid as shown in Eqs 5–8 (Shinagawa

et al., 2015; Srinivasa et al., 2020; Xiao et al., 2020).

Co +H2O → Co − OH +H+ + e−, (5)
Co − OH → Co −O +H+ + e−, (6)

Co −O +H2O → Co −OOH +H+ + e−, (7)
Co −OOH → Co +O2 +H+ + e−. (8)

where Co represents an electrochemically active Co site and

the −O, −OH, and −OOH represent the surfaced-adsorbed

oxo, hydroxyl, and peroxyl intermediates, respectively. The

Tafel slope at 120 mV dec−1 represents that the adsorption of

-OH is rate-limiting (Eq. 5), while the Tafel slope of 40 mV

FIGURE 6
(A,B) CV of the ITO-Oct-Co3O4 (11) and (19) at various scan rates in 0.1 M HClO4; (C) LSV of these electrodes at 5 mV s−1 in 0.1 M HClO4; (D)
Corresponding Tafel plots of these electrodes; (E) Plots of anodic (Epeak−E

0’) against ln v of these electrodes; (F) k versus the average diameter of
Co3O4 of the ITO-Oct-Co3O4.

Frontiers in Chemistry frontiersin.org08

Liu et al. 10.3389/fchem.2022.919192

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.919192


dec−1 suggests that the deprotonation of −OH to form −O is

rate-limiting (Eq. 6). Tafel slopes between these two values

arise owing to different relative rates of the first two

elementary steps in the mechanism. On the Co3O4

surface, the Tafel slope of our electrodes and literature

reported values all lie in the range of 79–120 mV dec−1,

which suggests that the adsorption of −OH is rate-limiting

(Mondschein et al., 2017; Han et al., 2021; Natarajan et al.,

2021). This is also consistent with the volcano plots

calculated by DFT (Song et al., 2020). Other

interpretations of the Tafel slope include the influence of

the dissolution of Co3O4 during the OER that leads to a Tafel

slope value that deviates from the typical one (Mondschein

et al., 2017).

The TOF of the ITO-SAM-Co3O4 depends on the carbon

chain length of the dicarboxylic acid, with the ITO-Glu-

Co3O4 and the ITO-Oct-Co3O4 being higher than the ITO-

Hex-Co3O4 and the ITO-Eic-Co3O4. This might be caused by

the decrease of the tunneling current with increased chain

lengths of the SAM, which entails the shift from the OER

kinetics-controlled current to the mixed tunneling and OER

kinetics-controlled current according to Bard’s model. Also,

a decrease in the TOF is observed with larger Co3O4 size.

This suggests that the OER activity per active Co site is lower

in the case of larger nanoparticles, which is related to the

structure of Co3O4, like crystallinity and surface defects. The

OER activity of the constructed ITO-Oct-Co3O4 is compared

to that of other reported Co3O4 electrocatalysts in acid, and

the results are summarized in Supplementary Table S3.

However, the stability of the constructed ITO-Oct-Co3O4

is limited toward OER in acid, which is mainly attributed to

the dissolution of active Co sites from Co3O4 as evidenced by

the loss of Co features in CV during repetitive potential

cycling (Supplementary Figure S6). ICP-AES on the

electrolyte after 1,000 cycles of the potential cycling shows

that 13% of Co was leached into the electrolyte. Also, the

ITO-Oct-Co3O4 can only sustain the 0.05 mA cm−2

galvanostatic measurement for 2500 s in 0.1 M HClO4

(Supplementary Figure S8). In acid, the gradual formation

of a porous hydrous oxide layer with a loosely bonded Co

center is observed and is proposed to be related to OER

stability (Natarajan et al., 2021). The formed hydrous oxide

layers could also affect the stability of the anchoring ester

groups, which could lead to loss of the Co3O4. Further

optimization of the Co3O4 structure, like the

incorporation of acid stable components (Huynh et al.,

2017), is required to enhance the stability of the assembly.

Conclusion

We constructed the Co3O4-modified ITO electrodes

using dicarboxylic acid as the bridging molecule. The

ITO-SAM-Co3O4 were characterized using

electrochemistry and XPS and are active toward the OER

in acid. The ITO-Oct-Co3O4, with Co loading at 3.31 ×

10−8 mol cm−2 exhibits 374 mV onset overpotential and

497 mV overpotential to reach 1 mA cm−2 OER current

density in 0.1 M HClO4. The k is not affected by the

carbon chain lengths of the SAM, and an increase in the

Co3O4 size enhances the k, which is consistent with the

previous theory of the electron transfer kinetics. Enhanced

TOF of the OER is observed on electrodes with shorter

carbon chains and smaller Co3O4. Meanwhile, the stability

of the ITO-SAM-Co3O4 is limited by the Co3O4, which is

prone to dissolute under the OER in acid. Strategies for

enhancing the stability of the Co3O4 in acid are essential in

developing non-noble metal-based interfaces for OER. In

addition, the Co3O4 tethered to ITO by SAM exhibits

significantly higher Γ and higher TOF of the OER than

the Co3O4 bound to ITO using Nafion, and we propose that

evaluation of the nanoparticle electrocatalytic activities

using Nafion as the binder in the electrode preparation

would cause severe underestimation. Nevertheless, binding

nanoparticle electrocatalysts with Nafion or other

ionomers is currently the most practical way of

fabricating the membrane electrode assembly in fuel

cells and water electrolyzers. The nanoparticle-tethered

electrodes are promising as platforms for evaluation of

the electrochemical catalytic activities of the nanoparticles.
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