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Simple Summary: In livestock, a low birth weight (LBW) has a broad impact on neonatal survival,
growth performance, and metabolic health in adult life. The liver plays an important role to regulate
lipid metabolism, but the development of hepatic dyslipidemia associated with LBW is still unknown
in goats. Herein, we evaluated lipid and metabolic status of LBW livers in contrast to those of
newborns with normal birth weight. RNA sequencing was used to screen potential dysregulated
functional genes involved in hepatosteatosis. Results showed lower antioxidant capacity, enhanced
pro-inflammatory cytokine, and increased hepatic lipid accumulation in LBW goats associated with
impaired regulatory machineries. Understanding the knowledge of intrinsic mechanism underlying
hepatic dyslipidemia in LBW goats could provide important implications for promoting efficiency of
production and health in their later life.

Abstract: Occurrence of low birth weight (LBW) is a major concern in livestock production, resulting
in poor postnatal growth, lowered efficiency of feed utilization, and impaired metabolic health in adult
life. In the southwest region of China, birth weight of indigenous strains of goats varies seasonally
with lower weights in summer and winter, but the metabolic regulation of the LBW offspring is
still unknown. In this study, by comparing LBW goats to normal birth weight group, we examined
hepatic lipid content in association with regulatory mechanisms. Histological studies showed higher
microvesicular morphology in the liver of LBW goats in accompany with a significantly higher level of
hepatic free fatty acids, total triglycerides, and cholesterols. Lipid metabolism impairment, increased
oxidative stress, and inflammation were observed by transcriptome analysis. Meanwhile, Kyoto
Encyclopedia of Genes and Genomes (KEGG) annotation further demonstrated lipid peroxidation,
antioxidant pathway, and pro-inflammatory response involved in the hepatic lipid dysregulation from
LBW group. Therefore, dysregulations of hepatic lipid metabolism, including fatty acid biosynthesis
and degradation, lipid transportation, and oxidative stress, played important roles to contribute the
lipid accumulation in LBW goats. Moreover, due to impaired antioxidant capacity, the oxidative
damage could interact with persisting pro-inflammatory responses, leading to a higher risk of liver
injury and metabolic syndromes in their adult life.

Keywords: low birth weight; goat; liver; lipid accumulation; antioxidant capacity

1. Introduction

Adverse environmental conditions, suboptimal fetal growth, and undernutrition may
harm livestock, resulting in the occurrence of low birth weight (LBW) in animals [1].
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Various LBW animal studies of rats, pigs, and lambs have indicated that LBW progeny
have a greater risk of developing metabolic complications in their adult life, including
impaired insulin secretion, glucose intolerant, insulin resistance, and dyslipidemia [2–5].
In the southwest China, the birth weight of indigenous goats (Capra hircus) during summer
and winter is approximately 20% lower than annual average [6]. The pre-weaning mortality
of those LBW newborns is also significantly higher than their normal birth weight (NBW)
counterpart [6]. In goats, however, the impact of the LBW on postnatal metabolic and
homeostatic status is still not clear.

The liver is an important metabolic organ that controls lipid, glucose, and energy
metabolism. In rat pups with LBW, male newborns exhibit higher triglyceride and fatty
acid synthase in liver [7]. They also have greater adiposity and suffer from metabolic
syndromes in adult life [8]. LBW piglets show increased hepatic lipid accumulation as-
sociated with decreased lipase activity in liver [9]. Oxidative stress is regarded as one
of the pathological mechanisms that causes various liver diseases. Recent studies found
that complications in LBW animals were associated with reduced mitochondrial function
and antioxidant response elements, leading to oxidative damage and inflammation in
liver [10,11]. Activated by excessive reactive oxygen species (ROS), oxidative stress not
only affects liver fatty acids oxidation and synthesis [12], but also stimulates the hepatic
inflammatory pathway to promote cytokine secretion [13]. Therefore, we hypothesize that
LBW goat kids have greater hepatic lipid accumulation associated with impaired hepatic
lipid regulation and excessive ROS production.

In the current study, we evaluated liver lipid profiles by comparing between the LBW
and NWB newborn goats. Then, we investigated the intrinsic pathway associated with
impaired lipid metabolism to understand the underlying regulatory mechanism. At one
month of age, LBW kids exhibited higher hepatic total triglycerides (TG) and free fatty
acids (FFA) levels that are associated with impairment of fatty acids biosynthesis and
degradation, lipid transportation, and oxidative regulation. Furthermore, an observation of
lower hepatic antioxidant capacity, as well as higher ROS and pro-inflammatory cytokine
levels could lead to a higher risk of liver damage in their adult life.

2. Materials and Methods
2.1. Animal Husbandry

All experiments were performed according to the principles and guidelines of the
Southwest University Institutional Animal Care and Use Committee (2019, No. GB14925-
2010). A Chinese indigenous goat breed (Dazu black goat) was used in our current study.
Each twin was delivered from first parity ewe, and purchased from Dazu Ruifeng goat
farm (Dazu, Chongqing, China). In total, 12 goats, half male and half female, were equally
assigned to control and LBW groups. The criteria of selection NBW as control and LBW
group is based on historic data from the farm [6]. All kids were transported to the laboratory
in Southwest University (Beibei, Chongqing, China) at around 4–7 days of age. Then,
they were fed with milk replacer (BaiNianLongTeng, Yunnan, China) until approximately
30 days of age. Goat kids were euthanized at 28~30 days of age by overdosing venous
sodium pentobarbital (86 mg/kg). Organs and tissues were weighted, frozen in liquid
nitrogen, and stored at −80 ◦C for further use.

2.2. Biochemical Parameters Assays

Hepatic malondialdehyde (MDA assay kit, A003-1-2), glutathione peroxidase (GPx,
GSH-PX assay kit, A005-1-2), total triglycerides (Triglyceride assay kit, A110-1-1), total
cholesterol (TC, total cholesterol assay kit, A111-1-1), and ATP content (ATP assay kit,
A095-1-1) were determined by the colorimetric method according to the manufacturer’s
instructions of Nanjing Jiancheng Bioengineering Institute (Jiangsu, China) [11]. Liver free
fatty acids (YX-C-B400, SINOBESTBIO, Shanghai, China) and glycogen (BC0345, Solarbio,
Beijing, China) were quantified by respective commercial kits, and measured by xMark™
Microplate Absorbance Spectrophotometer (Bio-Rad, Hercules, CA, USA) [14]. Protein
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concentrations of liver were measured by the Enhanced BCA Protein Assay Kit (P0010S,
Beyotime, Shanghai, China).

2.3. RNA Sequencing and Analysis

Liver samples (control, n = 3; LBW, n = 3) were randomly selected from each group,
and submitted to the Biomarker Technologies (Beijing, China) for high throughput RNA
sequencing (RNAseq). Generally, after isolating RNA from liver tissue, RNA integrity was
assessed using the RNA Nano 6000 Assay Kit with the Agilent Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, USA). Sequencing libraries were generated by
using NEBNext® Ultra™ RNA Library Prep Kit (#E7770, New England Biolabs, Ipswich,
MA, USA) following the manufacturer’s recommendations. Index codes were added to
attribute sequences to each sample, and performed on a cBot Cluster Generation System
using TruSeq PE Cluster Kit v4-cBot-HS (Illumia, San Diego, CA, USA) according to
the manufacturer’s instructions. After cluster generation, the library preparations were
sequenced on an Illumina platform (NovaSeq 6000, San Diego, CA, USA), and paired-end
reads were generated.

The adaptor sequences and low-quality sequence reads were removed from the data
sets. Raw sequences were transformed into clean reads after data processing. These clean
reads were then mapped to the reference genome sequence (ARS1, GenBank assembly
accession: GCA_001704415.1) by HISAT2 [15,16]. Only reads with a perfect match or one
mismatch were further analyzed and annotated based on the reference genome. Genes were
normalized according to StringTie [17], and gene expression was presented as fragments
per kilobase of transcript per million mapped reads (FPKM), which was calculated by the
following formula [18]:

FPKM =
cDNA Fragments

Mapped Fragments (Millions)× Transcript Length (kb)

Differential expression analysis of two samples was performed using the edgeR [19].
The false discovery rate (FDR) < 0.05 & |log2(fold change)| ≥ 1.0 was set as the thresh-
old for significantly differential expression [20]. Gene function was annotated based
on the Gene Ontology (GO) database (Accessed date: 24 February 2020, http://www.
geneontology.org/). GO enrichment analysis of the differentially expressed genes (DEGs)
was implemented by the GOseq R packages based Wallenius’ non-central hyper-geometric
distribution [21]. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms with
corrected p < 0.05 were defined as significantly enriched by commonly expressed genes
(CEGs) and differently expressed genes (DEGs) [22].

2.4. Quantitative Analysis of mRNA Expression and Mitochondrial DNA

Relative expression levels of the DEGs from RNAseq were evaluated by real-time
qPCR in liver from groups. Generally, total RNA was extracted from liver by TRIzol Reagent
(Thermo Fisher Scientific, Waltham, MA, USA). The concentrations of RNA were deter-
mined by using NanoDrop™ One spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). Then, mRNA was reverse transcribed into cDNA by following to the manufac-
ture’s steps of PrimeScript™ RT reagent Kit with gDNA Eraser (RR047A, TaKaRa, Beijing,
China). Primer sequences are presented in Table S1. The relative expression of mRNA was
determined by using TB Green® Premix Ex Taq™ II (RR820A, TaKaRa) with the CFX96
Touch™ Real-Time PCR Detection System (Bio-Rad). The qPCR thermal cycling conditions
were 95 ◦C for 30 s, then 40 cycles of 95 ◦C for 5 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. Relative
mRNA expression levels were determined from the threshold cycle (Ct) values using the
2−∆∆Ct comparative method [23].

In the liver samples, total DNA was isolated by using SteadyPure Universal Genomic
DNA Extraction Kit (AG21009, Accurate Biotechnology, Changsha, China). In order to
quantify the amount of mitochondrial DNA (mtDNA) present per nuclear genome, we
designed the primers from Capra hircus mitochondrial cytochrome B gene for mtDNA,

http://www.geneontology.org/
http://www.geneontology.org/
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and the primers from chromosome 11 for nuclear DNA (nDNA) (Table S1) [24,25]. The
mtDNA/nDNA ratio evaluated by qPCR was used to analyze mitochondrial density [26].

2.5. Western Blot Analysis

Frozen liver tissue was homogenized in RIPA Buffer (CW2333S, CWBIO, Jiangsu,
China) with protease inhibitor (CW2200, CWBIO). After they were separated by SDS-PAGE
(P0012, Beyotime) and transferred on PVDF membranes (IPVH00010, Immobilon-P, Merck
Millipore, Burlington, MA, USA), liver proteins were incubated with primary antibodies of
tumor necrosis factor alpha (TNFα, 33207M, 1:1000, Boiss, Beijing, China), nuclear factor
erythroid 2-related factor 2 (Nrf2, 16396-a-AP, 1:1500, Proteintech, Hubei, China), OxPhos
(45-8099, 1:1000, Thermo Fisher Scientific), and β-actin (BS-0061R, 1:1000, Boiss) overnight.
Then, the membranes were incubated with either the goat anti-mouse IgG (H + L) (A0216,
1:5000, Beyotime) or the goat anti-rabbit IgG (H + L) (A0208, 1:5000, Beyotime) for 2 h. Bands
were visualized by Immobilon Western HRP Substrate (WBKLS0500, Millipore), obtained
by ChemiDoc™ XRS+ Imaging System (Bio-Rad), and analyzed by ImageJ software (Version
1.53n, National Institutes of Health, Bethesda, MD, USA).

2.6. Histological Analyses

Liver tissues were fixed in 4% paraformaldehyde for 48 h at room temperature. After
being consecutively dehydrated in 70%, 90%, and 100% ethanol, liver tissues were embed-
ded in paraffin and cut into slices measuring 5 µm in thickness. The slices were stained
by hematoxylin-eosin (HE), according to the manufacturer’s protocol (G1005, Service-
bio, Hubei, China). Histological analysis of steatosis was visualized with the microscope
(DP74, Olympus, Tokyo, Japan), digitally captured, and analyzed with cellSens software
(Version 3.1.1, https://www.olympus-lifescience.com/en/software/cellsens/#!cms[focus]
=cmsContent6017, accessed on 1 February 2022 Olympus).

2.7. Statistical Analysis

All of the data between groups were compared by using paired Student’s t-test.
Pearson’s correlation coefficient was used to evaluate the determination of genes expression
between RNAseq and qPCR by Prism 8.0.2 (GraphPad Software, San Diego, CA, USA).
Statistical analysis was processed by SPSS Statistics 19.0 (SPSS Inc., Armonk, NY, USA).
Values are given as mean ± SEM, and p < 0.05 was considered significant.

3. Results
3.1. Weights

The average birth weight of LBW neonatal goats (1.64 ± 0.11 kg) was significantly less
than the NBW group (2.50 ± 0.16 kg, p < 0.01). After necropsy, LBW bodyweights were
23% lower than control group, and the carcass weights of LBW goats were still 25% lower
than the control group (p < 0.05 Table 1). The average daily gain of body weight was not
different between the LBW goats compared to the control (data not shown).

Table 1. Growth performance and organ weight of goat kids at one month of age.

Necropsy Control LBW

Body weight, kg 4.67 ± 0.44 3.59 ± 0.26 *
Carcass weight, kg 3.40 ± 0.34 2.57 ± 0.26 *

Brain, g 65.89 ± 2.93 56.62 ± 1.61 **
Heart, g 30.21 ± 1.85 24.88 ± 1.64 *
Liver, g 137.92 ± 10.68 108.77 ± 5.92 **

Lungs, g 81.83 ± 5.65 69.17 ± 3.83 *

Relative organ mass, g/kg
Brain 14.42 ± 0.88 16.19 ± 1.32
Heart 6.55 ± 0.28 6.98 ± 0.31

https://www.olympus-lifescience.com/en/software/cellsens/#!cms[focus]=cmsContent6017
https://www.olympus-lifescience.com/en/software/cellsens/#!cms[focus]=cmsContent6017
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Table 1. Cont.

Necropsy Control LBW

Liver 29.95 ± 1.90 31.01 ± 2.48
Lungs 17.77 ± 0.98 19.62 ± 1.44

**, p < 0.01; *, p < 0.05. LBW, low birth weight.

3.2. Morphological and Metabolic Features in Liver

Histological analysis of HE-stained liver sections showed that LBW kids presented
small intracellular fat vacuoles and liposomes, indicating mild to moderate microvesicular
steatosis in liver (Figure 1). Further, the level of FFA, TG, and TC were significantly higher
in livers from LBW kids compared to control kids (Figure 2A–C). LBW kids exhibited
1.67-fold higher concentrations of MDA (p < 0.05, Figure 2D) than control kids. A trend of
lower GPx was observed in LBW kids (p = 0.057, Figure 2E). Hepatic glycogen and ATP
content were not different between the groups (Figure 2F,G).
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3.3. Differential Gene Expression of RNAseq

RNAseq reads mapped well to the reference goat genome, with 97.01–97.97% aligning
concordantly. There were 13,620 annotated transcripts identified in livers from the control
and LBW kids (Figure 3). There were 204 DEGs with 86 genes up-regulated and 118 down-
regulated in LBW livers, compared to the control group (Figure 4). KEGG annotated
pathways related to hepatosteatosis were involved in lipid metabolism, oxidative regulation,
and inflammatory signaling (Figure 5, Table 2). In total, 32 differential unknown genes with
FASTA format are listed in Supplemental Table S2. Statistics of sequencing data output,
including quality score and size of trimmed sequence, is presented in Table S3.
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Figure 2. Metabolic features of free fatty acids (A), total triglycerides (B), total cholesterol (C), MDA
(D), GPx (E), glycogen (F), and ATP content (G) were determined in liver from control and LBW kids.
**, p < 0.01; *, p < 0.05; †, p = 0.057. MDA, malondialdehyde; GPx, glutathione peroxidase; LBW, low
birth weight.
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Figure 3. The distribution of commonly expressed genes (CEGs) and differently expressed genes
(DEGs). There were 13,620 annotated transcripts identified in liver from the control and LBW kids,
with 204 DEGs and 13,416 CEGs.

3.4. Gene Expressions in Liver

Relative expression levels of eight genes from 204 DEGs was evaluated through
real-time qPCR in an expanded cohort of LBW and control livers, and compared with
the RNAseq results. The fold changes for these two methods correlated positively with
R value = 0.88 (p < 0.01, Figure 6), indicating the differential genes from RNAseq exhibited
the accordant expression by qPCR evaluation.
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Table 2. GO analysis and KEGG annotated pathways of DEGs associated with lipid metabolism,
oxidative regulation, and inflammation.

Functional
Description KEGG Pathway KEGG ID Gene Category

Lipid
metabolism

PPAR signaling pathway KO03320

FABP3 (fatty acid-binding protein)
PLIN5 (perilipin-5 isoform X1)

LOC102173339 (7-alpha-diol 12-alpha-hydroxylase)
APOA5 (apolipoprotein A-V)

LOC102179867 (apolipoprotein A-I)
APOA1 (apolipoprotein A-IV)

LOC102187785 (cholesterol 7-alpha-monooxygenaseC)
Fat digestion and

absorption KO04975 LOC102179867 (apolipoprotein A-I)
APOA1 (apolipoprotein A-I)
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Table 2. Cont.

Functional
Description KEGG Pathway KEGG ID Gene Category

Glycerophospholipid
metabolism KO00564 LCAT (phosphatidylcholine-sterol acyltransferase precursor)

Non-alcoholic fatty liver disease (NAFLD) KO04932 Capra_hircus_newGene_23729
Capra_hircus_newGene_43596

Fatty acid degradation KO00071 LOC102181105 (alcohol dehydrogenase E chain isoform X1)
LOC108633240 (cytochrome P450 4A11-like)

FoxO signaling pathway KO04068 LOC102172279 (serine protease HTRA3)

Oxidative
regulation

Glutathione metabolism KO00480 GPX2 (glutathione peroxidase 2)
GPX3 (glutathione peroxidase 3)

Metabolism of xenobiotics by cytochrome P450 KO00980 LOC102170823 (cytochromeP450 1A1)
LOC102175204 (UDP-glucuronosyltransferase 2B4)

Drug metabolism -
cytochrome P450 KO00982

LOC102175204 (UDP-glucuronosyltransferase 2B4)
LOC102181105 (alcohol dehydrogenase E chain isoform X1)

LOC108635023 (UDP-glucuronosyltransferase 2B18-like)

Oxidative
phosphorylation KO00190

Capra_hircus_newGene_23729
Capra_hircus_newGene_43596
Capra_hircus_newGene_43600
Capra_hircus_newGene_48268

Inflammation

Leukocyte transendothelial migration KO04670 NCF4 (neutrophil cytosol factor 4 isoform X1)
PTK2B (protein-tyrosine kinase 2-beta isoform X1)

NF-kappa B signaling pathway KO04064 LBP (lipopolysaccharide binding protein)
Capra_hircus_newGene_7098

Inflammatory mediator regulation of TRP
channels KO04750

LOC100861186 (cytochrome P450 2C31)
OC102169851 (cytochrome P450 2C31)

LOC106503891 (cytochrome P450 2C31)
LOC108633308 (cytochrome P450 2C31-like)

TNF signaling pathway KO04668
LOC102184244 (interferon-inducible GTPase 1)

102188524 (leukemia inhibitory factor)
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Figure 6. Gene expression determined by RNAseq reflects qPCR. The log2 transformed fold changes
are plotted for RNAseq results (abscissa) and qPCR results (ordinate). Fold change of eight genes
determined by qPCR correlated significantly (p < 0.0043) with the fold change determined by RNAseq.
The slope of best fit after Pearson correlation was 0.88, with a 95% confidence interval of 0.45 to 0.98.

Relative mRNA expression of GPx3 was 86% lower in LBW kids (p < 0.05), but a trend
of lower Nrf2 (p = 0.064) mRNA expression was observed in LBW kids compared to the
control group. No differences in mRNA expression were observed for heme oxygenase
1 (HO-1), superoxide dismutase 2 (SOD2), or GPx2 (Figure 7A). The ratio of mtDNA to
nDNA was also determined by qPCR. The ratio of mtDNA/nDNA was not different
between the two groups (Figure 7B).

3.5. Hepatic Protein Expressions

The LBW kids exhibited relatively 63% lower protein abundance of Nrf2, and 1.49-fold
higher of TNFα in the liver, compared to the control kids (p < 0.01, Figure 8). How-
ever, the protein expressions of oxidative phosphorylation complexes in mitochondria,
(CI-NDUFB8), (CII-SDHB), (CIV-MTCO1), and (CV-ATP5A) were not different between the
two groups (Figure 9).
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Figure 7. mRNA expression levels in livers of control and LBW kids. (A), relative fold changes for nuclear
factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), superoxide dismutase 2 (SOD2), and
glutathione peroxidase (GPx). *, p < 0.05; †, p = 0.064. (B), quantifications of mtDNA/nDNA.
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Figure 8. Relative protein expression of Nrf2 and TNFα in liver. (A,B), representative immunoblots
for Nrf2 and TNFα between control and LBW kids. Original Western Blot could be found as
Figures S1–S4. (C,D), relative protein concentration of Nrf2 and TNFα normalized by abundance
of β-actin. Nrf2: nuclear factor erythroid 2-related factor 2; TNFα: tumor necrosis factor alpha.
**, p < 0.01. Original Western Blot figures can be found at Supplementary Material.
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Figure 9. Relative protein expression level of oxidative phosphorylation complexes in livers.
(A) representative immunoblots for the complexes I (CI, NDUFB8), II (CII, SDHB), IV (CIV, MTCO1)
and V (CV, ATP5A) in livers of control and LBW kids. (B) relative protein concentration of oxidative
phosphorylation complexes normalized by abundance of β-actin. Original Western Blot could be
found as Figures S5 and S6.

4. Discussion

In the present study, we found that LBW goat kids exhibited preliminary signs of lipid
accumulation in liver, including enhanced concentrations of hepatic FFA and TG, as well
as the occurrence of vacuole lipid droplets in liver tissue. The key regulatory signaling
pathways related to hepatic lipid metabolism, oxidative regulation, and inflammation
were impaired in LBW kids compared to NBW kids. The lower antioxidant capacity was
expected to play a major role to contribute the excessive ROS induced by lipid peroxidation
in the liver. Together with the persistently increased pro-inflammatory cytokine, these
metabolic complications could further lead to liver injury in their later life.

4.1. Hepatic Lipid Accumulation and Oxidative Stress in LBW Goat Kids

In clinical studies, LBW is defined as birthweight less than the 10th percentile at
gestational delivery [1,27]. Epidemiological studies have shown that LBW is associated
with a greater risk for development of non-alcoholic fatty liver disease in both children and
adults [28,29]. Domestic animal studies also have shown that LBW newborns have organ
dysfunction and abnormal development in the liver [1]. In our current study, the average
weight of LBW goats is 23% lower than the NBW control at necropsy (Table 1), which
is consistent with previous findings for LBW goats and lambs [6,30]. By comparing the
necropsy weight to birth weight, we found that the growth efficiency was 86.8% for NBW
and 118.9% for LBW, respectively. Even though the average daily gain was not different
between the two groups, we still cannot rule out the possibility of rapid growth in LBW
group. Postnatal accelerated growth, also called catch-up growth, occurs frequently in LBW
human and animals. The detrimental effects of catch-up growth have been associated with
dyslipidemia, obesity, and glucose intolerance [1,31]. Thus, further studies are necessary to
better interpret the hepatic lipid dysregulation caused by either prenatal programming or
postnatal rapid growth. Currently, our study was more focused on evaluating liver lipid
profiles between NBW and LBW, and investigating the underlying mechanism.

In the liver tissue of LBW goats, we found histological signs of microvesicular steato-
sis (Figure 1) associated with significantly higher lipid profiles, including FFA and TG
(Figure 2), indicating the existence of developing liposomes and lipid accumulation in liver.
Similar to the results in guinea pigs and rats [32,33], the hepatic total cholesterol content
was also increased in our LBW goat kids compared to the NBW group (Figure 2C). In
order to fully understand the underlying regulatory mechanism, we explored liver tran-
scriptome data associated with lipid metabolism, and discovered that multiple pathways,
including fatty acid biosynthesis, adipocytokine signaling, and fatty acid degradation, were
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differentially affected in LBW liver (Table 2). These findings were similar to those in the
study of LBW rats induced by bilateral uterine artery ligated, in which LBW offspring
display higher expression of acetyl-CoA carboxylase, the rate-limiting enzyme of fatty
acid synthesis, in the liver at 21 days of age [34]. Meanwhile, the LBW rats exhibited
greater hepatic cholesterol accumulation with impaired regulation of lipid transport in
their postnatal life [33]. Thus, our findings of hepatic lipid accumulation and dysregulation
begin to reveal the development of fatty liver in LBW goats.

Besides the lipid metabolism, KEGG annotation further indicated dysregulation of
oxidative regulation and inflammation in LBW livers. Oxidative stress is one of the main
factors in the pathogenesis of metabolic diseases, including hepatic lipid accumulation
and dysregulation. On the other hand, hepatic lipid accumulation occurs when fatty
acid uptake and synthesis surpass oxidative capacity in liver [35]. As the marker of
lipid peroxidation [36], hepatic MDA level was observed to be higher in LBW goat kids
(Figure 2D), and there was a trend of lower GPx activity in LBW kids (Figure 2E). GPx is a
potent enzyme with peroxidase activity able to reduce lipid hydroperoxides and protect
the organism from oxidative damage [37]. Studies of LBW piglets show signs of oxidative
damage that was induced by lower antioxidant capacity in the liver [38]. Moreover, these
experiments demonstrate a close associate with hepatic dyslipidemia and dysregulated
oxidative stress [39,40]. Moreover, small for gestational age newborns have increased MDA
with lower antioxidants in comparison to the appropriate for gestational age babies [41].
Hence, our data provides evidence that greater lipid accumulation in LBW livers might
result from persisting oxidative damage caused by higher ROS exposure concurrent with
lower antioxidant capacity.

4.2. Enhanced ROS Caused by Lower Antioxidant Capacity Damage Hepatic Lipid Regulation

Oxidative stress is mainly caused by an imbalance between the production of ROS
and the corresponding antioxidant-induced protective mechanisms [42]. Nrf2 is a tran-
scription factor that regulates cellular redox status. It is coupled with the antioxidant-
response element to mediate stress-stimulated induction of antioxidant by activating GPx
expression [37]. The treatments of antioxidative dietary supplementations, such as dihy-
droartemisinin and curcumin, upgrade the Nrf2 pathway and alleviate the ROS production
and oxidative damage in LBW piglets [11,43]. In our LBW study, the mRNA expression
of GPx3 was significantly lower in LBW goat kids than in the NBW group (Figure 7A).
Moreover, there was a trend of decreasing Nrf2 mRNA expression (Figure 7A), and a
significantly lower Nrf2 protein level in LBW livers (Figure 8A,C). Since LBW rats exhibit
hepatic mitochondrial dysfunction and oxidative damage four weeks after birth [10], we
further investigated the hepatic mitochondrial density and function to fully understand
the imbalance of oxidative regulation in LBW goats. However, neither the mtDNA/nDNA
ratio, the indicator of mitochondrial density, nor the expression of rate limited enzymes in
mitochondrial respiration chain complex was changed (Figures 7B and 9). Based on the
above findings, this hepatic oxidative damage was mainly caused by down regulation of
Nrf2-GPx pathway, resulting in a lower antioxidant capacity in LBW kids.

In addition to influencing lipid metabolism directly, chronic ROS exposure could
persistently activate pro-inflammatory cytokine generation in liver, and these cytokines,
in turn, would stimulate higher ROS production and exacerbate hepatosteatosis [35]. The
study of guinea pigs indicated that LBW offspring with a controlled diet have an increased
inflammatory marker, TNFα, and exhibit minimal lobular inflammation, as well as portal
fibrosis [44]. In LBW animals, improving hepatic antioxidant capacity and inflammation
could alleviate hepatic lipid accumulation by postnatal diet supplement [40,45]. Hence, in
our LBW goat kids, the higher hepatic TNFα level (Figure 8B,D) might be caused by the
interaction between impaired redox signaling and innate activated inflammatory responses,
resulting in further exacerbation of liver injury development.
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5. Conclusions

LBW animals are at greater risk for developing oxidative stress-induced hepatosteato-
sis. The impairment of antioxidant capacity and excessive ROS exposure not only di-
rectly damage hepatic lipid regulation, but also trigger hepatic inflammatory responses,
leading to irretrievable liver damage with lipid accumulation in the liver in later life
(Figure 10). In these LBW animals, early intervention with an appropriate intake of an-
tioxidant additives could relieve the level of oxidative stress, along with ameliorating the
metabolic diseases [46,47].
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Figure 10. Hepatic lipid accumulation was associated with impairment of lipid metabolism and
oxidative regulation in LBW goats. Overproduction of ROS and lower antioxidant capacity could
contribute oxidative stress, which interacts with pro-inflammation cytokine, resulting in persistent
lipid dysregulation and hepatosteatosis in the LBW goat’s adult life. FFA, free fatty acid; TC, total
cholesterol; TNFα, tumor necrosis factor alpha; MDA, malondialdehyde.
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