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Abstract: Thiazoles are important scaffolds in organic chemistry. Biosynthesis of thiazoles is consid-
ered to be an excellent target for the design of novel classes of therapeutic agents. In this study, a
new series of 2-ethylidenehydrazono-5-arylazothiazoles 5a–d and 2-ethylidenehydrazono-5-arylazo-
thiazolones 8a–d were synthesized via the cyclocondensation reaction of the appropriate hydra-
zonyl halides 4a–d and 7a–d with ethylidene thiosemicarbazide 3, respectively. Furthermore, the
thiosemicarbazide derivative 3 was reacted with different bromoacetyl compounds 10–12 to afford
the respective thiazole derivatives 13–15. Chemical composition of the novel derivatives was es-
tablished on bases of their spectral data (FTIR, 1H-NMR, 13C-NMR and mass spectrometry) and
microanalytical data. The newly synthesized derivatives were screened for their in vitro anti-hepatic
cancer potency using an MTT assay. Moreover, an in silico technique was used to assess the interac-
tion modes of the compounds with the active site of Rho6 protein. The docking studies of the target
Rho6 with the newly synthesized fourteen compounds showed good docking scores with acceptable
binding interactions. The presented results revealed that the newly synthesized compounds exhibited
promising inhibition activity against hepatic cancer cell lines (HepG2).

Keywords: thiazoles; 1,2,3-triazoles; anti-hepatic cancer agents; Rho6 protein

1. Introduction

In the scope of our program, we are aiming to synthesize biologically active com-
pounds from available inexpensive starting materials [1–16]. Functionalized thiazoles
have gained much attention owing to their biological importance [17,18] such as anti-
Trypanosoma cruzi agent [19], human adenosine A3 receptor antagonists [20], antivi-
ral [21], HIV-protease inhibitory agents [22], antimicrobial [23], cytotoxic and anticancer
agents [24,25]. Compounds possess two thiazole rings either connected through a linker as
in bis-thiazoles, or directly connected showed promising biological activity such as DNA
replication inhibitors in the cancer cells and HIV-protease inhibitors [26,27]. It was also
reported that thiazoles have an anti-biofilm effect against Pseudomonas aeruginosa [28].

Cancer is a disease characterized by uncontrolled cell growth with the potential to
invade other parts of the body. Hepatic cancer is the most common type of primary liver
cancer, which causes death in people with cirrhosis. The Rho family of GTPases is a family
of small signaling G proteins. They are important regulators of cell cycle progression,
and are responsible for gene expression [29–31]. Homo sapiens Rho6 protein works as
a sensitive molecular switch existing either in an active GDP-bound form or an active
GTP-bound form. Exchange from GDP to GTP is catalyzed by the guanidine exchange
factor (GEF), leading to activation in response to various upstream signals. On the other
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hand, GTPase-activating protein (GAP) increases the intrinsic GTPase activity, resulting
in the inactivation of the protein. The overexpression of Rho6 protein has been found
to be increased in some human cancers, including hepatocellular carcinoma (HCC) [32].
Therefore, herein we decided to search for novel thiazole derivatives as anticancer agents
based on a computer-aided docking approach.

2. Results and Discussion
2.1. Chemistry

3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazole-4-carbald
ehyde 1 was reacted with thiosemicarbazide 2 to give the corresponding ethylidene
thiosemicarbazone 3. We launched our research on the reactions of ethylidenethiosemi car-
bazone 3 with the appropriate α-keto hydrazonoyl halides 4a–d in dioxane with catalytic
amount of triethylamine (TEA) (Scheme 1). The structures of isolated products 5a–h were
confirmed by elemental analysis together with spectral data. For example, the IR spectra of
the new compounds revealed in each case the absorption bands in the region 3265–3436 and
1590–1610 cm−1 owing to the (NH) and (C=N) groups, respectively. In 1H-NMR spectra,
all the products showed characteristic singlet signals in the region δ 11.34–11.73 ppm (D2O
exchangeable), referred to as the −NH protons. Based on the demonstrated results, the
products isolated from the reactions of 3 with 4a–h can be assigned (Scheme 1).
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Authentic samples of 5a–d could be prepared via alternative synthetic pathway. Here,
ethylidenethiosemi carbazone 3 was reacted with chloroacetone under thermal conditions
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to give thiazole derivative 6. Coupling of the latter product 6 with the appropriate arene
diazonium chloride give the respective authentic samples 5a–d (Scheme 1).

In a similar manner, thiosemicarbazone derivative 3 was reacted with ethyl (N-
arylhydrazono)chloroacetates 7a–d in dioxane in the presence of TEA, affording in each
case a single isolable product 8a–d. The structures of 8a–d were elucidated based on
spectral data and elemental analysis (see Experimental part). For instance, the IR spectra
of the products showed, in each case, one carbonyl band at 1695–1710 cm−1 and two
NH bands in the regions 3334–3325 and 3259–3250 cm−1. Their mass spectra of the latter
products revealed in each case, the molecular ion peaks at the expected m/z values and their
elemental analysis data were consistent with the assigned structures. The thiazolidinone
compound 9 was obtained by reaction of the thiosemicarbazone derivative 3 with ethyl
chloroacetate in ethanol, in the presence of anhydrous sodium acetate. Coupling of the
latter product 9 with arenediazonium chloride in ethanol give products identical in all
aspects with the respective authentic samples 8a–d (Scheme 1).

On the other hand, the thiosemicarbazone derivative 3 was reacted with different bro-
moacetyl compounds 10–12 to afford the respective thiazole derivatives 13–15 (Scheme 2).
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2.2. Docking Study, SAR Analysis and ADMET Properties

The new synthetic compounds were subjected to dock with the active site of Rho6
protein using PyRx-virtual screening software 0.8. The theoretical binding mode of in-
teractions of the fourteen compounds against the binding site was investigated using
molecular docking studies. The crystal structure of the human RND1 GTPase in the active
GTP bound state (ID: 2CLS) with resolution 2.31 Å was retrieved from RCSB for further
study. All water molecules and ligand were removed from the PDB file. The grid box
with dimension 25 Å × 25 Å × 25 Å was centered at the active site of the target. Nine
conformers for each docked compound were obtained from the docking process, and the
conformation with the best scored pose and the lowest binding energy was selected for
further study. The docking scores were expressed in negative energy terms, measured in
kcal/mol unit, and sorted depending on the higher negative value which implies the best
affinity towards the target. The 2D and 3D representations of the non-covalent interac-
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tions of protein-compound complex were visualized using Discovery Studio 3.5 [33] as
represented in Figure 1. Table 1 contains the docking results, beside the potential interfer-
ences (hydrogen bonds, π-π stacking, π-cation and π-sigma), bond lengths between the
compounds and Rho6. Compound 1 with binding energy −6.8 kcal.mol−1, docked with
the target through arene-cation and arene-sigma interactions with Lys106 at the distances
of 4.95 and 3.46 Å respectively. In addition, compounds 3 and 14 docked with the residue
Arg96 through arene-cation contacts at the distances of 3.98, and 4.02 Å respectively. In
addition, compound 14 showed one hydrogen bond interaction with Ser95 at 2.95 For
the set of derivatives 5a–5d; the compound 5a with phenyl ring showed binding energy
−8.2 kcal.mol−1 docked with the residue Arg96 through arene-cation interaction at the
distances of 3.95 Å. On the other hand, introducing of electron donating group as –Me
to phenyl ring as in compound 5b, increases the docking energy to −9.2 kcal.mol−1 [34].
Compound 5b (−9.4 kcal.mol−1) exhibited H-bonding and arene-cation interactions with
Gln158 and Arg108 at 1.97 and 4.02 Å, respectively. Introducing of electron withdrawing
groups on phenyl ring causes lower activity than electron donating groups [34]. For com-
pounds 5c and 5d with electron withdrawing groups like −Cl (−9.0 kcal.mol−1) and –NO2
(−9.1 kcal.mol−1), they exhibited H-bonds and arene-cation interactions with the active site
of the target. For other set of derivatives 8a–8d; the compound 8a exhibited two hydrogen
bonding interactions with Ser64 and Trp66 at 2.10, and 1.96 Å, respectively. Compound 8b
with electron donating group exhibited high docking score (−9.9 kcal.mol−1) showed three
H-bonding interactions with Gln158 and Leu159. Compounds 8c and 8d with electron
withdrawing groups –Cl (weak) and –NO2 (strong) exhibited lower scores than compound
with electron donating group –CH3. For compound 13a, two H-bonds and one arene-cation
interactions were formed with the target through Ser95, Glu138 and Arg96 at the distances
of 2.50, 2.15 and 4.10 Å respectively. Meanwhile, the molecular docking of compound 13b
showed one hydrogen bond contact with Asp132 at 2.99 Å. Finally, compound 15 (with the
binding energy of −9.2 kcal.mol−1) revealed two arene-cation interactions with Lys15 at
the distances of 5.74 and 5.50 Å, respectively. The protein-compound interaction maps of
2D and 3D for some molecules are depicted in Figure 1. The other docked molecules with
the target are represented in Supplementary Materials as Figure S1.

The pharmacokinetics and physicochemical properties, as tabulated in Table 2, provide
a quantitative description of what the human body does to a compound that is admin-
istrated. According to Lipinski’s rule of five (RO5), most of the synthesized compounds
follow the criteria for orally active drugs. Therefore, they may be considered as potential
drug candidates against cancer.
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Table 1. Molecular docking results for the screened compounds and Rho6 protein.

2D Structure BE kcal.mol−1 Docked Complex (Amino Acid-Ligand) Interactions Bond Length (Å)

1
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Table 1. Cont.
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Table 2. List of ADME and physicochemical properties of the title compounds 1–15.

MW
(g/mol) BBB+ Caco2+ HIA+ logp TPSA A2 nON nOHNH RBs N Violations AMES

Toxicity Carcinogenicity

180–500 −3 to 1.2 < 25 poor
> 500 great

< 25 poor
>80 high <5 ≤ 140 2.0–20.0 0.0–6.0 ≤ 10 < 5 Nontoxic Non carcinogenic

1 408.26 0.98 67.17 98.94 3.15 65.61 6 0 4 0 Nontoxic Noncarcinogenic

3 481.38 0.97 65.20 96.57 3.31 98.96 8 3 6 0 Nontoxic Noncarcinogenic

5a 623.54 0.98 82.20 92.98 6.24 110.56 10 1 8 2 Nontoxic Noncarcinogenic

5b 637.57 0.98 82.51 92.96 6.69 110.56 10 1 8 2 Nontoxic Noncarcinogenic

5c 657.99 0.97 82.77 92.93 6.92 110.56 10 1 8 2 Nontoxic Noncarcinogenic

5d 668.54 0.97 82.69 92.95 6.20 156.38 13 1 9 3 Nontoxic Noncarcinogenic

8a 625.52 0.98 83.26 97.32 4.74 127.29 11 2 8 1 Nontoxic Noncarcinogenic

8b 639.54 0.98 83.64 97.35 5.19 127.29 11 2 8 2 Nontoxic Noncarcinogenic

8c 659.96 0.98 83.67 97.96 5.42 127.29 11 2 8 2 Nontoxic Noncarcinogenic

8d 670.51 0.98 83.93 97.98 4.70 173.11 14 2 9 2 Nontoxic Noncarcinogenic

13a 581.50 0.97 79.71 92.98 5.38 85.83 8 1 7 2 Nontoxic Noncarcinogenic

13b 615.95 0.97 82.80 94.06 6.06 85.83 8 1 7 2 Nontoxic Noncarcinogenic

14 582.49 0.98 78.83 92.98 4.23 98.72 9 1 7 1 Nontoxic Noncarcinogenic

15 699.59 0.98 85.73 88.62 6.54 116.04 10 1 7 2 Nontoxic Noncarcinogenic

MW: Molecular Weight; BBB+: Blood-Brain Barrier; Caco2+, Caco-2: Permeability; HIA+: %Human Intestinal Absorption; logp: logarithm of partition coefficient between n-octanol and water; TPSA2: topological
polar surface area; nON: number of hydrogen bond acceptors; nOHNH: number of hydrogen bond donors; RBs: number of rotatable bond.
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2.3. Biological Activity
Anti-proliferative Activity

The novel derivatives 5–15 were screened for their cytotoxicity against the BALB/3T3
(murine fibroblast) and the human liver carcinoma cell line (HepG2) using doxorubicin as
standard drug with IC50 value 3.56 ± 0.46 µg/mL in MTT assay. Cytotoxic activities were
expressed as the mean IC50 of three independent experiments. The results are tabulated in
Table 3.

Table 3. Antiproliferative activity of the new derivatives towards liver (HepG2) and normal (BALAB/3T3) cell lines.

Comp. No R HepG2 IC50 ± SD [µg/mL] BALAB/3T3
IC50 ± SD [µg/mL] General Structure

Doxorubicin 3.56 ± 0.84 1.86 ± 0.07
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Compounds were tested in concentrations from 100 to 0.1 µg/mL 
Nd: no detectable activity in the used concentrations 
Concentration of DMSO: 1% 

3. Conclusion 
In our ongoing efforts to develop novel and potential biologically and pharmaceu-

tically active compounds, this work described an efficient approach for the synthesis of 
novel thiazole derivatives. They were characterized by IR, 1H-NMR, 13C-NMR, MS and 
elemental analysis. An in silico study was carried out to identify the potency of the newly 
synthesized compounds. The molecular docking study revealed that all the synthesized 
compounds exhibited good binding energy towards the target Rho6. Overall, the newly 
synthesized compounds represent encouraging starting points for the development of 
new drug candidates as anti-hepatic cancer agents. 

4. Experimental 
4.1. Chemistry 
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400 Chemical shifts are expressed in ppm units using TMS as an internal reference. Mass 
spectra were recorded on a GC-MS QP1000 EX Shimadzu Elemental analyses were car-
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Reactions of 2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H- 
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ing triethylamine (0.1 g, 1 mmol) was refluxed until all the starting materials were con-
sumed (4a–d and 7a–d as monitored by TLC). Excess of solvent was removed under re-
duced pressure. The product separated was filtered, dried and recrystallized from the 
appropriate solvent to give compounds 4a–d and 7a–d. The products, together with their 
physical constants, are listed below.  
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Compounds were tested in concentrations from 100 to 0.1 µg/mL. Nd: no detectable
activity in the used concentrations. Concentration of DMSO: 1%.

3. Conclusions

In our ongoing efforts to develop novel and potential biologically and pharmaceu-
tically active compounds, this work described an efficient approach for the synthesis of
novel thiazole derivatives. They were characterized by IR, 1H-NMR, 13C-NMR, MS and
elemental analysis. An in silico study was carried out to identify the potency of the newly
synthesized compounds. The molecular docking study revealed that all the synthesized
compounds exhibited good binding energy towards the target Rho6. Overall, the newly
synthesized compounds represent encouraging starting points for the development of new
drug candidates as anti-hepatic cancer agents.

4. Experimental
4.1. Chemistry
Experimental Instrumentation

All melting points were determined on an electrothermal apparatus and are uncor-
rected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotomet
er1H-NMR and 13C-NMR spectra were recorded in DMSO-d6 solutions on BRUKER 400
Chemical shifts are expressed in ppm units using TMS as an internal reference. Mass
spectra were recorded on a GC-MS QP1000 EX Shimadzu Elemental analyses were carried
out at the Microanalytical Center of Cairo University.

2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)m
ethylene)hydrazine-1-carbothioamide (3) Yellow crystals; (69% yield); mp 168–170 ◦C
(EtOH); IR (KBr): v/cm−1 3436 (broad, NH, NH2), 3092, 2929 (CH), 1620(C=C), 1595 (C=N);
1H-NMR (DMSO-d6): δ 2.49 (s, 3H, CH3), 7.40(s, 2H, NH2), 7.57–8.51 (m, 9H, Ar-H), 8.73(s,
1H, pyrazole-H5), 9.26(s, 1H, CH-aliphatic), 11.51 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6,
119.9, 123.1, 126.2, 128.1, 129.3, 131.6, 133.5, 134.9, 139.7, 141.3, 143.3, 143.9,170.5; MS m/z
(%): 481 (M+, 13). Anal. Calcd for C20H17BrN8S (481.38): C, 49.90; H, 3.56; N, 23.28. Found
C, 49.96; H, 3.52; N, 23.25%.

Reactions of 2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazo
l-4-yl)methylene)hydrazine-1-carbothioamide (3) with hydrazonoyl halides 4a–d and 7a–d.

General procedure: A mixture of 2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-tria zol-4-
yl)-1-phenyl-1H-pyrazol-4-yl)methylene)hydrazine-1-carbothioamide (3) (10 mmol) and
appropriate hydrazonoyl halides 3a–h (1 mmol) in dioxane (15 mL) containing triethy-
lamine (0.1 g, 1 mmol) was refluxed until all the starting materials were consumed (4a–d
and 7a–d as monitored by TLC). Excess of solvent was removed under reduced pressure.
The product separated was filtered, dried and recrystallized from the appropriate solvent
to give compounds 4a–d and 7a–d. The products, together with their physical constants,
are listed below.

2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-4-methyl-5-(-phenyldiazenyl)thiazole (5a)

Red crystals; (72% yield); mp 210–212 ◦C (Ethanol); IR (KBr): v/cm−1 3368 (NH),
3072, 2920 (CH), 1620(C=C), 1600 (C=N); 1H-NMR (DMSO-d6): δ 2.49 (s, 3H, CH3), 2.61(s,
3H, CH3), 7.39–8.56 (m, 14H, Ar-H), 8.70(s, 1H, pyrazole-H5), 9.29(s, 1H, CH-aliphatic,
CH=N), 11.56 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6, 119.6, 123.5, 126.2, 128.4, 129.3,
131.6, 133.5, 135.9, 139.7, 143.3, 143.6, 147.9, 164.9; MS m/z (%): 623 (M+, 100). Anal. Calcd
for C29H23BrN10S (623.54): C, 55.86; H, 3.72; N, 22.46. Found C, 55.92; H, 3.65; N, 22.41%.

2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-4-methyl-5-p-tolyldiazenyl)thiazole(5b)

Red crystals; (65% yield); mp 193–195 ◦C (Ethanol); IR (KBr): v/cm−1 3404 (NH),
3080, 2972 (CH), 1615(C=C), 1596 (C=N); 1H-NMR (DMSO-d6): δ 2.35 (s, 3H, CH3), 2.59
(s, 3H, CH3), 2.61(s, 3H, CH3), 7.44-8.59 (m, 13H, Ar-H), 8.77(s, 1H, pyrazole-H5), 9.30 (s,
1H, CH-aliphatic, CH=N), 11.51 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6, 9.7, 119.8, 123.7,
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126.2, 128.8, 129.2, 131.9, 133.6, 138.6, 144.3, 143.6, 147.8, 167.6; MS m/z (%): 637 (M+, 14).
Anal. Calcd for C30H25BrN10S (637.56): C, 56.52; H, 3.95; N, 21.97. Found C, 56.58; H, 3.91;
N, 21.92%.

2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-5-(4-chlorophenyl)diazenyl)-4-methylthiazole (5c)

Red crystals; (65% yield); mp 205-207 ◦C (Ethanol); IR (KBr): v/cm−1 3338 (NH), 3046,
2977 (CH), 1620 (C=C), 1592 (C=N); 1H-NMR (DMSO-d6): δ 2.58 (s, 3H, CH3), 2.60 (s, 3H,
CH3), 7.40–8.62 (m, 13H, Ar-H), 8.81 (s, 1H, pyrazole-H5), 9.30 (s, 1H, CH-aliphatic, CH=N),
11.62 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.9, 119.8, 123.7, 126.2, 128.8, 129.4, 131.9, 133.8,
138.6, 144.3, 143.8, 147.8, 167.6; MS m/z (%): 659 (M+, 2, 20), 657 (M+, 15). Anal. Calcd for
C29H22BrClN10S (657.98): C, 52.94; H, 3.37; N, 21.29. Found C, 52.89; H, 3.29; N, 21.25%.

2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4- yl)
methylene)hydrazinyl)-4-methyl-5-(4-nitrophenyl)diazenyl)thiazole (5d)

Red crystals; (75% yield); mp 161–163 ◦C (Ethanol); IR (KBr): v/cm−1 3425 (NH), 3051,
2927 (CH), 1620(C=C), 1590 (C=N); 1H-NMR (DMSO-d6): δ 2.27 (s, 3H, CH3), 2.48(s,3H,
CH3), 7.42–8.57 (m, 13H, Ar-H), 8.76 (s, 1H, pyrazole-H5), 9.31 (s, 1H, CH-aliphatic, CH=N),
11.51 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.7, 119.8, 123.7, 126.2, 128.8, 129.2, 131.9, 133.6,
138.6, 144.3, 143.6, 147.8, 167.6; MS m/z (%): 668 (M+, 6). Anal. Calcd for C29H22BrN11O2S
(668.53): C, 52.10; H, 3.32; N, 23.05. Found C, 52.15; H, 3.29; N, 23.01%.

Alternate method for 5a–d: 2-(2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-
1-phenyl-1H-pyrazol-4-yl)methylene)hydrazinyl)-4-methylthiazole (6). To a solution of
thiosemicarbazone 3 (2.40 g, 5 mmol) in EtOH (20 mL), chloroacetone (0.46 g, 5mmol) was
added. The mixture was refluxed for 6-8 h (monitored by TLC), and then left to cool. The
solid product was filtered off, washed with EtOH and recrystallized from dioxane to afford
the thiazole derivative 6 as yellow solid, mp 184–186 ◦C (AcOH); IR (KBr): v/cm−1 3428
(NH), 3056, 2915 (CH), 1620(C=C), 1597 (C=N); 1H-NMR (DMSO-d6): δ 2.28 (s, 3H, CH3),
2.50 (s,3H, CH3), 6.37(s, 1H, thiazole-5), 7.40–8.62 (m, 9H, Ar-H), 8.62(s, 1H, pyrazole-H5),
9.30(s, 1H, CH-aliphatic, CH=N), 11.52 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6, 9.7, 119.5,
122.8, 123.5, 126.2, 128.4, 129.3, 132.6, 133.5, 136.9, 139.7, 143.3, 144.6, 148.9, 162; MS m/z
(%): 519 (M+, 27). Anal. Calcd for C23H19BrN8S (519.43): C, 53.18; H, 3.69; N, 21.57. Found
C, 52.24; H, 3.65; N, 21.54%.

Coupling of thiazole 6 with arenediazonium chlorides To a solution of 6 (0.51 g, 10 mmol) in
ethanol (20 mL), cooled to 0–5 ◦C in an ice bath, was added, portion-wise, to a cold solution
of arenediazonium chloride (prepared by diazotizing aniline derivatives (10 mmol) dis-
solved in hydrochloric acid (6 M, 10 mL) with a solution of sodium nitrite (0.73 g, 10 mmol)
in water (5 mL)). After the complete addition of the diazonium salt, the reaction mixture was
stirred for a further 30 min in an ice bath. The solid that separated was filtered off, washed
with water and finally recrystallized from DMF to give products proven to be identical in
all respects (mp, mixed mp and IR spectra) with compounds 5a–h which obtained from re-
action of 3 with 4a–d. 2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-
1H-pyrazol-4-yl)methylene)hydrazinyl)-5-(2-phenylhydrazono)thiazol-4(5H)-one (8a)

Yellow solid; (61% yield); mp 160–162 ◦C (Ethanol); IR (KBr): v/cm−1 3433, 3253
(2NH), 3051, 2922 (CH), 1685 (C=O), 1619 (C=C), 1595 (C=N); 1H-NMR (DMSO-d6): δ 2.53
(s, 3H, CH3), 7.60–8.64 (m, 14H, Ar-H), 8.84 (s, 1H, pyrazole-H5), 9.39 (s, 1H, CH-aliphatic,
CH=N), 11.34, 11.64 (s, 2H, 2NH); 13C-NMR (DMSO-d6): δ 9.8, 117.7, 119.9, 123.5, 126.2,
127.7, 128.4, 129.3, 131.6, 133.5, 135.9, 139.7, 143.3, 143.6, 147.9, 170.2; MS m/z (%): 637 (M+,
25). Anal. Calcd for C28H21BrN10OS (637.56): C, 53.77; H, 3.38; N, 22.39. Found C, 53.82; H,
3.33; N, 22.32%.

2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-5-(2-(p-tolyl)hydrazono)thiazol-4(5H)-one (8b)

Yellow solid; (82% yield); mp 175–177 ◦C (Ethanol); IR (KBr): v/cm−1 3432, 3251
(2NH), 3101, 2930 (CH), 1697(C=O), 1610(C=C), 1600 (C=N); 1H-NMR (DMSO-d6): δ 2.46 (s,
3H, CH3), 2.67 (s, 3H, CH3), 7.37–8.56 (m, 13H, Ar-H), 8.81 (s, 1H, pyrazole-H5), 9.30 (s, 1H,
CH-aliphatic, CH=N), 11.55 (s, broad, 2H, 2NH); 13C-NMR (DMSO-d6): δ 9.6, 117.7, 119.9,
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123.5, 126.2, 127.7, 128.4, 129.3, 131.6, 133.5, 135.9, 139.7, 143.3, 143.6, 147.9, 170; MS m/z (%):
639 (M+, 57). Anal. Calcd for C29H23BrN10OS (639.54): C, 54.46; H, 3.63; N, 21.90 Found
C, 54.52; H, 3.59; N, 21.82%. 2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-
phenyl-1H-pyrazol-4-yl)methylene)hydrazinyl)-5-(2-(4-chlorophenyl)hydrazono)thiazol-4
(5H)-one(8c)

Yellow solid; (73% yield); mp 181–183 ◦C (Ethanol); IR (KBr): v/cm−1 3425, 3166
(2NH), 3110, 2974 (CH), 1697 (C=O), 1610(C=C), 1592 (C=N); 1H-NMR (DMSO-d6): δ

2.53 (s, 3H, CH3), 7.51–8.65 (m, 13H, Ar-H), 8.84 (s, 1H, pyrazole-H5), 9.31 (s, 1H, CH-
aliphatic, CH=N), 11.59, 11.73 (s, 2H, 2NH); 13C-NMR (DMSO-d6): δ 9.6, 117.7, 119.9, 123.5,
126.2,127.7, 128.4, 129.3, 131.6, 133.5, 135.9, 139.7, 143.3, 143.6, 147.9, 170; MS m/z (%):659
(M+, 73). Anal. Calcd for C28H20BrClN10OS (659.95): C, 50.96; H, 3.05; N, 21.22. Found C,
50.91; H, 3.01; N, 21.17%.

2-(2-(3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-5-(2-(4-nitrophenyl)hydrazono)thiazol-4(5H)-one (8d)

Yellow solid; (68% yield); mp 152–154 ◦C (Ethanol); IR (KBr): v/cm−1 3423, 3265
(2NH), 3125, 2970 (CH), 1705 (C=O), 1620(C=C), 1600 (C=N); 1H-NMR (DMSO-d6): δ 2.50
(s,3H, CH3), 7.45-8.57 (m, 13H, Ar-H), 8.77 (s, 1H, pyrazole-H5), 9.29 (s, 1H, CH-aliphatic,
CH=N), 11.56 (s, broad, 2H, 2NH); 13C-NMR (DMSO-d6): δ 9.8, 117.9, 119.9, 123.7, 126.4,
127.7, 128.4, 129.3, 131.6, 133.5, 135.9,139.7, 143.5, 143.8, 147.9, 170.4; MS m/z (%): 670 (M+,
100). Anal. Calcd for C28H20BrN11O3S (670.51): C, 50.16; H, 3.01; N, 22.98 Found C, 50.12;
H, 2.97; N, 22.92%.

Alternate method for 8a–d: Synthesis of 2-(2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-
triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)hydrazinyl)thiazol-4(5H)-one (9) To a
mixture of thiosemicarbazone 3 (4.8 g, 10mmol) and anhydrous sodium acetate (0.33 g, 4
mmol) in EtOH (20 mL), ethyl chloroacetate (1.22 g, 10 mmol) was added, and then mixture
was refluxed for 6–8 h (monitored by TLC), and then left to cool. The solid product was
filtered off, washed with water and recrystallized from AcOH to afford the thiazolone
derivative 9 as brown solid (75% yield); mp 222–224 ◦C (AcOH); IR (KBr): v/cm−1 3423
(NH), 3129, 2917 (CH), 1712(C=O), 1620(C=C), 1600 (C=N); 1H-NMR (DMSO-d6): δ 2.50 (s,
3H, CH3), 4.2(s, 2H, CH2), 7.45–8.57 (m, 9H, Ar-H), 8.72 (s, 1H, pyrazole-H5), 9.29(s, 1H,
CH-aliphatic, CH=N), 11.56 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6, 36.4, 119.6, 123.5,
127.2, 128.4, 129.3, 131.6, 133.5, 135.9, 139.7, 143.3, 143.6, 158.3, 176.4; MS m/z (%): 521 (M+,
100). Anal. Calcd for C22H17BrN8OS (521.40): C, 50.68; H, 3.29; N, 21.49 Found C, 50.73; H,
3.26; N, 21.45%.

Coupling of thiazole 9 with arenediazonium chlorides: A solution of 9 (0.10 g, 2 mmol)
in ethanol (20 mL), cooled to 0–5 ◦C in an ice bath, was added portion-wise to a cold
solution of arenediazonium chloride [prepared by diazotizing aniline derivatives (2 mmol)
dissolved in hydrochloric acid (6 M, 2 mL) with a solution of sodium nitrite (0.14 g, 2 mmol)
in water (3 mL)]. After the complete addition of the diazonium salt, the reaction mixture
was stirred for a further 30 min in an ice bath. The solid that separated was filtered off,
washed with water and finally recrystallized from EtOH to give products proved to be
identical in all respects (mp, mixed mp and IR spectra) with compounds 8a–d, obtained
from reaction of 3 with 7a–d.

2-(2-((3-(1-(4-bromophenyl)-4-methyl-1H-1,2,3-triazol-5-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-4-phenylthiazole (13a)

Brown solid; (68% yield); mp 210–112 ◦C (Acetic acid); IR (KBr): v/cm−1 3429 (NH),
3025, 2922 (CH), 1600 (C=N); 1H-NMR (DMSO-d6): δ 2.49 (s,3H, CH3), 7.26–8.48 (m, 14H,
Ar-H), 8.67(s,1H, thazole-H5), 8.81(s, 1H, pyrazole-H5), 8.94(s, 1H, CH-aliphatic, CH=N),
11.52 (s, 1H, NH); δ 9.6, 119.6, 123.5, 126.2, 128.4, 129.3, 131.6, 133.5, 139.7, 143.3, 143.6,
147.9, 165.3; MS m/z (%):581 (M+, 73). Anal. Calcd for C28H21BrN8S (581.50): C, 57.83; H,
3.64; N, 19.27 Found C, 57.92; H, 3.59; N, 19.22%.

2-(2-((3-(1-(4-bromophenyl)-4-methyl-1H-1,2,3-triazol-5-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-4-(4-chlorophenyl)thiazole (13b)
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Brown solid; (68% yield); mp 228–230 ◦C (Acetic acid); IR (KBr): v/cm−1 3435 (NH),
3029, 2927 (CH), 1610 (C=N); 1H-NMR (DMSO-d6): δ 2.59(s,3H, CH3), 7.23–8.49 (m, 13H,
Ar-H), 8.76(s,1H, thazole-H5), 8.87(s, 1H, pyrazole-H5), 8.98 (s, 1H, CH-aliphatic, CH=N),
11.71 (s, 1H, NH); δ 9.8, 120.0, 123.7, 126.2, 128.4, 129.3, 131.6, 133.5, 139.7, 143.3, 143.6,
147.9, 165.5; MS m/z (%): 615 (M+, 30). Anal. Calcd for C28H20BrClN8S (615.94): C, 54.60;
H, 3.27; N, 18.19 Found C, 54.69; H, 3.25; N, 18.12%.

2-(2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)
methylene)hydrazinyl)-4-(pyridin-2-yl)thiazole (14)

Yellow solid; (62% yield); mp 192–194 ◦C (Acetic acid); IR (KBr): v/cm−1 3395 (NH),
3029, 2921 (CH), 1600 (C=N); 1H-NMR (DMSO-d6): δ 2.49 (s,3H, CH3), 7.37–8.59 (m, 8H,
Ar-H), 8.72 (s,1H, thazole-H5), 8.91(s, 1H, pyrazole-H5), 9.01(s, 1H, CH-aliphatic, CH=N),
11.52 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6, 119.6, 123.5, 126.2, 128.4, 129.3, 131.6,
133.5, 135.9, 139.7, 143.3, 143.6, 147.9, 165.3; MS m/z (%): 582 (M+, 72). Anal. Calcd for
C27H20BrN9S (582.48): C, 55.67; H, 3.46; N, 21.64 Found C, 55.74; H, 3.42; N, 21.61%.

2-(2-(2-((3-(1-(4-bromophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-
yl)methylene)hydrazinyl)thiazol-4-yl)-3H-benzochromen-3-one (15)

Yellow solid; (69% yield); mp 122–224 ◦C (EtOH); IR (KBr): v/cm−1 3384 (NH), 3027,
2915 (CH), 1605 (C=N); 1H-NMR (DMSO-d6): δ 2.50 (s,3H, CH3), 7.41–8.45 (m, 15H, Ar-H),
8.49 (s, 1H, coumarine-H4), 8.81 (s,1H, pyrazole-H5), 8.93 (s, 1H, thiazole-H5), 9.40 (s, 1H,
CH-aliphatic, CH=N), 11.53 (s, 1H, NH); 13C-NMR (DMSO-d6): δ 9.6, 114.3, 115.6, 123.5,
126.2, 128.4, 129.3, 131.5, 133.5, 135.9, 139.7, 143.3, 143.6, 147.9, 151.2, 162.9, 172.2; MS m/z
(%): 699 (M+, 39). Anal. Calcd for C35H23BrN8O2S (699.59): C, 60.09; H, 3.31; N, 16.02
Found C, 60.17; H, 3.27; N, 15.96%.

4.2. Computational Studies

In this work, the binding of newly synthesized compounds to Rho6 was theoretically
investigated using a computer-based docking approach. The X-ray crystal structure of
the target Rho6 is retrieved from the RCSB Protein Data Bank web server (www.rcsb.org/
pdb/) [35]. The two-dimensional chemical structures of the compounds are drawn using
Chem Draw Ultra 0.7, and then converted to SDF format using Open Babel 2.4.1 tool [36].
The docking area is selected by generating a grid box centered at x, y and z coordinates.
The in silico docking study between the newly compounds and the binding site pocket of
the target is carried out using a PyRx 8.0 tool [37]. In a docking simulation, the compounds
are assumed to be flexible, and the docking tool is allowed to rotate all the rotatable bonds
of the compounds to obtain the best and optimized conformer of the docked molecule.
The Lamarckian genetic algorithm (LGA) is used as a scoring function to calculate the
different conformers of each docked compound [38]. Prediction of pharmacokinetics
and physicochemical parameters of the target compounds plays an integral role in drug
discovery [9]. The evaluation of drug-likeness properties for all compounds is performed
using the SwissADME and Mol inspiration web-based servers [39,40]. These tools are used
to evaluate the compounds based on Lipinski’s rule of five (RO5), which states that an
active oral drug should qualify the following parameters: the molecular mass MW should
be ≤500 g/mol; the logarithm of partition coefficient between n-octanol and water log
P should be <5; the number of hydrogen bond acceptors should be nOH 2.0–20.0; the
number of hydrogen bond donors nOHNH should be 0.0–6.0; and the number of rotatable
bonds should be ≤10 [41]. Compounds violating more than one of these rules may have
bioavailability problems.

4.3. Biological Activity

The cytotoxic evaluation of the synthesized compounds was carried out at the Regional
Center for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt, according to
the reported methods [42,43].

Supplementary Materials: Figure S1: 2D and 3D representations of Rho6-compound complexes.

www.rcsb.org/pdb/
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