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Towards quantitative [18F]FDG-PET/MRI
of the brain: Automated MR-driven
calculation of an image-derived input
function for the non-invasive
determination of cerebral glucose
metabolic rates
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Abstract

Absolute quantification of PET brain imaging requires the measurement of an arterial input function (AIF), typically

obtained invasively via an arterial cannulation. We present an approach to automatically calculate an image-derived input

function (IDIF) and cerebral metabolic rates of glucose (CMRGlc) from the [18F]FDG PET data using an integrated PET/

MRI system. Ten healthy controls underwent test–retest dynamic [18F]FDG-PET/MRI examinations. The imaging proto-

col consisted of a 60-min PET list-mode acquisition together with a time-of-flight MR angiography scan for segmenting

the carotid arteries and intermittent MR navigators to monitor subject movement. AIFs were collected as the reference

standard. Attenuation correction was performed using a separate low-dose CT scan. Assessment of the percentage

difference between area-under-the-curve of IDIF and AIF yielded values within �5%. Similar test–retest variability was

seen between AIFs (9� 8) % and the IDIFs (9� 7) %. Absolute percentage difference between CMRGlc values obtained

from AIF and IDIF across all examinations and selected brain regions was 3.2% (interquartile range: (2.4–4.3) %, max-

imum< 10%). High test–retest intravariability was observed between CMRGlc values obtained from AIF (14%) and IDIF

(17%). The proposed approach provides an IDIF, which can be effectively used in lieu of AIF.
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Introduction

In the last decade, combined PET/CT demonstrated the
added value of anato-metabolic imaging1 in patient
management, mainly in oncology.1,2 With the advent
of combined PET/MR imaging, we witness a similar
paradigm shift in managing patients with neurological
disorders.3 Specifically, fully integrated PET/MRI
bodes well for the prospect of finally realizing the
promise of absolute quantification of PET data in clin-
ical routine. This migration from semi-quantitative
measures to full quantification is highly desirable as it
has the potential to improve the diagnostic value of
molecular imaging.4 To this end, routine quantification
will depend on the development of automated
approaches to provide clinicians with absolute quanti-
tative values, in the same way as with standardized
uptake values (SUVs) today.5

Absolute quantification in PET studies of the brain
requires the knowledge of an input function (IF). In
research studies, an arterial input function (AIF) can
be obtained using arterial cannulation and collection of
blood samples at regularly timed intervals. However,
this approach is untenable for clinical routine. As a
result, clinical brain studies currently apply a semi-
quantitative approach based on SUVs, which lacks an
absolute physiological scale. In the past, extraction of
an IDIF for PET brain studies proved to be a challenge,
given the presence of partial volume effects (PVEs)6,7

and involuntary subject motion.6,8

Various methodological approaches have been pro-
posed to calculate an accurate IDIF, thereby account-
ing for the factors above. These methods can be
classified into three categories: (1) PET-only,9–19 (2)
standalone PET and MRI,20–25 and (3) combined
PET/MRI.26–29 Most of the PET-only methods man-
date the measurement of venous samples from a second
venous line to avoid errors in IDIF originating from
spill-in and spill-out effects occurring at late time
points.6,30 On the other hand, standalone PET- and
MR-based methods are subject to logistical challenges
and a sheer amount of post-processing required. A fully
integrated PET/MRI addresses the main challenges for
the determination of an accurate IDIF in a clinical set-
ting, such as delineation of the internal carotid
arteries20,26,27 and motion correction of dynamic PET
frames using MR navigators.31

Here, we introduce an MR-driven approach that
allows for an automated calculation of IDIF using
the synergistic information from an integrated PET/
MRI. The calculated IDIF then allows for the non-
invasive determination of brain metabolic rate of glu-
cose (CMRGlc). Specifically, we employ an automated
vessel segmentation algorithm and a PVC method,
which accounts for the radial and circumferential

variability of the PET tracer distribution around the
vessel. Our objective was to establish an automated
workflow for the absolute quantification of
[18F]FDG-PET/MRI brain data for clinical routine
that is validated against the reference standard (AIF).

Materials and methods

Ten healthy adults ((27� 7) years, (70� 10) kg, 5 males
and 5 females) were included in this study. The study
was approved by the Ethics Committee of the Medical
University of Vienna (EK1960/2014) and was per-
formed in accordance with the Declaration of
Helsinki (1964), including current revisions. Subjects
were confirmed to be healthy based on medical history,
physical examinations and vital signs. Written informed
consent was obtained from all subjects prior to the
examinations.

Imaging protocol

All subjects underwent test–retest PET/MRI brain
examinations on a fully integrated PET/MRI system
(Siemens Biograph mMR). All examinations were per-
formed in the afternoon, with subjects at rest with their
eyes open. Moreover, no specific task was performed by
the subject. The average time difference between the
two examinations was (17� 44) days. Prior to each
scan, a venous line was established for the injection of
the [18F]FDG tracer and an arterial line was estab-
lished in the contralateral arm for blood sampling.
A head and neck coil was used in order to ensure a
high signal-to-noise ratio of the MR imaging. Foam
cushions were placed inside the MR head coil to min-
imize involuntary head movement.

The integrated PET/MR imaging protocol included
a 3D time-of-flight MR angiography (TOF-MRA)
sequence to image the internal carotid arteries with
the following parameters: 0.5� 0.5� 1mm3 voxel size,
TE¼ 3.6ms, TR¼ 21ms, 25� flip angle, 228� 384
matrix, 220 slices and an acquisition time of 6min.
The field-of-view of the TOF-MRA extended from
the circle of Willis (CoW) to 10 slices below the branch-
ing point of the internal and external carotid arteries
(ECAs). Subsequently, subjects were injected with
[18F]FDG ((352� 66) MBq, 5.18MBq/kg) intraven-
ously as a slow bolus over 40 s. At the start of the injec-
tion, a 60-min list mode PET data acquisition was
initiated and blood samples (1mL each) were obtained
from the radial artery using a varying time sched-
ule (24� 5 s, 1� 60 s, 1� 120 s, 1� 300 s, 1� 600 s,
2� 1200 s post injection) (Supplementary Figure 1).
The blood sampling was done manually using vacuum
test tubes via an arterial cannula fitted with an adapter.
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Prior to every arterial sample, the line was flushed
with 5mL sodium chloride solution to prevent
clotting and sampling stagnant blood. To avoid dilu-
tion of the actual sample, a 1mL of discard was
drawn followed by the sampling of arterial blood
sample. Whole-blood radioactivity concentrations
were measured using a gamma counter (PerkinElmer,
2480 Automatic Gamma counter, Wizard23). To
obtain the AIF, whole blood samples were centrifuged
to separate the plasma component, followed by the
measurement of radioactivity in the plasma. The
measured whole blood and plasma tracer concentra-
tions were used to calculate the dynamic plasma-
to-blood ratio for each subject. This ratio was then
used to convert the blood-IDIF to plasma-IDIF.
Arterial sample concentrations were measured at
instantaneous time-points, whereas the IDIF con-
centrations were measured at PET mid-scan time-
points. In order to match the instantaneous blood
sampling times with the PET mid-scan time, the AIF
was interpolated into discrete time segments of 1 s
length using a Piecewise Cubic Hermite Interpolating
Polynomial.

To monitor head motion, MR navigators were used
throughout the dynamic PET acquisition using the fol-
lowing parameters: 2D EPI 3.0� 3.0� 3.0mm3 voxels,
64� 64 matrix, 36 slices, TE 30ms, TR 3000ms.
Navigator volumes were obtained at fixed time inter-
vals: 0, 2.5, 5, 7.5, 10, 14, 17, 21, 26, 33, 38, 42, 44 and
50.5min post injection. Following the PET/MRI exam-
ination, the subjects were moved to a PET/CT system
(Biograph TruPoint64, Siemens Healthcare, USA),
where a low-dose CT scan (120 kVp, 50mAs) of the
brain was acquired solely for the purpose of attenu-
ation correction (AC).32,33

The PET list mode data were re-binned into a
dynamic frame sequence (24� 5 s, 1� 60 s, 1� 120 s,
1� 300 s, 1� 600 s, 2� 1200 s post injection) and each
PET frame was reconstructed (Siemens e7 tools) into a
344� 344� 127 matrix (voxel size 2.08� 2.08�
2.03mm3) using the ordinary Poisson ordered subset
expectation maximization (OP-OSEM) 3D algorithm
(3 iterations, 21 subsets, 2mm Gaussian filter). Scatter
correction along with a CT-AC was applied to all PET
data.34 To perform the CT-AC, the low-dose CT scan
was co-registered to the T1-MPRAGE sequence (RS-1,
Supplementary Figure 1) and a bilinear scaling31

was applied to convert the low-dose CT image to a
CT-AC map.

Automated ICA segmentation

Data from the 3D TOF-MRA sequence were used to
extract the ICA. To obtain the IDIF, the petrous region

of the ICA was chosen as the volume-of-interest (VOI).
Image segmentation was performed in three steps:

Extraction of the carotid vasculature. A combination of his-
togram-based quantile thresholding35,36 and automatic
seeded region growing was used to extract the entire
carotid vasculature (CV) (Supplementary Figure 2).
The intensity corresponding to the 0.987 quantile of
the gray value distribution was chosen as the optimum
threshold value following an iterative optimization pro-
cedure using the TOF-MRA datasets. To remove resi-
dual contributions of the peripheral fat, an automated
seed region growing was performed with a connected-
ness constraint, yielding only the CV (Supplementary
Figure 2).

Extraction of the ICA. The obtained CV consists of the
ICA, ECAs and the CoW (Supplementary Figure 2).
The ICA was obtained by removing the CoW first, fol-
lowed by the pruning of ECA. The CoW is superior to
the cavernous segment and can be removed once the
cavernous segment in the vasculature is localized. This
was determined based on a morphological feature
vector (Gz), which characterizes the shape of the vas-
cular tree (Figure 1). This feature curve was calculated
only for the intracranial segment of the TOF-MRA
volume as only segmentation of the petrous part of
the ICA was of interest. The morphological feature
curve incorporates features, such as mean intensity,
major axis length, ellipticity as well as the orientation
of vessel segments present in the transaxial slices
(Figure 1). The axial slice containing the structure
with an orientation of 90� to the vessel denotes the
location of the cavernous segment of the ICA, thus,
allowing for the removal of the CoW. Moreover, the
ICA and ECA arise from a common carotid artery, and
therefore the localization of the branching point is key
to the pruning of the smaller vessel (ECA), thus, leaving
the ICA as the only remaining structure.

Segmentation of the petrous region of the ICA. This segmen-
tation was done based on the classification of ICA by
Gibo et al.37 The feature curve in Figure 1 highlights
elliptical structures in the image as prominent peaks.
Accordingly, the petrous segment was identified as the
structure with the highest peak. These steps resulted in
a petrous mask (Pmask), which was later used to extract
the IDIF from the dynamic PET frames.

PET motion correction and alignment with TOF-MRA

To achieve the spatial correspondence between the PET
frames and the MR-derived petrous masks, a post-
reconstruction motion correction was employed.
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MR navigators interleaved between MR clinical
sequences were used to monitor subject head motion
(Supplementary Figure 1). The MR navigator
acquired at the start of the PET acquisition (Nav-0,
t¼ 0) was considered as the reference volume and all
subsequent navigators were rigidly co-registered to
Nav-0 (SPM 12, Wellcome Trust Center for
Neuroimaging, UCL) to obtain the motion vectors.
The resulting motion profile consisted of six param-
eters (three translations and three rotations; Figure 2).
In early PET frames with low tracer activity, MR
based motion correction was implemented. Temporal
matching of MR navigators with PET frames was
achieved using the least time difference between the
PET frame mid-scan times and the navigator acquisi-
tion times. (Figure 3(a)). Eventually, transformation
matrices obtained from the early MR navigators
(<10min) with respect to the reference MR navigator
will be applied to Pmask, thus, generating multiple
resliced Pmask VOIs.

Subsequently, spatial correspondence between the
petrous mask and the PET data (>10min) was achieved
in a multi-step process using SPM 12 (Figure 3(b)).
First, transformation matrices (T10–60) were derived
from rigid inter-modality co-registration (Normalized
mutual information) of the TOF-MRA data and the
late PET frames (10min, 20min, 40min and 60min).
Second, these matrices (T10-60) were applied to the pet-
rous mask (Pmask). The alignment was confirmed visu-
ally using AMIDE 1.0.5 (AMIDE’s a Medical Image

Data Examiner38) without the need for further post-
processing.

As a part of quality control, MR navigators
acquired after 10min were used to check for intra-
frame motion within the individual late PET image vol-
umes (1� 10min, 2� 20min frames). Here, motion
vectors never exceeded 1mm in any direction
(Supplementary Table 1), thus, indicating no prominent
intra-frame motion.

Partial volume correction

Correction of PVE was performed using a modified
version of the Mueller-Gaertner method (MGM),39

with the extension of accounting for radial and circum-
ferential variability of the activity in the petrous seg-
ment’s background. Calculation of the true ICA tracer
concentration entails first the removal of variable back-
ground activity that spilled into the target region (spill-
in correction) followed by correction of activity loss in
the target region (spill-out correction) caused by the
convolution of true activity distribution by the system’s
PSF. This procedure mandates the knowledge of both
the PSF and the nature of the background activity dis-
tribution (Supplementary Figure 3).

In order to determine the PSF corresponding to the
applied acquisition protocol, a 1-mL syringe (diameter
4.7mm, cylinder length 57mm) was filled with about
75MBq of [18F]FDG and placed axially in the system
in approximately the same off-center position

Figure 1. Segmentation of the carotid vasculature (CV) features such as normalized mean intensity (Nz), major axis length (Mz) and

ratio of major to minor axis length (Rz) were calculated and combined to produce a morphological feature vector (Gz), to highlight

elliptical structures. The global maxima, Max1 of Gz (blue), corresponds to the petrous segment, while Max2 and Max3 correspond to

the floor of circle of Willis (red) and cavernous (orange).
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(�50mm) as the presumed position of the ICA. Data
were acquired and reconstructed using the same proto-
col as used in the subjects. Subsequently, a modeled
profile (using a step function with a height correspond-
ing to the tracer concentration in the syringe at the start
of the PET scans) was convolved with a 3D Gaussian
PSF and compared to the measured trans-axial profile.
The FWHM of the PSF was incremented in 0.5mm
steps. The convolved model function that best approxi-
mated the measured profile defined the FWHM of the
PSF corresponding with our protocol. The FWHM of
the PSF for the PET/MR system in use (Biograph
mMR) was found to be (6.0� 0.4) mm.

To obtain an initial estimate of background activity,
the spill-out zone (Spout) was defined by convolving
Pmaski

(i – indicates the PET frame, with ‘i’ varying
from 1 to 30) with the derived PSF of the PET system

(Figure 4(a)). An initial background mantel (Bmaski
) was

defined 10mm radially from the edges of the SPout
(Figure 4(a)). To account for circumferential differences
in background activity (Figure 4(b)), the tracer concen-
tration in the ring-like structure was segmented into 20
background regions (Bmaskij

) by applying Otsu threshold-
ing40 and scaled with the corresponding median activity
(Bij) sampled from the PET frame. This allowed for the
calculation of an initial estimate of ICAi using equa-
tion(2), assuming that the area between each Bmaskij

and the ICA wall contains a constant tracer concentra-
tion equal to the Bij values determined at the periphery.

PETi ¼ ICAi:Pmaski

� �
� PSF

þ
X20
j¼1

Bij:Bmaskij � PSF
ð1Þ

Figure 2. Translation (left) and rotation (right) profiles in each axis with respect to examination time (Supplementary Figure 1) for

20 datasets. Subject motion (translation and rotation) increased with time and subject translation was prominent in the z-axis. It is

seen that the motion was minimal during the first 10 min of the scan (maximum translation< 2 mm, average rotation< 1 and max-

imum rotation< 2�).
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ICAi ¼ ½SPOuti �
�1

�
PETi �

X20
j¼1

Bij:SPinij

�
ð2Þ

where SPouti ¼ Pmaski � PSF and SPinij

¼ Bmaskij � PSF

Radial variability in the area between Bmaskij
and

ICA wall was addressed as follows. Initially, for each
of the Bmaskij

regions, a mixed zone (MZij) was defined,
which includes the area between the ICA (Pmask) and
Bmaskij

(Figure 4(b)). The true tracer concentration in
MZij (denoted AMZij

) was then modelled as

AMzij ¼ PETMZij
� ICA:SPouti � Bij:SPinij ð3Þ

Figure 3. (a) Use of MR navigator-based motion correction, in early PET frames (<10 min). Each MR navigator is assigned to a PET

frame based on the time difference between the PET frame midpoint (PFM, red) and MR navigator’s acquisition time (AT). Lower the

time difference between PFM and AT, higher the probability of assigning the MR navigator to the respecting PET frame. The MR

navigator acquired at start of the PET acquisition (time¼ 00:00) is considered as the reference volume (RV) and all other MR

navigators (02:30, 05:15, 07:30) are registered to RV. The transformation matrices obtained from the process are transferred to the

3D TOF-MRA or Pmask, to achieve spatial correspondence to the PET frames. (b)Motion vectors (Tn) were obtained by co-registering

the TOF-MRA with the late dynamic PET frames (>10 min) and then applied to the petrous mask (Pmask-n) to achieve spatial

correspondence with the late dynamic PET frames.
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where PETMZij
is the observed tracer concentration in

MZij and SPin, the spill-in factor. Subsequently, the set
of background regions was tested for radial homogen-
eity by calculating the differences between AMZij

and Bij.
If AMZij

was found to be within 3% of Bij (equivalent to
W Bij – AMZij

W< 0.03 Bj), it was assumed that radial uni-
formity was met for that particular background seg-
ment. Otherwise, a new estimate of ICA was derived
iteratively until equation (2) was satisfied:

�ij � ICA:SPouti

�� �� ¼ min ð4Þ

�ij ¼ ðPETMZij
� Bij:SPinij � AMZij

Þ ð5Þ

where aij is the observed spill-out contribution in the
mixed zone MZij originating from the true ICA tracer
concentration.

Here, the difference between the observed (aij) and
modeled (ICA�SPout) ICA spill-out contribution in

MZij was minimized for the whole set of mixed zones
(MZij, j¼ 1,. . .20). The resulting ICA value was
adjusted for maximum agreement of radial profiles in
the mixed zone, thus, accounting for radial inhomogen-
eity. This procedure was repeated for all PET frames,
to generate a partial volume corrected IDIF.
Supplementary Figure 4 summarizes the radial and cir-
cumferential variability in a real case scenario.

Post-processing of the IDIF

Following MoCo and PVC, the IDIF was interpolated
with a step length of 1 s to match the blood sampling
times and was corrected for multiple effects. First, a
plasma IDIF was derived based on the individual
plasma-to-blood ratios obtained from sampled arterial
blood of the study subjects. Second, the IDIF was
scaled using the cross-calibration factor between the
PET/MR and the on-site gamma counter. Third, the

Figure 4. (a)Spill-in correction: automatic delineation of a spill-out region (SPout, orange), defined by convolving the petrous mask

(Pmask, red) with the PSF (FWHM-6.00 mm), and a background region (purple) of 10 mm (� 5 voxels) thickness defined from the edges

of the spill-out region. (b) The circumferential heterogeneity of petrous segment (red) is graphically represented by labels (L1�n) with

different colors, where n¼ 20. The radial heterogeneity is depicted using the sector-n, where the activity, Mn in the spill-out zone/

mixed-zone (orange) is not the same as the activity, Ln in the background region (green).
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delay between the AIF and the IDIF was corrected by
shifting the IDIF curve to match the arrival times of the
AIF. Finally, due to the difference in sampling location
(ICA for IDIF and radial arteries for AIF), a mono-
exponential dispersion function with a tau value of
5 s41,42 was convolved with the IDIF to mimic the dis-
persion effects. Since the AIF is considered as the ref-
erence standard, all the corrections were applied to the
IDIF for an unbiased comparison with the AIF.

Assessment of IDIF-derived metabolic rate of glucose

To assess agreement between the IDIF and AIF, the
area-under-the-curve (AUC) derived from both curves
was used. Specifically, disparities between the AUC
measurements were assessed based on the percentage
AUC difference (%DiffAUC) calculated as

%DiffAUC ¼ 100ðAUCAIF �AUCIDIFÞ= AUCAIFð Þ

ð6Þ

Absolute percentage AUC differences were calcu-
lated across all studies as well as pair-wise between
test and re-test acquisitions.

Finally, cerebral metabolic rate of glucose
(CMRGlc) maps were calculated (PMOD 3.802,
PMOD Technologies, Zurich, Switzerland) using the
standard rate constant approach43 (lumped constant,
LC¼ 0.6561). Absolute percentage differences between
regional CMRGlc values for whole brain and in six pre-
selected large regions of the brain (cerebellum, brain-
stem, anterior cingulate cortex, thalamus, corpus
callosum and superior frontal cortex) from the
Hammersmith atlas were determined using AIF and
IDIF. All comparisons were performed in a non-para-
metric manner, using the median difference, the inter-
quartile range and the extremes. In order to determine
whether regions are affected differentially using the
IDIF, a rank-sum test was performed among all
regions.

Test–retest variability for both the IFs was assessed
by calculating the absolute mean % difference, after
normalizing the IFs to the respective injected dose
and body weight (SUV). Similarly, test–retest variabil-
ity was assessed by calculating the absolute median %
difference for the CMRGlc values (whole brain and
four random regions – insula, caudate, mid-frontal
gyrus and superior frontal gyrus) obtained from
both IFs

Results

Assessment of the percentage difference between all
AUCs using the IDIF and AIF yielded values within
�5% (Figure 5(a)), with a median absolute difference

of 2.5% (interquartile range (IQR)¼ 2%–4%).
Figure 5(b) shows the histogram of the absolute percent
differences, indicating that 14/20 (70%) of the IDIF
curves were found to be within 3% of the reference
standard (AIF). The remaining 30% displayed a some-
what larger AUC difference in the range of 3%–5%.
Moreover, 2/3 of all percent differences were deter-
mined to be positive, indicating a trend towards a pos-
sible overestimation of the AUC using the IDIF. The
representative time-activity curves emphasizing the
relationship between arterial blood samples and
the IDIF are shown for a case with AUC difference
<3% (Figure 5(c)) and for a case with AUC difference
�4% (Figure 5(d)).

Supplementary Figure 5 depicts the range of the
AUCs for AIF (46.2� 7.6), IDIF with PVC
(46.4� 8.1) and IDIF without PVC (35.7� 7).
Supplementary Figure 6 shows the test–retest variabil-
ity in the IFs, both AIF and IDIF showed similar vari-
ability with an absolute mean % difference (test–retest)
of 9� 8% and 9� 7%.

Figure 6(a) shows an example of a parametric image
based on AIF and IDIF for a subject (HC014 retest)
with 3% overestimation by IDIF. The whole brain
CMRGlc values derived from AIF was found to be
(mean� SD¼ 32� 6, median� IQR¼ 31� 9) umol/
100 g/min and for IDIF (mean� SD¼ 32� 6, med-
ian� IQR¼ 29� 9) umol/100 g/min (Supplementary
Figure 10). Absolute median % difference between
CMRGlc values obtained using the AIF and IDIF for
the whole brain was found to be 3.9%, with an inter-
quartile range of 2.4%–5.4%. And for the six regions,
the absolute mean % difference was determined as
3.2%, with an interquartile range of 2.4%–4.3% and
a maximum difference of <10%. Figure 6(b) shows the
%-differences with respect to CMRGlc values derived
using the two IFs. Comparison of Figures 5(c) and 6(b)
indicates an inverse relationship between the percentage
difference in AUCs and CMRGlc.

Figure 6(c) shows the corresponding histogram, indi-
cating that the most frequently observed differences are
in the range of 2%–4%, with 85% of all differences
being <5%. In all six-preselected brain regions, the
CMRGlc values obtained from AIF and IDIF
showed no significant difference.

The test–retest variability between AIF based
CMRGlc and IDIF based CMRGlc is shown in
Supplementary Figure 7. For both the IFs, CMRGlc
obtained from the four regions during the retest were
higher when compared to test, along with a reduction in
variance during the retest. In general, retest AIF
CMRGlc values were 14% higher (14% higher for
insula, mid-frontal gyrus, superior frontal gyrus and
22 % higher for caudate) when compared to the test
values, indicating a high intra-variability. A similar
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tendency was seen in retest IDIF CMRGlc values
as well, with a 17% increase (12% higher for insula,
18% for caudate, 17% for mid-frontal gyrus and 16%
for superior frontal gyrus) when compared to test
values.

The absolute % relative difference between test and
retest whole-brain CMRGlc values (Supplementary
Figure 11) was found to be 14� 8% for AIF (with
median� IQR¼ 15� 16%) and 15� 10% for IDIF
(with median� IQR¼ 14� 17%).

Discussion

We present a clinically viable automated MR-driven
approach to extracting an IDIF for the non-invasive
determination of CMRGlc images using an integrated
[18F]FDG-PET/MRI protocol. The approach is based

on the accurate and automated extraction of an IDIF
based on the combined acquisition of PET and MR
data. It was validated against the reference standard
of AIF. In the context of the automated IDIF calcula-
tion, a multi-factorial partial volume correction is
required. Therefore, the directional and radial variabil-
ity of the background region (Figure 4(b)) must be con-
sidered for an accurate correction of the spillover
effects. This procedure also mandates the knowledge
of the system’s PSF for a given tracer and image recon-
struction protocol. Any PVC must be preceded by
motion correction. Our study shows that the above
requirements can be effectively addressed by employing
an integrated PET/MRI protocol followed by an auto-
mated post-processing pipeline.

Traditionally IDIF has been extracted from two
different segments of the ICA: (1) the petrous

Figure 5. (a) The panel displays the %-differences for all 20 scans (points); the shaded areas depict the difference range for test/

retest scans obtained in the same subject. IDIF curves obtained from subject #5 (HC004 test, denoted as *) and #9 (HC007 test,

denoted as **) are displayed in (c) and (d). Percent (%) differences between AUCs obtained from AIF (gray with circles) and IDIF

(black) were calculated (b). Histogram displaying the distribution of absolute % AUC differences, 70% of the AUCs differ by <3% with

the remaining curves differing by <5%. (c) IDIF obtained in subject #5: (HC004 test Table 1) with a good agreement between IDIF and

AIF. (d) Example IDIF obtained from subject #9 (HC007 test) with a limited (tail area) agreement between IDIF and AIF.
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region24–27,29,44–46 or (2) the cervical region.20,47 We
believe that the petrous region is preferable, as it rep-
resents a rigid structure due to its placement inside the
petrous canal. In contrast, the cervical segment is more
elastic and prone to deformation. Since rigid transform-
ations were used to achieve spatial correspondence
between the TOF-MRA and the PET frames, the pet-
rous region was chosen for derivation of the IDIF. The
aforementioned segmentation algorithm was successful
in defining the ICA irrespective of the subject-specific
cerebral vasculature (Supplementary Figure 1).

Moreover, due to its modular nature, the proposed
algorithm can be easily modified for other FOV acqui-
sitions (cervical and cavernous segments). The opti-
mum quantile value of 0.987 may change based on
the quality of TOF-MRA volumes. Decreasing the
quantile value will result in higher inclusion of periph-
eral fat, whereas an increase will result in eroded seg-
mentation of the carotid arteries. Care should be taken
in choosing an optimum quantile value as the pre-seg-
mentation of the carotid arteries is dependent on the
chosen quantile value.

Figure 6. (a) Transaxial (top row) and sagittal (bottom row) images representing CMRGlc derived using the AIF (left) and the IDIF

(right) for a subject with a 3% AUC overestimation by IDIF. Images show excellent agreement in absolute CMRGlc values. (b)Relative

%-differences for six reference regions (cerebellum, brainstem, anterior cingulate cortex, thalamus, corpus callosum and superior

frontal cortex) in all 20 scans. The shaded areas depict test/retest scans obtained in the same subject. (c)Histogram depicting the %

absolute differences in CMRGlc values derived using the IDIF and the AIF. The graph shows a maximum for difference values in the

range of 2–4%, with 85% of all differences laying within 5%.
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The ICA has a variable background both in radial
and circumferential direction. Circumferential variabil-
ity is due to the presence of cortical structures with
different amount of tracer accumulation around the
target region, whereas radial variability is related to
the sampling of the background region (Figure 4(a)
and (b)). Due to the spillover of ICA activity into the
neighboring background tissue, an estimate of the cir-
cumferentially dependent background tracer concentra-
tion must be obtained at a distance from the ICA where
the ICA spillover can be ignored. In most implementa-
tions, this is achieved by sampling background tracer
concentration at a distance where ICA tracer concen-
tration contributes <3% to the local tracer concentra-
tion. Of note, this approach cannot account for radial
changes, as the tracer concentration sampled in such a
way might not be representative for the background
concentration directly adjacent to the vessel wall
(Supplementary Figure 4).

The importance to account for radial and circumfer-
ential variability has not been fully appreciated in pre-
vious region-based PVC methods. Rousset et al.48

derived a closed solution for PVC using a geometric
transfer matrix, which relates a vector of observed
activities to a vector of true (PVC-corrected) activities.
This linear equation system can be solved for the true
activities by matrix inversion; however, the accuracy of
such a solution strongly depends on the degree of ill-
conditioning of the transfer matrix and, in addition to a
large computational effort, might lead to unstable esti-
mates of the corrected activities.

Obviously, the complexity of such a correction is
dependent on the number of tissues believed to have
different functional properties, i.e. the number and
shape of homogenous regions that contribute to the
PVE in each image voxel. Various investigators pro-
posed the definition of such regions based on a

combination of information from a high-resolution
anatomical (e.g. MRI) and a functional (PET) image
using wavelet decomposition.49,50 Our approach is simi-
lar to these methods in that it uses functionally homo-
genous background regions to correct for PVEs at one
specific target region (ICA). Furthermore, it is accurate
and computationally efficient for determining an IDIF
by avoiding complex mathematical overhead by itera-
tively adjusting the activity in the target region so that
it becomes consistent with the observed activity in the
mixed zone. Although our approach is less ambitious
than the general solution presented by Roussett et al.,
we believe that it is fitting for determining an IDIF that
can be readily implemented in clinical applications.

The proposed PVC method requires the knowledge
of PSF of the PET system. Since PSF varies with fac-
tors such as image reconstruction parameters and the
type of tracer, a dedicated PSF measurement for the
specific PET system and protocol is recommended.

Since all corrections are applied to a relatively small
region, determination of an IDIF is highly sensitive to
local misregistration arising from involuntary patient
motion (Supplementary Figure 8). In a combined
PET/MR system, MR navigator sequences can be
used to derive high-temporal-resolution motion esti-
mates along with the PET emission scan.31 The result-
ing motion vectors can be then applied to the VOI to
account for motion between frames, therefore, avoiding
PET image resampling. In the current protocol, MR
navigators were acquired with a reasonably fast tem-
poral sampling rate (�2min temporal separation
between navigator), during the early phase of the scan
(<10min), thereby offering the possibility to perform
motion correction using the motion fields from the MR
navigators. However, due to the constraints of clinical
sequences during the subsequent 50min, MR naviga-
tors were acquired with low-temporal sampling rate

Table 1. Demographics of the 10 healthy controls.

Subject ID Gender

Age

(y)

Weight

(kg)

Date FDG Activity (MBq) Blood glucose (mmol/L)

Test Retest Test Retest Test Retest

HC002 M 23 75 06-06-2016 14-07-2016 217 371 4.55 5.72

HC003 F 24 55 08-06-2016 09-11-2016 229 288 4.33 4.73

HC004 M 28 74 11-07-2016 26-09-2016 384 367 4.88 5.49

HC006 F 22 69 12-09-2016 07-11-2016 365 355 5.11 5.22

HC007 F 22 56 14-09-2016 28-09-2016 292 292 5.38 5.61

HC009 F 42 63 23-11-2016 05-12-2016 330 324 5.11 5.83

HC010 F 20 65 07-12-2016 19-12-2016 337 338 5.11 5.55

HC012 M 36 92 23-01-2017 13-02-2017 493 476 6.32 6.05

HC013 M 24 70 15-02-2017 27-02-2017 350 363 5.05 5.16

HC014 M 25 80 27-03-2017 29-03-2017 422 364 4.61 5.88

1526 Journal of Cerebral Blood Flow & Metabolism 39(8)



(�4–5min temporal separation between every naviga-
tor). Therefore, a PET-MRI NMI-based co-registration
was preferred, instead of using the motion fields from
the late navigators (>10min). Since MR navigators are
acquired in a relatively short time duration (�5 s), there
is an increased probability that the motion vectors cap-
tured by these navigators are not representative of
the average motion occurring during a 5-min time
frame. While post-reconstruction motion correction
approaches yield satisfactory results, simultaneously
acquired PET and MR data offer the possibility of an
‘‘on-the-fly’’ motion correction, in which the motion
vector is used to rebin the PET coincidence data, so
that subject motion is addressed on a very basic line-
of-response (LOR) level. Several pilot approaches have
been proposed to incorporate on-the-fly motion correc-
tion schemes,51 yet implementation of these methods
proved to be challenging due to the necessity of recal-
culating both normalization factors and random
estimates.

Apart from comparing the CMRGlc images from
the AIF and IDIF to determine the accuracy of the
IDIF methodology, it is informative to compare the
IFs by using metrics such as AUC. In the context of
the standard rate constant approach, the AUC of the
IF represents the total amount of tracer that is available
to the tissue, while the metabolic rate encodes the rela-
tionship between the amount of tracer available for
uptake and the actual tissue uptake. Therefore, demon-
stration of similarity by comparing the AUCs of AIF
and IDIF provides a reasonable quality check to assess
the accurateness of the method.

Analysis of AIF-derived AUC differences obtained
from test/retest scans showed no significant correlation
between the AUC differences and the length of time
separating the two acquisitions (R2

¼ 0.03). These
results suggest that time effects are most likely not
responsible for the observed differences in IDIF-
derived AUCs determined for the test/retest studies.
A high test-retest variability (< 20%) was seen in regio-
nal CMRGlc obtained from both the IFs
(Supplementary Figure 7). A regional analysis of
CMRGlc was chosen, as studies in the past have indi-
cated the possibility of different brain regions exhibiting
different amount of metabolic variability.52,53 However,
it has been hypothesized that this relatively high
amount of regional variability is due to changes in the
physiological state of the subject across time.54–57

A current limitation of our study in view of a fully
automation of the workflow is the need for a separate
low-dose CT scan for CT-AC, which, for brain
research, still is assumed a ‘‘silver standard.’’34

Various accurate brain MR-based attenuation correc-
tion (MR-AC) methods58 have been proposed in the
recent years and there is now guarded optimism in

the field that, at least for the brain, MR-AC will soon
be clinically feasible.32,33 However, the impact of these
methods with respect to the derivation of an accurate
IDIF still needs to be investigated. In our current study,
the observed motion was minimal (maximum transla-
tion< 2.0mm and maximum rotation< 2.0�, Figure 2)
for all subjects during the first 10min of the study.
Therefore, no motion correction was performed for
the early PET frames (<10min). Though, a practical
MR navigator-based motion correction approach31

was implemented (Figure 3(a)) to handle prominent
motion for early PET frames (>2mm), the perform-
ance of the method still needs to be evaluated. In our
current implementation, stationary attenuation maps
were used to perform AC, as motion magnitudes were
minimal. However, such an approach might not be
optimal in a clinical scenario where motion can be
prominent. Since, CT-AC map misalignments can
affect the quantification of the IDIF, the use of
motion corrected CT-AC maps to reconstruct clinical
PET data is advisable.

Finally, the calculation of CMRGlc was based on
the standard rate constant approach since this study
was performed with healthy volunteers. Though the
use of standard rate constants might be less accurate
than the application of kinetic modeling in case of path-
ology, the simplified approach might be better suited
for clinical routine. Furthermore, when adopting our
approach for the clinic, the obtained blood IDIF
needs to be converted to plasma IDIF by using the
hematocrit measured from the venous blood.
However, it has been shown that the hematocrit
values obtained from venous blood are �3% higher
than those obtained from arterial blood59 and this dif-
ference must be considered during the conversion. In our
study, we used the individual dynamic plasma to whole
blood ratio to derive the plasma-IDIF. The mean (�SD)
of this ratio derived from our study group (n¼ 20) was
found to be 1.06� 0.01 (Supplementary Figure 9).
Therefore, in future [18]FDG studies without arterial
blood samples, we intend to apply a scaling factor of
1.06 to convert the blood-IDIF to plasma-IDIF.

As discussed earlier, most PET-based methods9–19

require blood samples for scaling the IDIF, while the
stand-alone PET/CT and MR-based methods20–22

suffer logistic and co-registration issues. Integrated
PET/MR-based IDIF methods,27,60 apart from provid-
ing logistic advantage, have shown to be promising in
addressing the challenges associated with the calcula-
tion of IDIF. Our method extends the previous PET/
MR approaches, by introducing an FOV independent
robust petrous segmentation algorithm, MR navigator-
based motion monitoring and a PVC algorithm, which
accounts for circumferential and radial homogeneity
for spill-in correction.
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Conclusion

We have developed a computational framework to
automatically calculate an IDIF for the absolute quan-
tification of [18F]FDG PET brain data using a fully
integrated PET/MRI system. Calculations of the
IDIF and the CMRGlc parameters have been shown
to correspond well to the values derived from the inva-
sive AIF, thus, attesting to the concept of non-invasive
absolute quantification of [18F]FDG PET imaging of
the brain in combined PET/MRI studies.
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Tübingen, Germany. Mol Imaging Biol 2018; 20: 4–20.
33. Ladefoged CN, Law I, Anazodo U, et al. A multi-centre

evaluation of eleven clinically feasible brain PET/MRI

attenuation correction techniques using a large cohort

of patients. Neuroimage 2017; 147: 346–359.

34. Carney JPJ, Townsend DW, Rappoport V, et al. Method
for transforming CT images for attenuation correction in
PET/CT imaging. Med Phys 2006; 33: 976–983.

35. Shih FY. Image processing and pattern recognition: fun-
damentals and techniques. John Wiley & Sons, 2010.
Hoboken, New Jersey.

36. Teutsch M. Moving object detection and segmentation for

remote aerial video surveillance. KIT Scientific Publishing
2010. Karlsruhe, Germany.

37. Gibo H, Lenkey C and Rhoton AL. Microsurgical anat-

omy of the supraclinoid portion of the internal carotid
artery. J Neurosurg 1981; 55: 560–574.

38. Loening AM and Gambhir SS. AMIDE: a free software

tool for multimodality medical image analysis. Mol
Imaging 2003; 2: 131–137.
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