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Leadbetterella byssophila Weon et al. 2005 is the type species of the genus Leadbetterella of 
the family Cytophagaceae in the phylum Bacteroidetes. Members of the phylum Bacteroi-
detes are widely distributed in nature, especially in aquatic environments. They are of special 
interest for their ability to degrade complex biopolymers. L. byssophila occupies a rather iso-
lated position in the tree of life and is characterized by its ability to hydrolyze starch and ge-
latine, but not agar, cellulose or chitin. Here we describe the features of this organism, to-
gether with the complete genome sequence, and annotation. L. byssophila is already the 16th 
member of the family Cytophagaceae whose genome has been sequenced. The 4,059,653 bp 
long single replicon genome with its 3,613 protein-coding and 53 RNA genes is part of the 
Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain 4M15T (= DSM 17132 = JCM 16389 = KACC 
11308) is the type strain of the species Leadbette-
rella byssophila, which is the type species of the 
genus Leadbetterella. Currently L. byssophila is the 
only validly named  species in this genus. The type 
strain was isolated by Weon et al. [1] from cotton-
waste compost soil used as mushroom cultivation 
in Suwon, South Korea. L. byssophila is described 
as aerobic, rod shaped and non-motile. The spe-
cies belongs to the Cytophaga-Flavobacterium-
Bacteroides (CFB) group, also known as the phy-
lum Bacteroidetes [2], which comprises organisms 
associated with the degradation of complex poly-

saccharides. The CFB group consists of many bac-
terial strains isolated from marine environments 
and hypersaline lakes; but only a few were iso-
lated from other habitats such as soil. Various tax-
onomic treatments have placed L. byssophila ei-
ther in the family 'Flexibacteraceae' or the family 
Cytophagaceae. This is most probably due to a 
number of nomenclatural problems. The family 
'Flexibacteraceae' as outlined in TOBA7.7 [3] 
would include Cytophaga hutchinsonii, which is 
the type species of the genus Cytophaga, which in 
turn is the type of the family Cytophagaceae, a 
name that may not be replaced by the family name 



Abt et al. 

http://standardsingenomics.org 3 

'Flexibacteraceae' as long as Cytophaga hutchinso-
nii is one of the included species. A similar prob-
lem arises with the placement of Spirosoma lin-
guale in the higher taxonomic ranks and has been 
discussed previously [4]. Here we present a sum-
mary classification and a set of features for L. bys-
sophila 4M15T, together with the description of 
the complete genomic sequencing and annotation. 

Classification and features 
L. byssophila 4M15T is very isolated in the tree of 
life, with no other species allocated to the same ge-
nus and with the type strains of the members of the 
genus Emticicia [5,6] sharing the highest degree of 
16S rRNA sequence identity (88.3-88.9%) [7], fol-
lowed by Sporocytophaga myxococcoides (85.2%) 
[8] and Siphonobacter aquaeclarae (85.0%) [9]. No 
other cultured strain belonging to the species or 
genus has been described. Only one 16S rRNA se-
quence from a moderately related (95% sequence 
identity) uncultivated clone, W4S69 (GU560170), 
identified by Xu and colleagues in pharmaceutical 
wastewater biofilms, was reported in GenBank. 
Neither environmental screenings nor genomic 
surveys produced any sequence that could be 
linked to the species L. byssophila or the genus 
Leadbetterella, indicating that members of the spe-
cies are not heavily represented in the so far 
screened habitats (status November 2010). 
A representative genomic 16S rRNA sequence of L. 
byssophila 4M15T was compared using NCBI BLAST 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
Greengenes database [10] and the relative frequen-
cies, weighted by BLAST scores, of taxa and key-
words (reduced to their stem [11]) were deter-
mined. The five most frequent genera were Pedo-
bacter (35.1%), Flectobacillus (11.4%), Leadbette-
rella (9.4%), Algoriphagus (8.6%) and Arcicella 
(6.8%) (80 hits in total). Regarding the single hit to 
sequences from members of the species, the aver-
age identity within HSPs was 100.0%, whereas the 
average coverage by HSPs was 97.9%. Among all 
other species, the one yielding the highest score 
was 'Kaistomonas ginsengisoli', which corres-
ponded to an identity of 92.2% and a HSP coverage 
of 49.8%. The name 'Kaistomonas ginsengisoli' 
(strain Gsoil 085, AB245370) is also to be found in 
a number of publications [12-14], but that has since 
become the type strain of Emticicia ginsengisoli [6]. 

The highest-scoring environmental sequence was 
HM238135 ('structure full-scale air pig facility bio-
filter treating waste gas clone FF 92'), which 
showed an identity of 93.1% and a HSP coverage of 
96.0%. The five most frequent keywords within the 
labels of environmental samples which yielded hits 
were 'lake' (4.8%), 'litholog/stream' (4.5%), 
'biofilm' (3.3%), 'microbi' (2.9%) and 'site' (2.5%) 
(170 hits in total). The five most frequent keywords 
within the labels of environmental samples which 
yielded hits of a higher score than the highest scor-
ing species were 'soil' (5.1%), 'biofilm/oxid' 
(5.1%), 'air, biofilt, facil, full-scal, pig, structur, treat, 
wast' (2.7%), 'forest, ghat, ground, india, mangrov, 
nich, prokaryt, select, studi, swab, western' (2.7%) 
and 'cold, spring' (2.6%) (5 hits in total). 
Figure 1 shows the phylogenetic neighborhood of L. 
byssophila 4M15T in a 16S rRNA based tree. The 
sequences of the three 16S rRNA gene copies in the 
genome do not differ from each other, and do not 
differ from the previously published 16S rRNA se-
quence (AY854022). 
Cells of L. byssophila stain Gram-negative and are 
non-motile, rod shaped with a width of 0.6-0.9 µm 
and a length of 2-7 µm (Figure 2 and Table 1). Co-
lonies are circular, 1-2 mm in diameter, smooth, 
light orange, shiny and convex with entire margin 
when grown on trypticase soy agar. After pro-
longed incubation colonies become dark orange. 
Strain 4M15T grows under aerobic conditions at 
temperatures of 15-45°C and at a pH range of 6.0-
8.0. The strain grows in the presence of 1% (w/v) 
NaCl, but not at 3% NaCl [1]. Growth on carbohy-
drates (API 20NE) was observed for glucose, arabi-
nose, mannose, N-acetylglucosamine and maltose 
but not for mannitol. Strain 4M15T was positive for 
indole production and β-galactosidase, and nega-
tive for nitrate reduction and arginine dihydrolase 
(API 20NE). Enzymatic activity was detected for 
alkaline phosphatase, leucine arylamidase, valine 
arylamidase, trypsin, acid phosphatase, naphthol-
AS-BI-phosphohydrolase, α-glucosidase, β-
glucosidase, N-acetyl-β-glucosaminidase and α-
fucosidase; weak enzymatic activity was observed 
for α-galactosidase and β-galactosidase (API ZYM). 
L. byssophila produces catalase and urease [1]. 
Whereas starch, gelatin, aesculin and tyrosine are 
hydrolyzed; agar, casein, cellulose and chitin are 
not. Strain 4M15T is sensitive to ampicillin, carben-
cillin, lincomycin, streptomycin and tetracycline 
and shows resistance to benzylpenicillin, gentami-
cin, neomycin, oleandomycin and polymyxin B. 
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Figure 1. Phylogenetic tree highlighting the position of L. byssophila relative to the type strains of the other genera 
within the family Cytophagaceae. The tree was inferred from 1,340 aligned characters [15,16] of the 16S rRNA 
gene sequence under the maximum likelihood criterion [17] and rooted with the type strain of the closely related 
family Sphingobacteriaceae. The branches are scaled in terms of the expected number of substitutions per site. 
Numbers above branches are support values from 900 bootstrap replicates [18] if larger than 60%. Lineages with 
type strain genome sequencing projects registered in GOLD [19] are shown in blue, published genomes in bold 
[4,20,21]. 

 
Figure 2. Scanning electron micrograph of L. byssophila 4M15T
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Table 1. Classification and general features of L. byssophila according to the MIGS recommendations [22]. 
MIGS ID Property Term Evidence code 

 

Current classification 
 

Domain Bacteria TAS [23] 
Phylum Bacteroidetes TAS [24] 
Class Cytophagia TAS [25] 
Order Sphingobacteriales TAS [24] 
Family Cytophagaceae TAS [25,26] 
Genus Leadbetterella TAS [1] 
Species Leadbetterella byssophila TAS [1] 
Type strain 4M15 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape rod-shaped TAS [1] 
 Motility non-motile TAS [1] 
 Sporulation non-sporulating TAS [1] 
 Temperature range mesophile, 15-45°C TAS [1] 
 Optimum temperature 30°C NAS 
 Salinity 1% TAS [1] 
MIGS-22 Oxygen requirement aerobic TAS [1] 

 
Carbon source glucose, arabinose, mannose, N-acetylglucosamine, 

and maltose TAS [1] 

 Energy source chemoorganotrophic TAS [1] 
MIGS-6 Habitat cotton compost TAS [1] 
MIGS-15 Biotic relationship free living NAS 
MIGS-14 Pathogenicity non pathogenic NAS 
 Biosafety level 1 TAS [27] 
 Isolation cotton-waste composts TAS [1] 
MIGS-4 Geographic location South Korea TAS [1] 
MIGS-5 Sample collection time 2002 NAS 
MIGS-4.1 Latitude not reported  
MIGS-4.2 Longitude not reported  
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., 
a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the liv-
ing, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These 
evidence codes are from of the Gene Ontology project [28]. If the evidence code is IDA, then the property was di-
rectly observed by one of the authors or an expert mentioned in the acknowledgements. 

Chemotaxonomy 
The fatty acids of strain 4M15T comprise a complex 
mixture of straight chain saturated and unsatu-
rated acids, together with iso-branched, anteiso-
branched and hydroxylated acids. The fatty acids 
comprise iso-C15:0 (24.2%), C16:1ω5c (2.8%), C16:0 
(5.6%), iso-C15:0 3-OH (2.8%), iso-C17:1ω9c (1.4%), 
C16:0 3-OH (2.5%), iso-C17:0 3-OH (10.5%) and the 
summed feature listed in the MIDI Sherlock system 
as C16:1 ω7c and/or iso-C15:0 2-OH (30.5%) and iso-
C15:0 2-OH and/or C16:1 ω7c (15.9%). These two 
peaks probably represent C16:1 ω7c (30.5%) and 
iso-C15:0 2-OH (15.9%) of the fatty acids. The pres-
ence of saturated, unsaturated straight chain fatty 
acids, together with branched chain (largely iso-) 

normal and 2-OH and 3-OH derivatives is fairly typ-
ical of the aerobic members of the Bacteroidetes. 
The major isoprenoid quinone is menaquinone MK-
7, a trace amount of menaquinone MK-8 was de-
tected [1]. The polar lipids of L. byssophila have not 
been determined, but for a number of other taxa, 
including Rudanella lutea 5715S-11T, S. linguale 
DSM 74T, Larkinella insperata LMG 22510T and 
some members of the genus Sphingobacterium and 
Parapedobacter [29,30] the presence of phosphati-
dylethanolamine as the major (diglyceride based) 
phospholipid and a number of not further characte-
rized lipids and amino lipids provide useful tax-
onomic and evolutionary markers [31]. 
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Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [32], and is part of 
the Genomic Encyclopedia of Bacteria and Archaea 
project [33]. The genome project is deposited in the 

Genomes OnLine Database [19] and the complete 
genome sequence is deposited in GenBank. Sequenc-
ing, finishing and annotation were performed by the 
DOE Joint Genome Institute (JGI). A summary of the 
project information is shown in Table 2. 

 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Genomic libraries: one 454 pyrosequence standard library, one 454 
PE library (11.7 kb insert size);  one illumina standard library 

MIGS-29 Sequencing platforms 454 Titanium, Illumina 
MIGS-31.2 Sequencing coverage 71.4 × pyrosequence; 105.0 × Illumina 

MIGS-30 Assemblers 
Newbler version 2.3-PreRelease-10-21-2009-gcc-4.1.2-threads, 
phrap, Velvet 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002305 
 Genbank Date of Release November 12, 2010 
 GOLD ID Gc01535 
 NCBI project ID 38283 
 Database: IMG-GEBA 2503538002 
MIGS-13 Source material identifier DSM 17132 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
L. byssophila 4M15T, DSM 17132, was grown in 
DSMZ medium 545 (Tryptone soya broth, TSB) [34] 
at 30°C. DNA was isolated from 0.5-1 g of cell paste 
using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, 
Germany) following the standard protocol as rec-
ommended by the manufacturer with modification 
st/L for cell lysis as described in Wu et al. [33]. DNA 
is available through the DNA Bank Network [35,36]. 

Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can 
be found at the JGI website [37]. Pyrosequencing 
reads were assembled using the Newbler assemb-
ler version 2.3-PreRelease-10-21-2009-gcc-4.1.2-
threads (Roche). The initial Newbler assembly con-
sisting of 73 contigs in one scaffold was converted 
into a phrap assembly by making fake reads from 
the consensus, collecting the read pairs in the 454 
paired end library. Illumina GAii sequencing data 
(420.0 Mb) was assembled with Velvet [38] and the 
consensus sequences were shredded into 1.5 kb 
overlapped fake reads and assembled together 
with the 454 data. The 454 draft assembly was 

based on 237.2 MB 454 draft data and all of the 454 
paired end data. Newbler parameters are -consed -
a 50 -l 350 -g -m -ml 20.  

The Phred/Phrap/Consed software package [39] 
was used for sequence assembly and quality as-
sessment in the following finishing process. After 
the shotgun stage, reads were assembled with pa-
rallel phrap (High Performance Software, LLC). 
Possible mis-assemblies were corrected with ga-
pResolution [37], Dupfinisher, or sequencing 
cloned bridging PCR fragments with subcloning or 
transposon bombing (Epicentre Biotechnologies, 
Madison, WI) [40]. Gaps between contigs were 
closed by editing in Consed, by PCR and by Bubble 
PCR primer walks (J.-F.Chang, unpublished). A to-
tal of 195 additional reactions were necessary to 
close gaps and to raise the quality of the finished 
sequence. Illumina reads were also used to correct 
potential base errors and increase consensus 
quality using a software Polisher developed at JGI 
[41]. The error rate of the completed genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 176.4 × coverage of the ge-
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nome. Final assembly contains 1,209,137 pyrose-
quence and 14,794,926 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [42] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [43]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 

within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [44]. 

Genome properties 
The genome is 4,059,653 bp long and comprises 
one circular chromosome with a 40.4% G+C con-
tent (Table 3 and Figure 3). Of the 3,666 genes 
predicted, 3,613 were protein-coding genes, and 
53 RNAs; 148 pseudogenes were also identified. 
The majority of the protein-coding genes (64.8%) 
were assigned with a putative function while the 
remaining ones were annotated as hypothetical 
proteins. The distribution of genes into COGs func-
tional categories is presented in Table 4. 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 4,059,653 100.00% 
DNA coding region (bp) 3,643,561 89.75% 
DNA G+C content (bp) 1,640,653 40.41% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,666 100.00% 
RNA genes 53 1.45% 
rRNA operons 1  
Protein-coding genes 3,613 98.55% 
Pseudo genes 148 4.04% 
Genes with function prediction 2,375 64.78% 
Genes in paralog clusters 502 13.69% 
Genes assigned to COGs 2,353 64.18% 
Genes assigned Pfam domains 2,618 71.41% 
Genes with signal peptides 985 26.29% 
Genes with transmembrane helices 711 19.39% 
CRISPR repeats 3  

Insights from genome sequence 
The orange color of L. byssophila is due to the 
presence of flexirubin, a pigment consisting of an 
ω-phenyloctaenic acid chromophore esterified 
with resorcinol carrying two hydrocarbon chains. 
Flexirubins are yellow under neutral pH condi-
tions and become red under alkaline conditions. In 
Flavobacterium johnsoniae a cluster of genes in-
volved in flexirubin synthesis was identified [45], 
with Fjoh_1102 and Fjoh_1103 having likely roles 
in the synthesis. Homologs of these genes were 
also identified in the flexirubin-producing Bacte-
roidetes Flavobacterium psychrophilum and C. hut-
chinsonii, Fjoh_1102 and Fjoh_1103 are similar to 

Pseudomonas aurantiaca darA and darB which 
are involved in biosynthesis of the antifungal 
compound 2-hexyl-5-propyl-alkylresorcinol. In 
2009 McBride and colleagues demonstrated the 
important role of Fjoh_1102 and Fjoh_1103 in 
flexirubin synthesis by constructing an insertion 
mutant which was cream colored because of the 
missing flexirubin [45]. Homologs of Fjoh_1102 
and Fjoh_1103 were identified in the genome of L. 
byssophila (Lbys_1508 and Lbys_1509), therefore 
an important function of these genes in the flex-
irubin synthesis can be inferred. 
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Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other 
RNAs black), GC content, GC skew. 

Although L. byssophila was isolated from cotton 
waste, which is mainly composed of cellulose, lig-
nin and hemicellulose, the ability to degrade car-
boxymethylcellulose and filter paper could not be 
detected; solely D-cellobiose was assimilated [1]. 
A closer look into the genome sequence of L. bys-
sophila revealed the presence of three genes cod-
ing cellobiose or cellulose hydrolyzing enzymes: 
two β-glucosidases belonging to glycoside hydro-
lase family 3 (Lbys_0274, Lbys_1260) and one en-
doglucanase belonging to glycoside hydrolase 

family 5 (Lbys_2254). In order to test whether 
these endoglucanases actively hydrolyze cellulose 
we carried out a relatively sensitive assay, using 
hydroxyethylcellulose with a crosslinked azurin as 
substrate (AZCL-HEC, Megazyme, Ireland). In this 
test L. byssophila was not able to hydrolyze hy-
droxyethylcellulose (own unpublished data).This 
observation conforms with the studies done by 
Weon and colleagues [1]. The finding of three 
genes probably coding for α-amylases (Lbys_0590, 
Lbys_2307, Lbys_2308) is consistent with the ob-
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served starch degrading ability of L. byssophila [1]. 
A closer look into the genome sequence revealed 
four xylan degrading enzymes, three endo-1,4-β-
xylanases belonging to glycoside hydrolase family 
10 (Lbys_1832, Lbys_2128, Lbys_2331) and one 
xylan-1,4-β-xylosidase belonging glycoside hydro-
lase family 43 (Lbys_2333). To date the degrada-
tion of xylan by L. byssophila was not described, 
but we could demonstrate the hydrolysis of xylan 
in a plate assay using xylan with a covalently 

bound dye as a substrate (remazol brilliant blue-
D-xylan, Slovak Academy of Science) (own unpub-
lished data). 
L. byssophila tested positive for catalase and oxi-
dase [1] The respective genes were identified in 
the genome sequence. Lbys_1881 encodes a cata-
lase and the genes coding cytochrome C oxidase 
are localized in the region between Lbys_2190 and 
Lbys_2195. 

 

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 
J 152 5.9 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 182 7.0 Transcription 
L 181 7.0 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 23 0.9 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 70 2.7 Defense mechanisms 
T 142 5.5 Signal transduction mechanisms 
M 215 8.3 Cell wall/membrane biogenesis 
N 4 0.2 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 41 1.6 Intracellular trafficking and secretion 
O 109 4.2 Posttranslational modification, protein turnover, chaperones 
C 142 5.5 Energy production and conversion 
G 171 6.6 Carbohydrate transport and metabolism 
E 197 7.6 Amino acid transport and metabolism 
F 76 2.9 Nucleotide transport and metabolism 
H 109 4.2 Coenzyme transport and metabolism 
I 90 3.5 Lipid transport and metabolism 
P 147 5.7 Inorganic ion transport and metabolism 
Q 54 2.1 Secondary metabolites biosynthesis, transport and catabolism 
R 321 12.4 General function prediction only 
S 164 6.3 Function unknown 
- 1,313 35.8 Not in COGs 
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