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Immune checkpoint inhibition targeting T cells has shown tremendous promise in the
treatment of many cancer types and are now standard therapies for patients. While
standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune
checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily
known for its role in cellular migration, has also been shown to function as a negative
regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly
expressed on T cells and can engage numerous ligands that impact signaling pathways,
which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the
tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor
growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may
represent a new cancer therapy approach to eradicate tumors.
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INTRODUCTION

Early cancer treatments primarily relied on surgery, radiation, and chemotherapy. Newer
therapeutic strategies were developed targeting oncogenic pathways, which extended the median
overall survival of patients with advanced disease, but many eventually progressed due to tumor
resistance and/or recurrence. Recent innovative therapeutic advances have now focused on
harnessing and reinvigorating the immune response against tumors to provide novel treatment
for cancer patients. Importantly, many of these advances have led to increases in median overall
survival and sustained progression-free survival, especially for previously terminal cancer types such
as metastatic melanoma. While new technologies such as CAR T cells have had significant success in
non-solid cancers, immune checkpoint therapies using biologics have shown success against solid
tumors. In addition, adoptive cell therapies which transfer expanded tumor-infiltrating T cells,
along with dendritic cell cancer vaccines, have shown efficacy in various tumor types. The injection
of exogenous cytokines such as IL-2 and IL-12 has also been successful at promoting anti-tumor
immunity. Most of these strategies have focused on stimulating CD8+ cytotoxic T lymphocytes
(CTLs), which are the main T cell populations that kill tumors. Even though CTLs are required for
anti-tumor immunity, CD4+ T cells are also at the forefront of improving immunotherapies through
their ability to provide help and amplify the CTLs response, making these cells an important target
for cancer immunotherapy.
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In the tumor microenvironment (TME), CD4+ T cells can
directly kill tumors and/or change the TME to promote anti-
tumor immunity (1, 2). CD4+ T cell help is now recognized to
occur through a secondary priming step, where both CD4+ and
CD8+ T cells recognize their cognate antigen on the same dendritic
cell leading to optimal CTL clonal expansion and activation (3–8).
This key CD4+ T cell help occurs through the licensing of dendritic
cells (cDC1) through their interaction with MHC II and CD40/
CD40L on CD4+ T cells, which was recently demonstrated in vivo in
tumors (9), and resulted in successful cross presentation of tumor
antigens to CD8+ T cells. Dendritic cell maturation and stimulation
via CD40/CD40L by CD4+ T cells leads to IL-12, IL-15, and type I
interferon production, which support CTL differentiation and
function (10–16). Mature cDC1 cells also increase expression of
MHC-I, CD80, and CD86 which provide activating and co-
stimulatory signals to CD8+ T cells to promote their function (11,
14). Further, CD4+ T cell licensed cDC1 cells upregulate CD70
which can engage CD27 on CD8+ T cells to upregulate IL-12R and
respond to IL-12 cytokines (17, 18). Activated CD4+ T cells also
produce IL-2 and IL-21, which support differentiation, proliferation,
and survival of CD8+ T cells (19, 20). These functions by CD4+ T
cell-induced changes on dendritic cells are key in shaping the cross-
priming required for effective activation of anti-tumor CD8+ T cells.

The specific ways through which CD4+ T cells help CD8+ T
cell effectors have been investigated in numerous studies. In
mice, key transcriptional changes in CD8+ T cells that
differentiate under conditions with supportive CD4+ T cell
help have been reported. These include the expression of the
transcription factors T-BET, EOMES, and ID3, which regulate
CTL differentiation (21–23). In addition, CTLs produce effector
molecules such as TNF-a, IFN-g, and granzyme B (GZMB)
which promote their killing capacity and IL-2, which supports
their cell-intrinsic differentiation and survival (17, 24). CTLs also
express matrix metalloproteinases and upregulate expression of
CX3CR1 and CXCR4, which enhance their migration properties
(17). CD4+ T cell help also induces the downregulation of the
immune checkpoints TIM3, BTLA, LAG3, and PD-1 which may
prevent an exhaustion phenotype in CTLs in tumors (17).

While CD4+ T cells support CTLs, these cells also have direct
anti-tumor activity and can kill tumors through engaging p-
MHC II and secretion of IFN-g and TNF-a effector cytokines (1,
2). Indeed, class II tumor-associated antigens have been
identified including mucin 1, tyrosinase, premelanosome
protein gp100, survivin, telomerase reverse transcriptase, and
many others (25). CD4+ T cells can also provide help to B cells
via CD40/CD40L and p-MHC II/TCR interactions which drive
antibody responses to tumor-associated antigens (26, 27). Cancer
vaccines that target both MHC class I and MHC class II epitopes
were shown to bypass immune tolerance to induce effective
antitumor immunity (28, 29). These studies highlight the
importance of the CD4+ T cell response in anti-tumor immunity.

Effective T cell activation requires multiple signals including
TCR-p-MHC, co-stimulation, and cytokines by antigen
presenting cells that promote T cell proliferation and survival
(6). In addition to co-stimulatory signals, T cell inhibitory
pathways such as PD-1/PD-L1 and CTLA-4 are also important
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as “breaks” that ensure effective TCR signaling required for their
differentiation (30). Both CD4+ and CD8+ T cells express these
immune checkpoints which are upregulated after activation and
then downregulated after antigen clearance; however, during
chronic antigen stimulation such as in tumors and chronic
viral infections, the expression of immune checkpoints remains
elevated to promote the generation of exhausted CD4+ and CD8+

T cells (31, 32). Immune checkpoints inhibit T cells through
multiple mechanisms, but their main function is to inhibit TCR
signaling (31, 32). PD-1 signaling for example, has been reported
to interfere with both TCR and CD28 signaling pathways to limit
T cell activation (33). Many additional immune checkpoints
including TIGIT, LAG-3, TIM-3, VISTA, CD160, and BTLA
have been discovered and work through diverse mechanisms to
limit T cell activation and these have been reviewed elsewhere
(31, 34). These immune checkpoints are therapeutically
significant, as antibody blockade of these surface expressed
proteins have now been used to reinvigorate T cells in tumors
to promote tumor control.

Clinical success targeting PD-1 and CTLA-4 has shown the
most promise in promoting long-term durable responses in
melanoma cancer patients (35). Importantly, these immune
checkpoint blockade therapies have shown clinical efficacy in
the treatment of multiple cancer types including melanoma,
lung, kidney, and certain colon cancers, with many clinical
trials currently ongoing (36, 37). Furthermore, these immune
checkpoint inhibitors are in clinical trials to determine efficacy in
additional cancers (37). While these therapies show efficacy as
monotherapies, greater responses are observed when these
immune checkpoint inhibitors are combined (38). In addition,
combining radiation and chemotherapy with immune
checkpoint inhibitors have also shown clinical efficacy (39, 40),
supporting the notion that combination therapies can be more
beneficial than these treatments alone. Despite the clinical
success using immune checkpoint inhibitors, 50–80% of
patients receiving these therapies fail to respond to treatment
(41). In addition, immune-related adverse events (irAEs) are
observed in patients receiving these treatments with some
reported deaths (35). It is clear that a better understanding of
resistance mechanisms to these therapies are needed to improve
cancer patient outcomes while limiting irAEs. It is also important
to develop strategies that target new immune checkpoints that
can improve anti-tumor immunity as either monotherapies or
combination therapies. A new immune checkpoint, P-selectin
glycoprotein ligand-1 (PSGL-1, Selplg gene) has been shown to
inhibit anti-tumor responses in pre-clinical models and may
represent a new strategy to improve patient outcomes (42).
While much focus has centered on improving CTL responses,
the fact that many patients are unresponsive to current immune
checkpoint blockade therapies highlight that CD4+ T cell help
may be defective in these patients, especially since immune
checkpoint inhibitors also reinvigorate CD4+ T cell functions.
PSGL-1 deficient (Selplg−/−) mice were shown to have enhanced
anti-viral and anti-tumor immunity, with T cells escaping
functional exhaustion partly due to their enhanced CD4+ T cell
responses (42). These findings, together with prior work showing
February 2021 | Volume 12 | Article 636238
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PSGL-1 functioned as a negative regulator in T cells (43), suggest
that inhibiting PSGL-1 in CD4+ T cells through multiple
immunotherapeutic strategies may represent a new strategy to
improve anti-tumor immunity.
CD4+ T CELLS EXPRESS PSGL-1

The initial studies of PSGL-1 focused primarily on its expression
and role in neutrophils, but PSGL-1 has since been identified on all
myeloid and lymphoid lineages. Despite the ubiquitous expression
of PSGL-1 on all hematopoietic lineages, its expression level and
functionality differ among these cell types. On myeloid cells,
PSGL-1 is constitutively expressed in its functional form, which
has the posttranslational modifications required for selectin
binding (44). Within the lymphocyte lineage, all T cell subsets
express PSGL-1, whereas very low to undetectable expression is
present on B cells (45). Similar to myeloid cells, T cell binding and
endothelial migration is regulated by PSGL-1. Unlike myeloid
cells, however, T cells do not constitutively express functional
PSGL-1 and must express the enzymatic machinery required to
modify PSGL-1 during T cell activation (44). Although PSGL-1 is
expressed on all T cell subsets, including both Th1 and Th2 CD4+

T cells, Th2 cells do not express the functional form and thus have
decreased binding capacity to P- and E-selectins when compared
to Th1 cells (46). In follicular T helper cells (TFH), PSGL-1
downregulation by the transcription factors Bcl6 and Ascl2
facilitates migration in follicles (47). Another CD4+ T cell subset
with expression of highly functional PSGL-1 are Tregs, which have
been explored in a model of experimental autoimmune
encephalomyelitis (EAE), where PSGL-1 expression was linked
to the suppressive capacity of Tregs (48). PSGL-1 is also expressed
by Th17 and CD8+ T cells (49).
TUMOR IMMUNE RESPONSE IN PSGL-1-
DEFICIENT MICE

Preclinical studies in WT and Selplg−/− mice showed that mice
injected with melanoma cell lines (YUMM1.5) developed
subcutaneous tumors, however Selplg−/− mice had increased
infiltration of effector CD4+ and CD8+ T cells. Selplg−/− T cells
also had increased production of IFN-g, TNF-a, and IL-2 which
led to melanoma tumor control (42). Furthermore, CD4+ and
CD8+ T cells in Selplg−/− mice had decreased PD-1 expression,
indicating that these cells were phenotypically less exhausted
than WT cells (42). CD4+ T cell-derived IL-2 would support the
concept that Selplg−/− CD4+ T cells provided enhanced helper
function to CTLs thanWT cells, which led to complete responses
in ~18% of Selplg−/− mice, although this was not evaluated (42).
Even though Tregs numbers were similar in tumors in WT and
Selplg−/− mice, the ratio of effector T cells to Tregs was increased
in Selplg−/− mice (42). These studies also showed that while
PSGL-1 is important in T cell migration, PSGL-1 was not
required for their entry in tumors, as shown by the highly
infiltrated tumors in Selplg−/− mice compared to WT. Adoptive
Frontiers in Immunology | www.frontiersin.org 3
cell transfer of TCR transgenic OT-I CD8+ T cells into B16-Ova
melanoma tumor bearing mice also showed that Selplg−/−OT-I T
cells were superior at promoting tumor killing than WT cells
(42). Interestingly, others examined the ability of Selplg−/− to
control B16 melanoma and did not observe enhanced B16 tumor
control and tumors were larger (50). These contrasting findings
highlight that Selplg−/− mice may elicit different immune
responses in various tumor models, and in the case of B16,
may only be controlled through the use of adoptive cell therapy
of previously activated T cells.
HUMAN AND MOUSE PSGL-1

While humans and mice both express PSGL-1, it is important to
consider the similarities and differences between these two proteins
(Figure 1). Murine PSGL-1 is encoded as a 397 amino acid (a.a.)
protein (51). The mature form of murine PSGL-1 has a 290 aa
extracellular domain (ECD), which contains 10 decameric repeats.
In contrast, human PSGL-1 is encoded as a 412 aa protein and has a
279 aa ECD that contains 16 decameric repeats (52). The sequence
of the decameric repeats also differs between human and murine
PSGL-1. The human consensus sequence is -A-T/M-E-A-Q-T-T-X-
P/L-A/T-, while the murine consensus sequence has been described
as -E-T-S-Q/K-P-A-P-T/M-E-A- (51–53). Studies comparing the
amino acid sequence of human and murine PSGL-1 have found the
two proteins only share 43% sequence similarity in the ECD,
although the transmembrane and cytoplasmic domains are more
similar (51). While the sequences may be different, murine and
human PSGL-1 share important similarities in the regions of the
protein that are involved in ligand binding and signaling. In order to
interact with selectins, the N-terminus of PSGL-1 must undergo
core-2 O-glycosylation of a threonine and sulfation at tyrosine
residues (53). In murine PSGL-1, O-glycosylation occurs at Thr17
and only one tyrosine is sulfated, Tyr13 (54). In human PSGL-1, the
O-glycosylation occurs at Thr16 and there are three sites of tyrosine
sulfation (Tyr5, 7, and 10) instead of one (Figure 1). In both human
and mice, PSGL-1 has a cysteine residue that precedes the
transmembrane domain and facilitates dimerization, as well as
conservation of serine, lysine, and arginine residues in the
cytoplasmic moesin-binding sequence (55). Additionally, an
aspartic acid, a lysine, and a valine are conserved between species
in the versican-binding region of the protein (55, 56). While more
research is needed into the signaling differences between human and
murine PSGL-1, it is clear that the selectin-binding function of the
protein is conserved, as well as the types of post-translational
modifications that occur at the N-terminus (Figure 1).

When considering the translatability of mouse PSGL-1 studies,
the differences between mouse and human PSGL-1 biology must be
understood. While the selectin-binding function of the N-terminus
of murine and human of PSGL-1 is conserved, the differential
requirements for P-selectin binding are important to note. As
mentioned above, human PSGL-1 requires a core-2 O-glycan plus
three sulfated tyrosine residues to bind P-selectin, of which two
sulfated residues form direct bonds to the lectin domain (57–59). In
contrast, the binding of murine PSGL-1 to P-selectin is facilitated
February 2021 | Volume 12 | Article 636238
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largely by a core-2 O-glycan and a single sulfated tyrosine (54).
When the canonically glycosylated threonine residues were mutated
in human and murine PSGL-1, only human PSGL-1 binding to P-
selectin was abolished, indicating that murine PSGL-1 does not
depend on these glycosylated residues for binding. These studies
highlight the differential contributions of post-translational
modifications surrounding protein structure to the selectin
binding ability of human and murine PSGL-1. These differences
are important to understand, as targeting N-terminal residues or
post-translational modifications on PSGL-1 may have different
outcomes in humans and mice. The differences in the ligands that
bind PSGL-1 should also be noted. While human PSGL-1 can bind
Siglec-5, this ligand is not present in mice, and therefore may
contribute to a phenotype in human studies not seen in mice (60).
The possible ligand-receptor pairs can also differ from mice to
humans, and these interactions may change depending on the
immune cells and the microenvironments in which are they
located. In a murine AML cell line, only PSGL-1 was capable of
binding E-selectin (61). However, in human AML cells lines, both
CD44 and PSGL-1 could bind E-selectin. The differences in PSGL-1
between species are important to consider, especially when these
findings are applied for translational purposes such as therapeutic
immune modulation.
PSGL-1 LIGANDS

Selectins
Immune checkpoints have specific binding partners that inhibit T
cells and PSGL-1 can engage a number of ligands. The
Frontiers in Immunology | www.frontiersin.org 4
mechanisms by which immune checkpoint receptors and ligands
interact are key in understanding and developing strategies to
reverse and/or prevent their inhibitory function. PSGL-1 proteins
engage a diverse array of ligands at steady state and at different
stages of the immune response. While multiple PSGL-1 ligands
have been identified, the selectins were the first to be characterized
and the most widely studied (51). All three selectins, platelet (P),
endothelial (E), and leukocyte (L) have been well characterized to
bind PSGL-1 through the N-terminus extracellular domain (54,
62, 63) (Figure 2 and Table 1). However, the PSGL-1 binding
affinities differ between the three, with P-selectin having the
highest affinity, followed by E- and L-selectins, respectively (59,
64–66). Importantly, while all leukocytes can bind selectins due to
PSGL-1 post-translational modifications (59, 67, 68), naïve CD4+

and CD8+ T cells engage selectins only after T cell activation (44).
Naïve T cells express PSGL-1, however lack of sialylation and
fucosylation on PSGL-1 prevent selectin binding (44). Various
enzymes are involved in modifying PSGL-1 to allow P-selectin
binding, including fucosyltransferase IV and VII, core 2 b1,6-
glucosaminyltrasferase-I, b1,4-galactosyltransferase-I, sialyl 3-
transferase IV, and tyrosylprotein sulfotransferase 1 or 2 (69).
CD4+ and CD8+ T cell activation induces enzymatic activity which
facilitate P-selectin binding (70–72). Furthermore, IL-12 signaling
in Th1 cells was shown to induce PSGL-1 functionality, while IL-
15 in CD8+ T cells induced core-2 O-glycan expression in vitro
and in vivo (70, 73). Antigen-specific CD4+ T cells responding to
influenza viral infection were shown to express functional PSGL-1
by 6 days post-infection (dpi) and memory T cells retained this
post-translational modification to 30 dpi, with the majority of cells
binding P-selectin in the lungs and draining lymph nodes (74).
FIGURE 1 | PSGL-1 is expressed in mice and humans. PSGL-1 is expressed as a homodimer on the surface of most hematopoietic cells. Similarities and
differences between mouse and human PSGL-1 are shown.
February 2021 | Volume 12 | Article 636238
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This in vivo study showed that P-selectin binding in CD4+ T cells
occurs early during the immune response and persists to late
timepoints after infection, when these cells differentiate to form
memory T cells (74). These findings indicate that after naïve T cell
activation, CD4+ T cells retain enzymatic activity that modifies
PSGL-1 to continue engaging P-selectin as memory T cells (74).
PSGL-1 binding of these selectins plays a major role in leukocyte
migration and recruitment. PSGL-1 expressing leukocytes
circulating in the blood attach to activated endothelium
expressing P- and E- selectins. This PSGL-1-mediated
attachment allows leukocytes traveling at high velocities to
Frontiers in Immunology | www.frontiersin.org 5
attach, roll and tether to the endothelium and transmigrate to
sites of inflammation, infection, and tumors (75–78).

Recently, it was shown that PSGL-1 expression on primary acute
leukemia myeloblasts and lymphoblasts was a major ligand
interacting with the endothelial P- and E-selectins (79).
Understanding PSGL-1 regulation on these blood cancer cells and
their binding to endothelial selectins may provide insight into
whether these interactions facilitate invasion and metastasis into
various organs to seed new tumors. Additionally, novel cancer
therapeutics to target these adhesion interactions via PSGL-1 may
be beneficial in inhibiting lymphoma and leukemia extravasation.
FIGURE 2 | Various ligands can engage PSGL-1. PSGL-1 can bind P-, E-, and L-selectin. P-selectins are present in a variety of cells including platelets and
endothelial cells. E-selectins are expressed by endothelial cells and L-selectin by leukocytes. CCL19 and CCL21 chemokines are present in secondary lymphoid
organs and can be produced by endothelial cells, stromal cells, and mature dendritic cells. Versican is produced by epithelial, endothelial, stromal cells, and
leukocytes. Siglec-5, which is only present in humans, is expressed in neutrophils, mast cells, monocytes, DCs, NK cells, and stimulated T cells. VISTA is expressed
on myeloid cells and granulocytes.
TABLE 1 | PSGL-1 and its binding partners.

Molecule Gene Name Cells expressed

P-selectin glycoprotein ligand-1 (PSGL-1) Selplg CD4+ T cells, CD8+ T cells, Tregs, HSCs, DCs, neutrophils, monocytes, macrophages, most
lymphocytes, and granulocytes

V-domain Ig suppressor of T cell
activation (VISTA)

Vsir Myeloid cells, granulocytes, and T cells

Platelet selectin (P-selectin) Selp Platelets and endothelial cells
Endothelial selectin (E-selectin) Sele Endothelial cells
Leukocyte selectin (L-selectin) Sell Granulocytes, monocytes, and most lymphocytes
Versican Vcan Epithelial, endothelial, stroma, and leukocytes
Sialic Acid Binding Ig Like lectin 5
(Siglec-5)

SIGLEC5 (Human) Neutrophils, mast cells, monocytes, DCs, NK, and T cells

C-C motif chemokine ligand 19 (CCL19) Ccl19 Stromal cells and mature DCs
C-C motif chemokine ligand 21 (CCL21) Ccl21a, Ccl21b,

Ccl21c
Lymphatic endothelial and stromal cells
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


DeRogatis et al. PSGL-1 Immune Checkpoint Inhibition
Limiting PSGL-1 and selectin interactions may also promote
improved T cell responses. CD4+ T cells would acquire their
ability to bind selectins in the tumor-draining lymph node as they
engage cDC1 dendritic cells presenting tumor antigens. Recent
work has shown that cDC1 cells are required to effectively
activate both CD4+ and CD8+ T cell responses to tumors (9).
Whether PSGL-1 on T cells and/or cDC1 dendritic cells contributes
to T cell activation is unknown, but studies show that P-selectin
engagement on DCs can induce a tolerogenic phenotype that can
suppress T cells (80). Selectin dampening of T cell activation
through PSGL-1 signaling is a potential suppressive mechanism
by dendritic cells in tumor draining lymph nodes and/or tumors.
Once T cells exit lymph nodes and enter circulation, they can
activate additional signaling pathways through PSGL-1/selectin
interactions on endothelial cells, inducing cellular migration
through cytoskeleton rearrangement (81). It is unknown whether
these migration signaling pathways alter the function of anti-tumor
T cells as they enter tumors. Whether anti-tumor CD4+ and CD8+

T cells engage selectins in tumors and whether these interactions
contribute to T cell exhaustion is unknown. A chronic viral
infection model however, showed that blocking P, E, and L
selectins did not reverse anti-viral CD8+ T cell exhaustion (42),
indicating that other possible PSGL-1 binding partners outside of
selectins may promote T cell exhaustion.

Chemokines
While the selectins have been well studied as receptors for PSGL-
1 in immune cell trafficking during inflammation, the
chemokines CCL19 and CCL21 have also been shown to bind
PSGL-1 under steady state conditions (82–84) (Figure 2 and
Table 1). The interactions between PSGL-1 and these
chemokines are important for homing of resting lymphocytes
into secondary lymphoid tissues. Mature dendritic cells can
produce and secrete CCL19, whereas CCL21 is secreted by
endothelial cells in lymphatic vessels. Both CCL19 and CCL21
are produced and secreted by stromal cells in the spleen, lymph
nodes, and the lumen of high endothelial venules (85). Naïve and
memory T cells can all bind these chemokines through CCR7
interactions, which provide lymphocytes multiple opportunities
to circulate through secondary lymphoid tissues and detect
antigens presented by antigen presenting cells (86, 87).
Importantly, as CCR7+ effector T cells progress to an
exhausted state during viral infection, they downregulate CCR7
expression (86). This CCR7 downregulation is also observed in
virus-specific CD8+ T cells during lymphocytic choriomeningitis
virus (LCMV) infection (88). It is at these key stages when CD4+

and CD8+ T cells downregulate CCR7 where they may have
PSGL-1 accessible to interact with CCL19 and CCL21
chemokines (Figure 2). These chemokines could impact anti-
tumor T cell responses through PSGL-1 engagement in the
tumor draining lymph nodes. Indeed, CCL19 and CCL21 have
been shown to induce activation induced cell death (AICD) of
responding CD4+ T cells (89). PSGL-1 engagement by these
chemokines in tumor draining lymph nodes may induce cell
death of anti-tumor T cells, resulting in decreased effector T cells
exiting lymph nodes and thereby reducing infiltration in tumors.
Frontiers in Immunology | www.frontiersin.org 6
CD4+ and CD8+ T cells interactions with dendritic cells during
priming and later stages of T cell activation could be meditated
by PSGL-1 and CCL19/CCL21 interactions, since inflammatory
dendritic cells also express PSGL-1 (90). Furthermore, whether
cDC1 cells utilize PSGL-1 during tumor antigen presentation to
both CD4+ and CD8+ T cells is unknown. Clearly, the
interactions of PSGL-1 on immune cells with CCL19/CCL21
are under studied. More work is needed to provide insight into
how PSGL-1/chemokine interactions and signals may be playing
a role in the anti-tumor T cell response.

Versican
Versican, a chondroitin sulfate proteoglycan that is found in the
extracellular matrix of a wide range of cell types including
epithelial, endothelial, stromal cells, and leukocytes has also
been shown to bind PSGL-1 (56, 91, 92) (Figure 2 and Table
1). Some of its functions include mediating cellular adhesion,
migration, proliferation, and differentiation (93–96). The specific
binding between PSGL-1 and versican has been reported to
mediate leukocyte aggregation (56). In addition to binding
PSGL-1, versican can also bind TLR2 and P- or L-selectin (56,
97–101) and is reported to be both pro- and anti-inflammatory.
Mice treated with LPS and siRNA to inhibit versican showed
increased leukocyte infiltration into the lungs and inflammatory
TNF-a, NFkB, and TLR2 levels, illustrating that versican can
limit inflammation (102). Macrophages stimulated with LPS
showed an increase in versican expression as these cells
became more inflammatory (103, 104). Versican is a relevant
PSGL-1 ligand to consider during therapeutic design, as versican
has been found to be increased in a number of cancers (105–
107). In the tumor microenvironment, both cancer cells and
stromal cells can be a source of versican (108–110). In the TME,
myeloid cells produce versican and promote tumor metastasis
and increased versican in tumors correlated with reduced CD8+

T cells infiltration (92, 111, 112). Tumor cell-derived versican
can also induce the upregulation of PD-L1 on monocytes and
macrophages (113), an important molecular driver of T cell
exhaustion. As it is known that PSGL-1 binds versican, and that
versican seems to be playing a pro-tumoral role in the TME, it is
possible that versican-PSGL-1 interactions in the tumor
microenvironment may inhibit T cell infiltration and prevent
tumor killing (Figure 2). Versican is an important PSGL-1 ligand
that should be investigated further and considered as a target for
cancer immunotherapy.

Siglec-5
Sialic acid-binding immunoglobulin-type lectins (Siglecs), are
expressed on the cell surface of both innate and adaptive immune
cells (114). These surface receptors recognize and bind glycans
and are involved in various diseases including sepsis and cancer
(115–118). While multiple Siglecs have been identified in
humans and mice, Siglec-5 (only expressed in humans), has
been shown to bind PSGL-1 (119) (Figure 2 and Table 1). Siglec-
5 is expressed in neutrophils, mast cells, monocytes, pDCs, in
vitro generated DCs, NK cells, and in T cells after stimulation
(120–125). PSGL-1 is highly sialylated and was found to bind
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soluble Siglec-5 in a calcium- and dose-dependent manner (119).
Furthermore, sialidase treatment of PSGL-1 reduced Siglec-5
binding. Studies also showed that on human PBMCs, both
Siglec-5 and PSGL-1 are closely associated, and in vitro
perfusion assays demonstrated that soluble Siglec-5 inhibited
leukocyte rolling on E- and P-selectin, indicating that Siglec-5
may have an anti-adhesive role. This was also observed in a
model of TNF-a-induced inflammation, wherein injection of
soluble Siglec-5 in mice prevented inflammatory leukocyte
recruitment (119). While it appears that Siglec-5 may inhibit
leukocyte migration, the contribution of PSGL-1 and Siglec-5
binding on anti-tumor T cells and role in anti-tumor immunity
is unknown.

VISTA
New ligands for PSGL-1 have recently emerged. V-domain
immunoglobulin suppressor of T cell activation (VISTA) was
shown to be a negative regulator of T cells (126). Myeloid and
granulocytes are the primary VISTA-expressing cells, however, T
cells express low levels (126–128). Recently, VISTA was reported
to bind PSGL-1 and suppress T cell activity in acidic conditions
in vitro, similar to those found in tumor microenvironments
(129) (Figure 2 and Table 1). P-selectin binding to PSGL-1 is
dependent on sulfotyrosine and sialyl-Lewis X tetrasaccharide
modifications (130), while VISTA binding depends on tyrosine
sulfation but not sialyl-Lewis X modifications on PSGL-1 (129).
Frontiers in Immunology | www.frontiersin.org 7
Moreover, blocking PSGL-1/VISTA binding reversed VISTA-
mediated immune suppression (129). The suppressive binding of
VISTA to PSGL-1 in acidic conditions may be a potential tumor
evasion strategy, highlighting both a new role for PSGL-1 in
tumors and the possibility of targeting PSGL-1 and/or VISTA for
future cancer immunotherapies.
PSGL-1 AND CELL MIGRATION

The importance of PSGL-1 in leukocyte migration was first
established in a mouse model with genetically deleted Selplg (131).
PSGL-1 deficiency resulted in increased neutrophils in the blood,
suggesting a decrease in neutrophil adherence and migration. Indeed,
the importance of PSGL-1 in facilitating early migration of
neutrophils to sites of inflammation was demonstrated in a
peritonitis model in Selplg−/− mice, in which neutrophil migration
to the peritoneal cavity was significantly decreased (76, 132). In vitro
and in vivo studies have shown PSGL-1 to be important for
promoting leukocyte rolling in response to inflammation (131,
132). Functional studies have determined that the amino terminal
of PSGL-1 is involved in the recruitment of neutrophils to sites of
inflammation, as seen in murine colitis and peritonitis models where
blockade of the amino terminal of PSGL-1 resulted in decreased
leukocyte migration to inflammatory sites (131–134). Selectin capture
of leukocytes occurs through interactions with the amino terminal of
FIGURE 3 | Potential PSGL-1 interactions on T cells throughout the course of an immune response. T cells migrate through various tissues in the course of a
response to tumor antigens. 1) In the tumor-draining lymph nodes, T cells can engage PSGL-1 during their priming and activation stage as they interact with mature
dendritic cells. PSGL-1 can bind chemokines and/or L-selectins to facilitate priming and CD4+ T cell help to CTLs when they interact with cDC1 cells. 2) T cells exit
lymph nodes and enter the circulation where PSGL-1 can be engaged by P- or E-selectin, which induce signaling pathways while helping T cells to extravasate.
3) T cells enter tumors and additional binding partners, such as VISTA, can bind PSGL-1 to promote T cell dysfunction in the TME.
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PSGL-1 and facilitates migration to sites of inflammation. Although
P-selectin has been repeatedly shown to be amajor ligand for PSGL-1
on neutrophils, further research has demonstrated that PSGL-1 can
also promote neutrophil tethering to E-selectin and L-selectin,
allowing for some leukocyte migration even in the absence of P-
selectin (133, 135, 136). Interestingly, the tethering role of E-selectin
seems to differ among cell types, as eosinophils tether less efficiently to
E-selectin than neutrophils do (137).

While a large body of research has delved into the role of
PSGL-1 on neutrophils, PSGL-1 is also expressed on all myeloid
and most lymphoid cells, and has diverse roles in regulating
migration and adhesion among these cell types, important when
considering that many of these immune cells are present in the
TME (Figure 3). T cell responses to tumors occur through
the trafficking of these cells through various tissues including the
tumor draining lymph node, the circulatory system, and the TME
(Figure 3). These diverse tissues with diverse cell types provide
opportunities by which PSGL-1 on T cells can be engaged by the
available ligand(s) to modulate T cells (Figure 3). Multiple models
of inflammation ranging from colitis and ileitis, to local skin
damage, have shown that PSGL-1 can promote recruitment and
phenotypic changes of DCs and macrophages, and can facilitate
monocyte adhesion and rolling, as well as T cell migration (46, 75,
138–140). The importance of PSGL-1 in migration is evident by
the fact that blocking the N-terminus of PSGL-1 with a
monoclonal antibody (mAb) caused a substantial reduction in
rolling and adhesion of leukocytes in the intestines of mice with
inflammatory bowel disease (132, 139). The PSGL-1 mAb-treated
mice in these studies tended to show improved disease outcome in
colitis and ileitis, which is attributed to a reduction in the presence
of inflammatory leukocytes. Interestingly, mice harboring a
genetic PSGL-1 deletion had more inflammation and worse
disease outcomes in dextran sodium sulfate or T cell-driven
colitis (43, 75). These findings highlight that while PSGL-1 is
involved in leukocyte migration, it is playing additional roles in
immune modulation that can impact disease outcome.

The ways in which PSGL-1 directs T cell adhesion and
movement are of particular interest, as an increased T cell
infiltrate affects disease outcomes. On T cells, PSGL-1 mediates
attachment and rolling on P- and E-selectin (140, 141). The
binding of PSGL-1 to P-selectin on T cells was first
demonstrated in an in vitro adhesion assay, and has since been
shown numerous times in vivo (140, 142, 143). This binding of
PSGL-1 to P- and E-selectin supports T cell migration into sites of
inflammation, and has been demonstrated in both CD8+ and CD4+

T cells. It should be noted that the activation state of T cells affects
PSGL-1-selectin interactions. Initial in vitro experimentation
demonstrated that chronic stimulation of T cells led to increased
rates of PSGL-1-P-selectin binding interactions (49). More recent
studies have built upon this foundation, showing that in activated
human T cells, PSGL-1 facilitates rolling on E-selectin, and that the
marker of activation CD44 can work cooperatively with PSGL-1 to
support activated T cell migration (144).

In addition to the functionality of PSGL-1 differing due to T
cell activation state, PSGL-1 also has different roles depending on
Frontiers in Immunology | www.frontiersin.org 8
the subset of T cells. As mentioned above, PSGL-1 on CD4+ T
cells acts as a ligand for P-selectin, as well as for E-selectin, and
facilitates the migration of Th1 cells to inflamed skin (142). In
contrast to Th1 cells, Th2 cells express a different form of PSGL-1
that is unable to mediate P-selectin binding and does not
promote Th2 cell migration to the sites of inflammation (46).
In this way, PSGL-1 not only directs immune cells toward
inflammation but can alter the population dynamics of
responding immune cells. As with Th1 cells, CD8+ T cell
migration is directed in part by PSGL-1. Through the use of a
murine model of contact hypersensitivity and in vitro generated
type I cytotoxic T cells, it was found that PSGL-1 binding to E-
and P-selectin assists in CD8+ T cell trafficking to inflamed skin
sites (140). While it is clear that PSGL-1 binding to selectins
drives effector T cell migration, the role of PSGL-1 on CD4+ and
CD8+ T cells can differ. A study of isolated CD4+ T and CD8+ T
cells from patients with multiple sclerosis revealed an expansion
of the PSGL-1+CD4+ T cell population and linked PSGL-1
expression to the ability of CD4+ T cells to transmigrate blood-
brain-barrier-derived endothelial cells (145). In contrast, no
significant correlation was found between transmigrating CD8+

T cells and PSGL-1 expression, illustrating differences between
PSGL-1 on CD4+ and CD8+ T cells. It should be noted that while
many of the migration studies involving PSGL-1 show significant
decreases in leukocyte adhesion and migration when PSGL-1 is
blocked, leukocyte rolling and recruitment is not abolished and
can be facilitated by other ligands and adhesive molecules.

Beyond promoting leukocyte migration during inflammatory
responses, PSGL-1 also plays a role in the migration of leukocytes
during immune homeostasis. Parabiotic mouse experiments
have shown that mAb blockade of PSGL-1 results in decreased
naive and central memory lymphocyte homing to secondary
lymphoid organs (83). PSGL-1 directs this homing behavior
through interactions with the chemokines CCL19 and CCL21.
Additionally, this homing function of PSGL-1 is lost on activated
T cells, as the expression of the core 2–branched sialyl Lewis X on
activated PSGL-1 leads to a loss of chemotactic advantage. PSGL-
1 also directs the migration of early lymphoid progenitors to the
thymus, a step which is necessary for replenishing T cell
populations (82). In experiments utilizing adult parabiotic
mice, it was shown that this thymic homing by lymphoid
progenitors was driven by the binding of PSGL-1 to P-selectin,
which is expressed on the thymus endothelium. In addition to
facilitating cell homing, PSGL-1 can affect the frequency of
circulating myeloid cells. An induced cytopenia model
comparing WT and Selplg−/− mice demonstrated that PSGL-1
constricts release of myeloid precursors from the bone marrow,
as well as promoting extravasation of neutrophils and monocytes
from blood vessels (146). A wide variety of research has revealed
the numerous roles that PSGL-1 plays in adhesion, migration,
and in directing the immune response to inflammation. Blockade
of the N-terminus provides a possible therapeutic strategy for
decreasing leukocyte accumulation in certain inflammatory
conditions, however genetic deletion often leads to an opposite
outcome, resulting in a worsening of inflammation.
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PSGL-1 SIGNALING

Much work has been done to uncover the PSGL-1 signaling
pathway in neutrophils. Numerous studies have focused on
understanding the signaling pathways that are activated upon
PSGL-1 engagement. Some of the earliest studies looking into
PSGL-1 signaling have demonstrated that engagement of PSGL-1
promotes tyrosine phosphorylation, as well as activation ofMAPKs
(147). As research progressed, it has become clear there are
multiple, complex PSGL-1 signaling pathways in different cell
types. While specific proteins and pathways involved in PSGL-1
signaling are still being discovered, careful experimentation has led
to an understanding of some of the common signals transduced
through PSGL-1. In neutrophils, signaling through PSGL-1 is
induced through PSGL-1-selectin interactions. PSGL-1
engagement with P- and E-selectin results in the phosphorylation
of the src family kinases (SFKs), Fgr, Lyn, and Hck, as well as Akt,
spleen tyrosine kinase (Syk), and phospholipase C (PLC) g2 (135,
148, 149). This signaling cascade results in lymphocyte function-
associated antigen 1 (LFA-1) activation and engagement with
intercellular adhesion molecule 1 (ICAM-1), leading to slow
rolling in neutrophils. Interestingly, it has been found that L-
selectin is vital to this signaling pathway, as Sell−/− neutrophils
failed to phosphorylated SFKs and downstream proteins in vitro,
and showed increased rolling velocities and diminished adhesion in
vivo (135).

Specifically, in the context of E-selectin engagement of PSGL-
1 on neutrophils, the cytoplasmic domain of PSGL-1 carries out
signaling through the src-family kinase Fgr and the ITAM
adapters DAP12 and FcRg (148). While initial results showed
that mice lacking Fgr fail to transmit adhesion signals, a follow
up study showed that a combined deletion of both Hck and Lyn
had a similar result, indicating that while Fgr may be the
dominant SFK involved in the PSGL-1-selectin signal
transduction, Hck and Lyn together play an important role in
this pathway (150). The importance of the ITAM adaptor
proteins to PSGL-1 signaling has also been demonstrated. In
DAP12 and FCRg-deficient neutrophils, engagement with E-
selectin failed to phosphorylate Syk, and slow rolling was not
achieved, indicating the necessity of these two adapter proteins in
PSGL-1 driven adhesion signaling. The final steps after Syk
recruitment in the E-selectin/PSGL-1-mediated signaling
cascade involve the activation of SH2 domain–containing
leukocyte phosphoprotein of 76 kD (SLP-76), which in turn
activates the Tec kinase Bruton tyrosine kinase (Btk) (150–152).
Btk facilitates the phosphorylation of Akt, PLCg2, and p38
mitogen-activated protein kinase (p38 MAPK), which cumulate
in LFA-1-dependent slow rolling of neutrophils on ICAM-1
(149, 153).

PSGL-1 has also been shown to associate with ezrin and
moesin. While the interactions of PSGL-1 with SFKs and ITAM
adaptor proteins signal to promote slow rolling, it appears that
the interactions of PSGL-1 with ezrin and moesin promote
leukocyte transcriptional changes and transient MAPK
activation. It has been shown that PSGL-1 interacts directly
with the amino-terminal domain of both moesin and ezrin, and
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that these interactions take place in the uropods of activated
neutrophils (154, 155). Moesin and ezrin, like DAP12 and FcRg,
are ITAM-adapters that are able to recruit Syk (156). While
moesin and ezrin are capable of Syk activation, the signaling
outcomes seem to differ from the previously detailed PSGL-1
signaling pathway involving SFKs, DAP12, and FcRg. In vitro
experimentation using a leukocyte cell line found that PSGL-1
signaling through ezrin and moesin resulted in an increase in
serum response element (SRE) transcription and expression of
the early-activation C-fos gene. Further in vitro experiments
showed that the ezrin-radixin-moesin-binding sequence (EBS)
on the cytoplasmic tail of PSGL-1 was not necessary for Syk
activation (154). While the EBS sequence was shown to support
leukocyte tethering to selectins, integrin activation and slow
rolling on ICAM-1 is not dependent on ezrin and moesin
binding to PSGL-1. Instead, ezrin and moesin engagement
with PSGL-1 promotes transient phosphorylation of ERK.
From these studies, it is clear that PSGL-1 signaling is multi-
faceted and that its engagement with selectins can result in
numerous outcomes, ranging from increased activation signals
to increased adherence and slow rolling.

There has been less research evaluating PSGL-1 signaling in T
cells, however it has been found that PSGL-1 on T cells can have a
similar role in signaling integrin-driven adhesion. The use of a
PSGL-1 cross-linking antibody resulted in increased LFA-1
clustering (157). This upregulation of LFA-1 promoted adhesion
of Th1 cells to ICAM-1, and was driven at least in part by PSGL-1
signaling through PKCa or PKCbII. In addition to promoting
adhesion and migration of T cells, PSGL-1 ligation can promote
inflammatory responses. Although, many experiments that
investigate PSGL-1 inflammatory signaling involve a ligating
antibody, these approaches may result in signaling outcomes
that differ from PSGL-1 ligand binding. In vitro experiments
using leukemic Jurkat cells found that antibody ligation of
PSGL-1 upregulated transcription of the inflammatory cytokine
IL-18 through a pathway involving phosphatidylinositol 3-kinase
(PI3K) (81). Antibody ligation of PSGL-1 on Jurkat cells was also
found to increase transcription of colony-stimulating factor 1
(CSF-1) in a Syk-dependent manner (158). While these studies
show that PSGL-1 can promote inflammatory transcriptional
responses, the transcriptional responses peaked at 30 or 60 min,
indicating that PSGL-1 inflammatory signals may be transient and
require further study.

The question then is raised as to the timing of PSGL-1
signaling, and whether signaling output changes depending on
the duration of PSGL-1 engagement and the length of time that a
T cell has been activated. While direct mAb engagement of PSGL-
1 in vitro promoted an increase in inflammatory signals, the
timing of PSGL-1 engagement does result in differential signaling
outputs. On late stage activated T cells, PSGL-1 signaling has been
shown to promote T cell death (159). Both the binding of activated
T cells to P- and E-selectin under flow, as well as antibody
crosslinking of PSGL-1, can trigger apoptosis in late-stage
activated T cells. This PSGL-1-driven apoptosis involves
Apoptosis Inducing Factor (AIF) translocation to the nucleus
and the subsequent release of cytochrome C, although the full
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pathway through which PSGL-1 signals induce apoptosis
remains to be identified. Further, PSGL-1 signaling has been
shown to transduce suppressive signals in periods of prolonged T
cell activation. During chronic viral infection, PSGL-1
engagement promotes effector T cell exhaustion (42). While the
intracellular signals that direct this PSGL-1 driven enhancement
of T cell exhaustion are not known, it has been shown that
ligation of PSGL-1 on exhausted CD8+ T cells resulted in
diminished ERK and AKT signaling (42).

How PSGL-1 signaling in anti-tumor T cells supports their
functional exhaustion and inhibitory signaling is not fully known.
Since T cells are in an immunosuppressive environment with
chronic antigen stimulation inside tumors, PSGL-1 signals may be
transient or prolonged depending on ligand binding. In steady-
state conditions, PSGL-1 engagement promotes a tolerogenic DC
phenotype in vivo, increasing the formation of CD4+FOXP3+ T
regulatory cells in the thymus (80). When considering that PSGL-
1 signaling prompts immunosuppression both through an
increase in the tolerogenic DC phenotype and Treg formation,
as well through a decrease in T cell receptor (TCR) signaling, it is
clear that targeting PSGL-1 presents a viable path to increase the
inflammatory phenotype of CD4+ and CD8+ T cells. Although
PSGL-1 plays a role in signaling for slow rolling and adhesive
behavior, this pathway is facilitated by other proteins, as the
PSGL-1 genetic deletion does not result in decreasedmigration of
T cells to the tumor site (42). PSGL-1 signaling is complex and
much remains to be discovered, but its suppressive signaling in T
cells makes it an attractive target for reinvigorating the immune
response during cancer.
ROLE OF PSGL-1 IN DISEASE

When considering PSGL-1 as a therapeutic target, it is necessary
to understand the differing roles that PSGL-1 plays depending on
the cancer context. As PSGL-1 is known to facilitate attachment
and migration, a large body of research has been centered around
the role of PSGL-1 in cancer metastasis. In a murine model of
multiple myeloma (MM), PSGL-1 on MM cells was shown to
interact with P-selectin to promote adhesion signaling and
homing of MM cells to the bone marrow (160). In this model,
the deletion of PSGL-1 on MM cells led to a significant decrease
in tumor initiation and proliferation, illustrating the importance
of PSGL-1 in promoting tumorigenesis.

Interestingly, PSGL-1 has also been found on bone-metastatic
prostate cancer and lung carcinomas (161, 162). PSGL-1 was
linked with metastasis, as it was expressed on a bone-metastatic
prostate cancer cell line and in metastatic prostate tumor tissue,
indicating that certain cancer types may gain PSGL-1 expression
as a part of a metastatic phenotype. The mechanism through
which PSGL-1 may facilitate prostate cancer metastasis is
unknown, however, in a non-small cell lung cancer (NSCLC)
cell line, PSGL-1 was found to facilitate interactions between lung
cancer cells and activated platelets (162). This interaction between
P-selectin on activated platelets and PSGL-1 on tumor cells is
hypothesized to drive metastasis, as activated platelets are known
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to facilitate metastatic movement of cancer cells (163). In the
context of small cell lung cancer (SCLC), cancer cell interactions
with P- and E-selectin have been shown to promote robust
metastasis. As PSGL-1 is a ligand for both selectins, it is likely
that PSGL-1 is involved in the selectin-mediated metastatic
behavior of SCLC cells as well (164). Additionally, blockade of
P-selectin in mice with gastric cancer decreases metastasis and
allows for sustained immune function, a phenotype that PSGL-1
likely plays a role in as the main P-selectin ligand (165). While
these experiments show that PSGL-1 plays a pro-metastatic role,
the contributions of PSGL-1 on immune cells to this phenotype
are still being uncovered. One study showed that PSGL-1
promoted colon cancer metastasis through the recruitment of
monocytes to metastatic sites, illustrating how PSGL-1 on immune
cells may modulate cancer cell behavior and the TME (166).
Although the impact of targeting PSGL-1 specifically on CD4+ T
cells will have on cancer metastasis is unknown, these studies
illustrate that PSGL-1 presents an exciting target for potentially
reducing metastatic behavior of tumors.

In addition to promoting cancer metastasis, PSGL-1 is
involved in the development of drug resistance, particularly in
blood cancers. It has been shown that PSGL-1-mediated
interactions between multiple myeloma (MM) cells and
macrophages increased ERK1/2 activation, myc upregulation,
proliferation, and drug resistance in MM cells (167). The use of a
PSGL-1 neutralizing antibody abrogated this MM drug
resistance in vivo, signifying PSGL-1 as an important driver of
MM therapeutic escape. In a separate model of MM, it was found
that combination antibody blockade of PSGL-1 and P-selectin
lessened bortezomib resistance in MM cells, and led to increased
mouse survival (168). Additionally, PSGL-1 was shown to
promote chemoresistance in a human acute myeloid leukemia
(AML) cell line through interactions with E-selectin (61).
Through in vivo mouse models of AML, it was seen that
Selplg–/– AML blasts showed increased cell cycling, decreased
homing to the bone marrow, and increased chemosensitivity.
This study showed that PSGL-1 is involved in the formation of
bone marrow reservoirs of quiescent, chemoresistant AML cells
and is correlated with worse disease outcomes in mice with WT
AML blasts.

Taken together, the current body of research has found
PSGL-1 to be expressed on numerous human SCLC cells lines
(164, 169), on a human alveolar cell carcinoma cell line (162), on
human MM cell lines (167), and on a metastatic prostate cancer
cell line (161). In the clinic, PSGL-1 expression has been detected
in primary acute leukemia cells as well as in some acute
lymphoblastic leukemia cells from large patient cohorts (61,
79). Further, a link between disease progression and PSGL-1
expression was shown in a group of MM patients, PSGL-1 was
significantly increased in active MM disease when compared to
both monoclonal gammopathy of undetermined significance
(MGUS) and healthy donors (160). It is clear that PSGL-1 is
expressed in many cancers and is involved in disease progression,
metastasis, and drug resistance. Importantly, few studies have
examined how PSGL-1 expression is regulated in cancers that are
not hematopoietic cell-derived. The potential impact of targeting
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PSGL-1 on tumor control is evident from mouse studies,
however the question still remains as to whether PSGL-1
blockade affects CD4+ and CD8+ T cells and other immune
cells within the TME of human cancers.

When investigating the role of PSGL-1 on immune cells in
numerous diseases, there is a growing body of literature
supporting the notion that PSGL-1 functions as a negative
regulator of the immune system. In a murine DSS-induced
colitis model, PSGL-1 was shown to decrease the inflammatory
immune response, resulting in reduced disease severity (75).
There is evidence that in diseases of chronic inflammation, such
as systemic lupus erythematosus (SLE), PSGL-1 signaling works
to suppress inflammation, as Selplg−/− mice with SLE suffer more
inflammation and early death (170). In this murine SLE model,
Selplg−/− mice increased the amount of the inflammatory
chemokine CCL2 present in the kidneys. CCL2 is known to
promote cytokine production in CD4+ T helper cells, and
chemotaxis of T cells and monocytes (171–174). The reduction
in CCL2 production driven by PSGL-1 demonstrates another
mechanism through which PSGL-1 controls inflammation and
limits the induction of T cells responses. Immunotherapeutic
blockade of PSGL-1 may increase inflammatory chemokines
present in vivo and promote a more inflammatory CD4+ T
cell phenotype.

Mice with genetically deleted PSGL-1 have been valuable in
showing the role that PSGL-1 plays in inflammatory immune
responses. Selplg−/− mice have been shown to develop a systemic
sclerosis (SSc)-like syndrome. In these mice, the absence of
PSGL-1 led to a notable decrease in Tregs in the lungs and an
increase in IFN-g-producing T cells and macrophages,
highlighting the role of PSGL-1 in immunosuppression (175).
Another autoimmunity study of SSc-like disease in Selplg−/−mice
found increased serum levels of autoantigens, activated DC and
CD4+ T effector cells in the skin, vascular damage, and increased
mortality rates in mice due to loss of PSGL-1 (176). In the
absence of PSGL-1, T cells become more inflammatory and can
cause chronic inflammation and autoimmunity. The
inflammatory T cell phenotype seen in Selplg−/− mice provides
support for the therapeutic targeting of PSGL-1 on CD4+ T cells
in cancer, as it may provide a way to lessen immune suppression
and increase the activation of T cells.

Understanding the differential roles of PSGL-1 on effector T
cells and Tregs is particularly important when considering
PSGL-1 as an immunotherapeutic target. Sustaining a more
effector-like T cell response is vital for the immune system to
control cancer, and PSGL-1 can affect the balance of
inflammatory and suppressive cells. As mentioned previously,
Selplg−/− mice with DSS-induced colitis show an increased
effector T cell to Treg ratio in the colon, a trend that was also
observed in the lungs of Selplg−/− mice (75, 175). In an
experimental autoimmune encephalomyelitis (EAE) model,
PSGL-1 on Tregs was found to be necessary for suppression of
the late stage T cell response (48). Tregs lacking PSGL-1 were
unable to limit T cell proliferation and interactions with DCs in
the late stages of T cell activation, leading to worsening of the
EAE disease phenotype. In addition to limiting the immune
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response in autoimmune diseases, PSGL-1 on Tregs can affect
immune control of cancer (177). Mice lacking P-selectin showed
a largely diminished tumor size and a markedly small presence of
Tregs in tumors (177). The absence of P-selectin leads to an
increase in tumor-infiltrating effector CD8+ T cells, an increase
in pro-inflammatory cytokines, and a decrease in tumoral TGF-b
(177). Although this study did not directly address the role of
PSGL-1 as the primary ligand for P-selectin, it is likely
supporting P-selectin driven phenotypes. Taken together, it is
clear that PSGL-1 promotes development and Treg function and
may lead to a reduction in immunosuppression when targeted as
an immunotherapy.

Effector T cells are also affected by PSGL-1 signaling. In an in
vitro setting, stimulated T cell proliferation was negatively
regulated by PSGL-1 (43). In vivo , PSGL-1-mediated
suppression of effector T cell functions has been seen in
multiple disease models. In mice with T cell driven
inflammatory bowel disease, deletion of PSGL-1 on T cells
caused a significant worsening of the disease. The absence of
PSGL-1 in mice with a chronic infection led to much more
functional, effector-like T cells (42). Further, mice lacking PSGL-
1 showed increased melanoma tumor control and reduced T cell
exhaustion within the tumor environment (42). Although the
mechanism is still being studied, it has been shown that PSGL-1
can dampen TCR signals and effector functions. The work done
to understand the roles of PSGL-1 in disease has shown that
PSGL-1 can function as a potent suppressor of immune
responses. Targeting PSGL-1 on CD4+ T cells may be a new
opportunity to not only increase effector T cells, but also to
reduce the detrimental presence of Tregs in the TME.
STRATEGIES TO BLOCK PSGL-1 ON CD4+

T CELLS IN TUMORS

Several strategies to target PSGL-1 on anti-tumor T cells could be
implemented to block this immune checkpoint and promote
tumor control (Figure 4). One strategy would be to develop
monoclonal antibodies (mAbs) against PSGL-1 and select for
biological functions that neutralize and/or antagonize PSGL-1
signaling in T cells (Figure 4). These antibodies could be
designed to target both CD4+ T cells and CD8+ T cells, and
may also be combined with approved immunotherapies such as
anti-PD-1 and anti-CTLA-4. In addition, antibodies targeting
PSGL-1 ligands could also be used in therapy once these
interactions are confirmed in tumors, as has been successfully
tested using anti-VISTA antibodies (129, 178). Additional
strategies could be implemented through the use of inhibitors
to block PSGL-1 (Figure 4). These could include small molecule
inhibitors that target the PSGL-1 protein or recombinant PSGL-
1 fusion proteins (rPSGL-1-Fc) that may function as decoys to
PSGL-1 receptors in tumors, thereby preventing PSGL-1
mediated T cell inhibition. Using genetic approaches to remove
PSGL-1 inhibition through the use of cellular therapies such as
re-injection of expanded tumor-infiltrating lymphocytes, CAR-T
cells, or dendritic cell-based cancer vaccines could be another
February 2021 | Volume 12 | Article 636238

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


DeRogatis et al. PSGL-1 Immune Checkpoint Inhibition
approach to modulate the tumor microenvironment (Figure 4).
Targeting PSGL-1 on CD4+ T cells could be used to treat patients
that are unresponsive to PD-1 blockade. Immune checkpoint
resistant patients may have defective CD4+ T cells, and
preclinical studies suggest that removing PSGL-1 on CD4+ T
cells could provide superior helper functions, including IL-2
production, to augment the CTL response (42). These
therapeutic strategies could be utilized as monotherapies or
combination therapies to improve outcomes in cancer patients.

To date, there are a limited number of clinical trials involving
PSGL-1. A few trials investigated the use of a recombinant P-
selectin glycoprotein ligand-Ig (YSPSL) in liver transplantation
(NCT00876902, NCT00450398) and in studies on delayed graft
function (179, 180). While YSPSL functions to block the binding
of PSGL-1 to selectins, it should be noted that YSPSL is not acting
on PSGL-1 directly, and therefore PSGL-1 is still able to interact
with its other ligands. Studies that look at directly targeting PSGL-
1 with a monoclonal antibody (SelK2) are focused on blood clot
prevention (NCT03812328) and airway responses after allergen
challenge (NCT04540042). While there are currently no clinical
trials investigating PSGL-1 blockade in cancer, there are numerous
studies focused on the blockade of VISTA, the recently established
ligand for PSGL-1 (129). CA-170, a small molecule inhibitor of
both PD-L1 and VISTA, has been tested as a therapeutic for
patients with advanced tumors and lymphomas (NCT02812875),
as well as metastatic prostate cancer (NCT01288911) (181). An
Frontiers in Immunology | www.frontiersin.org 12
antibody against VISTA (W0180) is currently being tested in
combination with Pembrolizumab to treat advanced solid tumors
(NCT04564417). Given the positive outcomes of targeting VISTA
in pre-clinical trials (182), and considering that PSGL-1 has been
established as a binding partner for VISTA and as an immune
checkpoint molecule, PSGL-1 should be considered as a potential
therapeutic target for cancer in human clinical trials.
DISCUSSION AND CONCLUDING
REMARKS

PSGL-1 is a highly dynamic molecule expressed on the surface of
many innate and adaptive immune cells involved in a variety of
diseases, including cancer. PSGL-1 is expressed at high levels on
CD4+ and CD8+ T cells and post-translational modifications add
to the complex receptor ligand-pair interactions that occur
during T cell immune responses. While the main ligands
associated with PSGL-1 include the selectins which mediate
trafficking and cell migration, others have recently been
described. These include the chemokines CCL19 and CCL21,
Siglec-5, versican, and VISTA. These ligands all have the ability
to bind PSGL-1 on T cells, and potentially contribute to
inhibitory signaling pathways that dampen TCR signals to
induce T cell exhaustion in tumors, but more research in the
biology of PSGL-1 in tumors is necessary. There are only a few
FIGURE 4 | Immunotherapeutic strategies to modulate PSGL-1 in anti-tumor T cells. PSGL-1 can be targeted to modulate T cells in the TME. CD4+ and CD8+ T
cells express PSGL-1 which may be blocked using monoclonal antibodies, small molecule inhibitors, or recombinant PSGL-1 fusion proteins. Blocking PSGL-1 on
CD4+ T cells could promote helper functions by targeting the tumor directly, providing help for CD8+ T cells, or changing the TME. Genetic approaches could target
TILs or CAR T cells which could be isolated, expanded, and re-injected in tumors. Strategies can target CD4+ T cells, CD8+ T cells, or both T cell populations.
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preclinical studies examining the role of PSGL-1 in tumors. One
revealed that mice lacking PSGL-1 expression can mount a
potent CD4+ and CD8+ anti-tumor T cell responses in
melanoma without impacting their ability to infiltrate in
tumors (42). Adoptive cell transfer of Selplg-/- antigen-specific
CD8+ T cells in melanoma tumor-bearing mice also improved
melanoma tumor control (42). Improved efficacy has already
been demonstrated by targeting VISTA, a newly discovered
PSGL-1 ligand (129). Since current immune checkpoint
therapies are ineffective in certain patients, perhaps defective
CD4+ T cell help in these patients could be boosted and
improved by targeting PSGL-1 on those cells. It is possible that
targeting the PSGL-1 immune checkpoint on CD4+ T cells could
augment the defective CD8+ T cell response and improve
outcomes in patients resistant to anti-PD-1/anti-CTLA-4
immunotherapies. Another possibility is combination strategies
where PSGL-1 is blocked along with anti-PD-1/PD-L1 and/or
anti-CTLA-4. Targeting PSGL-1 presents a new and exciting
approach to bolstering the anti-tumor T cell response and
expanding the immune checkpoint inhibitor toolbox.
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