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OBJECTIVE

Children exposed to gestational diabetes mellitus (GDM) or maternal obesity in
utero have an increased propensity to develop obesity. Little is known about the
mechanisms underlying this phenomenon. We aimed to examine relationships
between exposure to GDM or maternal obesity and daily energy intake (El), brain
responses to food cues within reward regions, and adiposity in children.

RESEARCH DESIGN AND METHODS

Participants were 159 children ages 7-11 years. Repeated 24-h recalls were con-
ducted to assess mean daily El. A subset of children (n = 102) completed a food
cue task in the MRI scanner. A priori regions of interest included the orbital front-
al cortex (OFC), insula, amygdala, ventral striatum, and dorsal striatum. Adiposity
measurements, BMI z-scores, percent body fat, waist-to-height ratio (WtHR), and
waist-to-hip ratio (WHR) were assessed.

RESULTS

Exposure to GDM was associated with greater daily El, and children exposed to
GDM diagnosed before 26 weeks’ gestation had greater OFC food cue reactivity.
Children exposed to GDM also had larger WHR. Results remained significant after
adjusting for child’s age and sex, maternal education and race/ethnicity, maternal
prepregnancy BMI, and child’s physical activity levels. Furthermore, children who
consumed more daily calories had greater WHR, and the relationship between
GDM exposure and WHR was attenuated after adjustment for daily El. Prepreg-
nancy BMI was not significantly related to daily El or food cue reactivity in reward
regions. However, prepregnancy BMI was significantly related to all adiposity
measurements; results remained significant for BMI z-scores, WtHR, and WHR
after controlling for child’s age and sex, maternal education and race/ethnicity,
maternal GDM exposure, and child’s physical activity levels.

CONCLUSIONS

Exposure to GDM in utero, in particular before 26 weeks’ gestation, is associated
with increased El, enhanced OFC food cue reactivity, and increased WHR. Future
study with longitudinal follow-up is merited to assess potential pathways of daily
El and food cue reactivity in reward regions on the associations between GDM ex-
posure and childhood adiposity.
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Fetal Programming of Food Intake

The rate of childhood obesity has more
than tripled over the past four decades,
increasing from 5% in 1978 to 18.5% in
2016 (1). Pediatric obesity has a high
prevalence of persistence into adulthood,
increasing the risk for type 2 diabetes,
cardiovascular disease, and cancer (2-4).
Therefore, risk factors contributing to
childhood obesity are important to iden-
tify to guide early interventions and to
mitigate these alarming trends.

Children exposed to gestational dia-
betes mellitus (GDM) or maternal obesity
in utero have an increased propensity
to develop obesity (5,6). However, the
mechanisms underlying the relationship
between fetal exposure to GDM and/or
maternal obesity and increased obesity
risk are poorly understood. Excessive food
intake plays a central role in the develop-
ment of obesity. Thus, increased energy in-
take (EI) may be one factor contributing to
an increased risk for children exposed to
GDM and/or maternal obesity to develop
obesity, a hypothesis that we set out to
test in the current study.

A growing body of research indicates
that food intake is the result of a dynamic
interplay among homeostatic and reward
systems (7,8). A key neural region that
supports the homeostatic system is the
hypothalamus, which is critical for meta-
bolic regulation of hunger and satiety.
Key neural regions in the reward system
include the striatum, amygdala, insula,
and orbital frontal cortex (OFC). These re-
ward regions are critical for incentive mo-
tivational effects of food rewards. The
neuroscience of the obesity field has
made substantial progress in understand-
ing brain mechanisms underlying homeo-
static and reward regulation of eating
and how dysfunctions in these systems
contribute to obesity (9—14). To date, ac-
cumulating evidence suggests two major
central nervous system contributors to
obesity: 1) altered hypothalamic structure
and function (15-22) and 2) altered re-
sponses (hyper- or hyporesponsiveness)
to palatable food or food cues potenti-
ated by the brain’s reward network
(23-42). We do not yet know how abnor-
malities in brain reward systems contrib-
ute to obesity risk in children exposed to
GDM or maternal obesity. It is possible
that alterations in the brain reward sys-
tem induced by exposure to GDM or
maternal obesity during early fetal devel-
opment may lead to increases in food
intake, resulting over time in obesity.

Animal and human studies have sug-
gested that intrauterine exposure to ma-
ternal diabetes or maternal obesity leads
to abnormal organization of the hypo-
thalamic feeding circuits, and this leads
to increased food intake and predisposes
offspring to obesity (43-48). Further-
more, in a human imaging study (48),
children exposed to GDM before 26
weeks of gestation exhibited altered
hypothalamic activity compared with un-
exposed children, suggesting that the tim-
ing and/or severity of GDM exposure
played an important role in the develop-
ment of homeostatic circuitry. Little is
known about whether GDM or maternal
obesity exposure is related to altered ac-
tivation in the brain’s reward systems.

We hypothesized that intrauterine ex-
posure to GDM or maternal obesity may
be associated with greater daily El and
food cue reactivity in reward regions,
which in turn leads to greater adiposity in
children (Fig. 1). While formal testing of
our hypothesis will require longitudinal
studies, in this study, we conducted data
analyses in a well-characterized cross-sec-
tional cohort to provide preliminary data
to examine our conceptual model.

RESEARCH DESIGN AND METHODS

Participants

Children between the ages of 7 and 11
years, who were born at a Kaiser Perma-
nente Southern California (KPSC) hospital,
with documented exposure to maternal
GDM or normal glucose levels during
pregnancy were recruited for the Brain-
Child Study (48). GDM-exposed children
were recruited first, then unexposed chil-
dren were recruited by frequency match-
ing with GDM-exposed participants on
the child’s age and sex and maternal eth-
nicity/race. The KPSC electronic medical
record (EMR) was used as a source for re-
cruiting potential participants. Children
were excluded if they had a history of
medical or psychiatric disorders, used
medications known to alter metabolism,
had contraindications or complications
preventing brain MRI scan acquisition, or
were left handed to avoid potential
effects of handedness on the brain find-
ings, which could introduce variability
into the results. As well, children exposed
to preexisting maternal diabetes were
excluded by ICD-9-CM diagnosis code
250 and/or use of antidiabetic medica-
tions prior to pregnancy. Neighborhood
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household income and maternal education
at birth were obtained from the EMR.

Each participating institutional review
board approved this study (University of
Southern California [USC] # HS-14-00034
and KPSC # 10282). Participants’ parents
gave written informed consent, while
children provided informed assent.

Maternal Exposure

Diagnosis of GDM was based on labora-
tory glucose values confirming a plasma
glucose level =200 mg/dL from the 50-g
glucose challenge test or at least two
plasma glucose values meeting or ex-
ceeding the following values on the 100-g
or 75-g oral glucose tolerance test: fast-
ing, 95 mg/dL; 1 h, 180 mg/dL; 2 h, 155
mg/dL; and 3 h, 140 mg/dL (49). Gesta-
tional age at GDM diagnosis was calcu-
lated using the date of the first glucose
test result that met the GDM diagnosis
criteria, date of delivery, and gestational
age at delivery available in the EMR.
KPSC follows the American Congress of
Obstetricians and Gynecologists guide-
lines for screening for GDM (50). Mater-
nal prepregnancy BMI was calculated
from maternal height and weight meas-
urements closest to last menstrual period
from the EMR.

In-Person Visits

This study included two in-person visits.
An overview of the study design is pre-
sented in Supplementary Fig. 1.

First Visit

The first visit occurred at the Clinical Re-
search Unit of the USC Diabetes and
Obesity Research Institute. Adiposity
measurements, including BMI, BMI z-
scores (age- and sex-specific SD scores),
percent body fat (%BF), waist circumfer-
ence, waist-to-hip ratio (WHR), and
waist-to-height ratio (WtHR) were as-
sessed. Details of adiposity assessment
are included in the Supplementary
Materials. Tanner stage was assessed by
physical examination and/or by a vali-
dated sex-specific assessment question-
naire for children and parents. Sixty-two
children had both self-report and phys-
ician evaluations of Tanner staging, with
a correlation coefficient of 0.86.

Dietary Intake. In-person 24-h dietary
recalls were administered by trained staff
to measure daily El. The average number
of recalls per person was two. Three
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Figure 1—Proposed pathways for the link between maternal GDM/obesity exposure and in-

creased adiposity in children.

participants did not have dietary intake
data, leaving a sample size for dietary in-
take of n = 156. A standardized protocol
that was based on the “multiple pass”
method was used for dietary recall in
which a face-to-face interview with the
child (assisted with his/her parent) was
performed. The multiple pass method is
an attempt to limit the extent of underre-
porting (51). Participants were asked to
provide information on all foods, drinks,
and dietary supplements consumed in
the past 24 h; details such as time of day,
source and type of food, portion size, and
preparation method were captured to
provide a comprehensive report of diet-
ary intake. Nutrition data were analyzed
using the Nutrition Data System for Re-
search, a program developed by the
Nutrition Coordinating Center at the Uni-
versity of Minnesota (52). Mean daily El
was derived and used in this study. Data
from dietary recalls were manually
checked for quality and outliers. We ex-
cluded dietary recall records that ex-
ceeded 3 SDs of the expected mean
value on the basis of a regression of body
weight versus daily El (53,54). Using this
method, two recalls were excluded. After
removing outliers, repeated dietary re-
calls were averaged to estimate mean
daily EI.

Physical Activity. Physical activity was
assessed using the 3-Day Physical Activity
Recall (55,56), and moderate to vigorous
physical activity (MVPA) was the physical
activity variable included in this study.
MVPA was classified on the basis of the
activity’s MET determined by the com-
pendium of energy expenditure (55,56).
Activities with METs =3 were classified
as MVPA. The final output was average
minutes per day spent in MVPA (square
root transformed as a result of the
skewed distribution).

Second Visit

The second visit occurred at the USC
Dana and David Dornsife Cognitive Neu-
roimaging Center. Height, weight, and
dietary intake data were collected again
during this visit. Participants were trained
on a mock scanner to familiarize them
with the MRI procedures in a Siemens
MAGNETOM Prisma Fit 3T MRI scanner
with a 20-channel head coil. All partici-
pants were scanned between 8:00 A.m.
and 10:00 a.m. after a 12-h overnight
fast, which helped to provide a standar-
dized time since last meal intake. Partici-
pants completed a food cue task in the
scanner while brain signal was simultan-
eously collectedduring blood-oxygen-
level-dependent (BOLD) functional
scanning. A high-resolution structural
image was also collected to be used
for registration. Fifty-three of these
participants’ food cue data were in-
cluded in a prior report (57). Imaging
data acquisition parameters can be
found in Luo et al. (57). Details of
food cue task and imaging analysis
are included in the Supplementary
Materials.

Statistical Analysis

Maternal Exposure and Food Intake
Generalized linear models (GLMs) were
used to examine relationships between
exposure to GDM or maternal obesity
and mean daily El. We started models
without any adjustment of covariates
(model 0), then with adjustment for
demographic variables, including the
child’s age and sex, maternal education
(categorical variable college or not), and
maternal race/ethnicity (categorical vari-
able Hispanic or not) (model 1), followed
by additional adjustment for maternal
other exposure (i.e., prepregnancy BMI
as a covariate for GDM models and GDM
as a covariate for prepregnancy BMI
models) (model 2), and then further

Luo and Associates

adjustment for child’s physical activity lev-
el (i.e., MVPA) (model 3). Since >90% of
children were prepubertal, we did not
control for puberty status in our models.

GDM exposure was modeled in two
ways: 1) yes or no to exposure and 2) GDM
diagnosed at =26 weeks (early exposed),
>26 weeks (late exposed), and unexposed
while following the same temporal cutoff
values from prior studies (48,58). Prepreg-
nancy BMI was modeled as a continuous
variable (in every 5 units) and used as an in-
dex of in utero exposure to varying levels of
maternal obesity. Because a prior study
showed sex-specific effects of prenatal ex-
posure to impaired glucose tolerance on
food intake (59), we further tested for inter-
actions between GDM/maternal obesity ex-
posures and child’s sex on food intake.
Analysis was stratified by sex if the inter-
action was found to be significant.

Matemal Exposure and Food Cue Reactivity
Region-of-Interest  Analysis. Anatomical,
bilateral a priori regions of interest (ROls)
of the OFC, insula, amygdala, and ventral
and dorsal striatum were defined using
the Harvard-Oxford Cortical and Subcor-
tical Structural Atlas, with probability
threshold =50%. Percent signal change
in each ROI was extracted from food ver-
sus non-food contrasts using Featquery.
GLMs were used to examine relationships
between maternal exposure and food
cue reactivity in each ROI (unadjusted for
multiple comparisons) using the same
analysis approach as described above.

Whole-Brain  Analysis. Whole-brain ex-
ploratory analysis was performed to
examine relationships between maternal
exposure to GDM or maternal obesity
and food cue reactivity with and without
covariates in the models. All whole-brain
analyses were corrected for multiple
comparisons using Z >3.1 and P < 0.05.

Matemal Exposure and Adiposity

GLMs were used to investigate relation-
ships between exposure to GDM or ma-
ternal obesity and adiposity measures.
The same analysis approach as described
above was used.

Daily EI, Brain Food Cue Reactivity, and
Adiposity

Regression analyses were performed to
examine relationships among daily El,
brain food cue reactivity, and adiposity
measures. All analyses were performed
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using SAS 9.4 statistical software (SAS In-
stitute, Cary, NC). Results with P < 0.05
were considered significant.

RESULTS

Participant Characteristics

One hundred fifty-nine children were en-
rolled in this study, 0.6% were under-
weight, 56.6% were of normal weight,
14.5% were overweight, and 28.3% were
obese. GDM-exposed children were
younger than unexposed children (details
see Table 1). Groups were not significantly
different in other demographic variables
except for maternal education (Table 1).

Table 1—Participant characteristics

A subset of children (n = 102) was in-
cluded in the final imaging data analysis,
and their characteristics are reported in
Supplementary Table 1. There were no sig-
nificant differences in any demographic
variables between children included in the
imaging analysis and those excluded
(Supplementary Table 2).

Prenatal Exposures and Child Daily EI
Group comparison results are presented in
mean group difference + SE throughout.
GDM-exposed children consumed 1,850.9 +
41.31 daily calories, and unexposed children
consumed 1,664.25 + 45.20 daily calories;
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the group difference was significant (141.65
+ 61.23 kcal/day; P = 0.022). The group dif-
ferences became more pronounced after
controlling for demographic covariates
(GDM: 1,838.81 + 42.63 kcal/day; unex-
posed: 1,661.92 + 45.51 kcal/day; group
difference: 176.89 * 62.38 kcal/day; P =
0.005). Additional adjustment of prepreg-
nancy BMI had minimal effects on results
(GDM: 1,838.23 + 42.88 kcal/day; unex-
posed: 1,662.68 + 45.84 kcal/day; group
difference: 175.56 + 63.00 kcal/day; P =
0.006). Results remained significant after
additional adjustment of child MVPA
(GDM: 1,832.82 * 43.15 kcal/day;

Characteristic Overall (N = 159) GDM* (n = 87) Unexposed (n = 72) P value**
Child
Age (years) 8.5+ 0.96 8.4 + 0.84 8.7 + 1.05 0.02
Sex 0.88
Female 96 (60.4) 53 (60.9) 43 (59.7)
Male 63 (39.6) 34 (39.1) 29 (40.3)
Tanner staging 0.86
1 144 (90.6) 80 (92) 64 (88.9)
2 10 (6.3) 5 (5.7) 5 (6.9)
3 4 (2.5) 2 (2.3) 2 (2.8)
4 1 (0.6) 0 (0.0) 1 (1.4)
BMI (kg/m?) 19.1 + 4.19 19.5 + 4.71 18.5 + 3.40 0.13
BMI z-score 0.8 £ 1.10 0.9 £ 1.15 0.7 £ 1.03 0.21
Total body fat (%)*** 25.4 + 8.73 26.5 + 9.49 24.2 + 7.57 0.11
Waist circumference (cm) 64.9 + 11.15 66.0 + 12.15 63.6 £ 9.72 0.18
Hip circumference (cm) 73.9 £9.72 74.2 + 10.50 73.5 + 8.75 0.65
Height (cm) 132.3 £ 8.72 131.5 + 8.04 133.3 £ 9.44 0.21
WHR 0.87 = 0.06 0.89 * 0.06 0.86 + 0.05 0.01
WtHR 0.49 £ 0.07 0.50 + 0.08 0.48 £ 0.06 0.03
El (kcal/day) 1,741.4 + 386.15 1,664.2 + 367.23 1,805.9 + 391.83 0.02
MVPA (min/day) 142.03 + 97.15 136.23 + 98.21 146.69 + 96.61 0.31
OFC food cue reactivity (% signal change) 0.024 + 0.15 —0.004 £ 0.15 0.05 + 0.15 0.07
Maternal
Prepregnancy BMI group 0.85
Normal weight (<25 kg/m?) 39 (24.5) 20 (23.0) 19 (26.4)
Overweight (=25 and <30 kg/m?) 48 (30.2) 26 (29.9) 22 (30.6)
Obese (=30 kg/m?) 72 (45.3) 41 (47.1) 31 (43.1)
Race/ethnicity 0.24
Hispanic 92 (57.9) 55 (63.2) 37 (51.4)
Non-Hispanic Black 21 (13.2) 9 (10.3) 12 (16.7)
Non-Hispanic White 32 (20.1) 14 (16.1) 18 (25.0)
Other 14 (8.8) 9 (10.3) 5 (6.9)
Income group at birth ($) 0.56
<30,000 25 (15.7) 14 (16.1) 11 (15.3)
30,000-50,000 48 (30.2) 24 (27.6) 24 (33.3)
50,000-70,000 46 (28.9) 29 (33.3) 17 (23.6)
70,000-90,000 22 (13.8) 12 (13.8) 10 (13.9)
=90,000 16 (10.1) 8 (9.2) 8 (11.1)
Missing 2 (1.3) 0 (0.0) 2 (2.8)
Education 0.01
High school or less 35 (22.0) 27 (31.0) 8 (11.1)
Some college 50 (31.4) 26 (29.9) 24 (33.3)
College and postgraduate 72 (45.3) 34 (39.1) 38 (52.8)
Unknown 2 (1.3) 0 (0.0) 2 (2.8)

Data are mean * SD or n (%). Boldface indicates significance at P < 0.05. *Among the 87 GDM-exposed children, 29 were diagnosed =26 weeks
and 58 diagnosed >26 weeks. **Categorical variables by Xz or Fisher exact test, continuous variables by t test. ***One child is missing %BF.
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Figure 2—A: Adjusted mean daily El in the unexposed group, late-exposed group (GDM diag-
nosed >26 weeks), and early-exposed group (GDM diagnosed =26 weeks) (n= 71 for unex-
posed group, n = 29 for early-exposed group, and n = 56 for late-exposed group). Three
participants had missing physical activity data, leaving n = 69 for unexposed group, n = 29 for
early-exposed group, and n = 55 for late-exposed group. Both the early-exposed and the late-
exposed groups were significantly different from the unexposed group in daily El. B: Brain ROI
analysis demonstrates adjusted mean % signal change in the OFC responses to food vs. non-
food cues in the unexposed group, late-exposed group, and early-exposed group (n = 49 for
unexposed group, n = 13 for early-exposed group, and n = 40 for late-exposed group). Three
participants had missing physical activity data, leaving n = 47 for unexposed group, n = 13 for
early-exposed group, and n = 39 for late-exposed group. The early-exposed group was signifi-
cantly different from the unexposed group in the OFC food cue reactivity. However, GDM ex-
posure as a whole was not significantly different from the unexposed group in the OFC
responses to food vs. non-food cues. Covariates included child’s age and sex, maternal educa-

least square.

unexposed: 1,667.68 + 46.47 kcal/day;
group difference: 165.13 *+ 63.89 kcal/
day; P = 0.011). When we limited the
data analysis to children who had quality
imaging data, GDM exposure remained
significantly associated with higher El
(GDM: 1,826.95 + 50.32 kcal/day; unex-
posed: 1,655.12 + 50.81 kcal/day; group
difference: 171.83 + 71.75 kcal/day; P =
0.02) (Supplementary Table 3). The early
GDM-exposed group and late GDM-ex-
posed group had greater El than unex-
posed children (early exposed: 1,859.79 +
76.26 kcal/day; late exposed: 1,819.95 +
52.63 kcal/day; unexposed: 1,666.71 +
46.65 kcal/day; early exposed vs. unex-
posed: 193.08 + 91.31 kcal/day, P =
0.036; late exposed vs. unexposed:
153.24 + 69.79 kcal/day, P = 0.030) (Fig.
2A) after adjusting for demographic varia-
bles as well as prepregnancy BMI and
child MVPA. Prepregnancy BMI was not
significantly associated with daily El in all
models (all P > 0.1). Detailed results are
presented in Table 2.

Prenatal Exposures and Child Brain
Reward Responses to Food Cues

ROI Analysis

GDM exposure was marginally associated
with greater OFC responses to food cues
(0.054 + 0.030% signal change; P =
0.071). Adjusting for demographic

tion, maternal race/ethnicity, maternal prepregnancy BMI, and child’s MVPA. *P < 0.05. LS,

variables as well as prepregnancy BMI
and child MVPA attenuated the results
(all

P > 0.1) (Table 3). The early GDM-ex-
posed group versus the unexposed group
had greater OFC food cue reactivity
(0.115 + 0.047% signal change; P =
0.015), and the results remained signifi-
cant after controlling for demographic
covariates (0.120 + 0.049% signal
change; P = 0.016). Additional adjust-
ment for prepregnancy BMI had minimal
effects on the results (0.119 + 0.050% sig-
nal change; P = 0.019). Results remained
significant after additional adjustment for

Luo and Associates

child MVPA (0.115 + 0.051% signal
change; P = 0.026) (Fig. 2B). The late
GDM-exposed group was not different
from unexposed children in all models
(all P > 0.1). We did not observe signifi-
cant group differences in other brain
ROIs (all P > 0.1) (Supplementary Tables
4-7). Prepregnancy BMI was not related
to food cue reactivity in any of the brain
ROIs (all P > 0.1) (Table 3 and
Supplementary Tables 4-7).

Whole-Brain Analysis

As expected, brain regions involved in re-
ward signaling, including the OFC, insula,
amygdala, dorsal striatum, and ventral stri-
atum, were among those that showed
greater responses to food vs. non-food
cues in children (Supplementary Fig. 2
and Supplementary Table 8). We did not
observe significant relationships between
maternal exposure (i.e., GDM and mater-
nal obesity separately) and food cue re-
activity in  the whole-brain analysis,
adjusted for multiple comparisons across
the whole brain.

Prenatal Exposures and Adiposity

GDM exposure was associated with
greater WtHR (0.024 + 0.011; P = 0.028)
and WHR (0.023 £ 0.009; P = 0.012). Re-
sults remained significant for WHR (0.019
+ 0.009; P = 0.038) but were attenuated
for WtHR (0.019 + 0.011; P = 0.080) after
adjusting for demographic variables, pre-
pregnancy BMI, and child MVPA. There
were no significant group differences in
BMI z-scores or %BF in all models (all P >
0.1). The early GDM-exposed children
had a larger WtHR (0.036 + 0.015; P =
0.018) and WHR (0.043 + 0.012; P <

Table 2—Relationships between prenatal exposures and daily EI in children

GDM vs. unexposed Prepregnancy BMI

Model B (SE)* P value B (SE)* P value
Model 0 141.65 (61.23) 0.022 5.04 (20.84) 0.809
Model 1 176.89 (62.38) 0.005 10.55 (21.21) 0.62
Model 2 175.56 (63.00) 0.006 3.84 (20.89) 0.854
Model 3 165.13 (63.89) 0.011 2.52 (20.98) 0.905

Model 0, unadjusted; model 1, adjusted for child’s age and sex, maternal education, and
maternal race/ethnicity; model 2, model 1 + maternal other exposure (prepregnancy BMI
for GDM or GDM status for prepregnancy BMI); model 3, model 2 + child’s physical activity
level. Boldface indicates significance at P < 0.05. *Regression coefficient (SE) from linear re-
gression models. For GDM-related results, a positive 3 means greater daily El in the GDM
group than in the unexposed group, whereas a negative 3 means the opposite data pattern.
For prepregnancy BMl-related results, a positive 3 means a positive relationship between
prepregnancy BMI and daily El, whereas a negative 3 means a negative relationship.
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Table 3—Relationships between prenatal exposures and OFC responses to food
cues (relative to non-food cues)

GDM vs. unexposed Prepregnancy BMI

Model B (SE)* P value B (SE)* P value
Model 0 0.054 (0.030) 0.071 0.006 (0.011) 0.611
Model 1 0.052 (0.031) 0.102 0.005 (0.011) 0.663
Model 2 0.051 (0.032) 0.106 0.005 (0.011) 0.693
Model 3 0.050 (0.032) 0.124 0.005 (0.012) 0.683

Model 0, unadjusted; model 1, adjusted for child’s age and sex, maternal education, and
maternal race/ethnicity; model 2, model 1 + maternal other exposure (prepregnancy BMI
for GDM or GDM status for prepregnancy BMI); model 3, model 2 + child’s physical activity
level. *Regression coefficient (SE) from linear regression models. For GDM-related results, a
positive B means greater OFC responses to food vs. non-food cues in the GDM group than
in the unexposed group, whereas a negative 3 means the opposite data pattern. For pre-
pregnancy BMlI-related results, a positive  means a positive relationship between prepreg-
nancy BMI and OFC responses to food vs. non-food cues, whereas a negative 3 means a

negative relationship.

0.001) than unexposed children, and re-
sults remained significant for WHR (0.035 +
0.013; P = 0.008) but not WtHR (0.021 +
0.016; P > 0.1) after controlling for
demographic variables, prepregnancy
BMI, and child MVPA.

Prepregnancy BMI was associated with
BMI z-scores (3 = 0.17, SE 0.06; P =
0.004), %BF (B = 0.97, SE 0.46; P =
0.04), WtHR (B = 0.012, SE 0.004;
P = 0.001), and WHR (B = 0.0085, SE
0.003; P = 0.005). Results remained sig-
nificant for BMI z-scores (B = 0.16, SE
0.06; P = 0.007), WtHR (B = 0.011, SE
0.004; P = 0.003), and WHR (B = 0.008,
SE 0.003; P = 0.012) and were attenu-
ated for %BF (B = 0.89, SE 0.47; P =
0.06) after adjusting for demographic var-
iables, GDM exposure, and child MVPA.
Results from fully adjusted models are
presented in Table 4; results from other
models are presented in Supplementary
Tables 9-12.

Relationships Among OFC Food Cue
Reactivity, Daily EI, and Adiposity

An increase of 1,000 kcal in daily El was
associated with a 0.028 increase in WHR,
adjusting for child’s age, sex, and MVPA
and maternal education and race/ethni-
city (B = 0.028; P = 0.02). No other sig-
nificant relationships among OFC food
cue reactivity, daily El, and adiposity were
observed.

For the relationship between GDM ex-
posure and WHR, we performed a data
analysis adjusting for EI. The relationship
between GDM exposure and WHR was
no longer significant after further adjust-
ment of daily El in addition to demo-
graphic variables, prepregnancy BMI, and

child MVPA (mean group difference was
reduced from 0.019 + 0.009 [P = 0.038]
before adjusting daily El to 0.015 + 0.010
[P = 0.106] after adjusting for daily El).
Daily El explained 36% of the association
between GDM exposure and WHR, sug-
gesting that daily EI may, in part, play a
mediating role in the relationship between
GDM exposure and WHR in children. We
did not observe any significant interac-
tions of GDM or maternal obesity expos-
ure and sex on food intake, food cue
reactivity, and adiposity (all P > 0.1).

CONCLUSIONS

In this study, we investigated the effects
of in utero exposure to GDM or maternal
obesity on daily food intake and food cue
reactivity in brain reward regions in chil-
dren 7-11 years of age. We observed
that exposure to GDM, but not maternal
obesity, was associated with greater daily
El, and children exposed to GDM
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diagnosed =26 weeks’ gestation exhib-
ited greater OFC food cue reactivity com-
pared with unexposed children. These
results remained significant after adjust-
ing for child’s age and sex, maternal
education, maternal ethnicity/race, pre-
pregnancy BMI, and child’s physical activ-
ity levels. The data suggest an
independent effect of GDM exposure
during early fetal development on daily El
and the OFC responses to appetitive food
cues, thereby potentially contributing to
the risk for development of obesity.

After adjusting for important con-
founders, we observed that GDM-ex-
posed children consumed 165 more daily
calories than unexposed children, and
the early GDM-exposed group consumed
the highest number of daily calories. Fur-
thermore, children who consumed more
daily calories had greater WHR. The rela-
tionship between GDM exposure and
WHR was attenuated after adjustment
for daily El, and daily El explained 36% of
the association between GDM exposure
and WHR in children. These findings sug-
gest that daily EI may partially mediate
the relationship between GDM exposure
and WHR in children. Other mechanisms
for the link between GDM exposure and
WHR that could be explored further in-
clude epigenetic changes, alterations in
the brain networks involved in energy
homeostasis, and/or the brain inhibition
control system. Taken together, these re-
sults suggest that increased food intake
may be one factor contributing to obesity
development among children exposed in
utero to GDM.

Prior studies that investigated relation-
ships between GDM exposure and food
intake observed nonsignificant findings

Table 4—Relationships between maternal exposure and adiposity measures

GDM vs. unexposed

Prepregnancy BMI

Adiposity measurement B (SE)* P value B (SE)* P value
BMI z-score 0.16 (0.18) 0.374 0.16 (0.06) 0.007
%BF 2.00 (1.43) 0.164 0.89 (0.47) 0.062
WHR 0.019 (0.011) 0.08 0.011 (0.004) 0.003
WtHR 0.019 (0.009) 0.038 0.008 (0.003) 0.012

Results adjusted for child’s age and sex, maternal education, maternal race/ethnicity, ma-
ternal exposure (maternal prepregnancy BMI [for GDM exposures] or maternal GDM status
as a three-categorical variable [for prepregnancy BMI]), and child’s physical activity level.
Boldface indicates significance at P < 0.05. *Regression coefficient (SE) from linear regres-
sion models. For GDM-related results, a positive 3 means greater adiposity measurements
in the GDM group than in the unexposed group, whereas a negative 3 means the opposite
data pattern. For prepregnancy BMI-related results, a positive B means a positive relation-
ship between prepregnancy BMI and each adiposity measurement, whereas a negative 3
means a negative relationship.
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(60,61). For example, in a prospective
study conducted by Catalano et al. (60) in
which daily EI was assessed using 3-day
dietary logs, self-reported by parents, the
authors did not find group differences in
daily El between offspring exposed to
GDM (n = 37) and unexposed children
(n = 52) 6-11.9 years of age. In a retro-
spective study of 82 children exposed to
GDM and 379 unexposed children be-
tween 6 and 13 years old, Crume et al.
(61) used the Block Kids Food Question-
naire to measure daily El and did not ob-
serve significant group differences. In our
study, in-person repeated 24-h dietary re-
calls were administered to the child with
assistance of his/her parent by trained
staff. Our sample included 87 GDM-ex-
posed children and 72 unexposed chil-
dren between 7 and 11 vyears old.
Differences in the types of dietary assess-
ments and/or child demographics may
have contributed to the discrepancies in
these findings. We did not observe a sig-
nificant interaction between GDM expos-
ure and sex on daily El, whereas sex-
specific effects were observed in a prior
behavioral study such that adolescent
girls prenatally exposed to mothers with
an impaired glucose tolerance during
pregnancy (compared with normal glu-
cose tolerance) had a higher self-reported
score of eating in the absence of hunger
while boys showed the opposite pattern
(59). Future studies are warranted to ro-
bustly examine potential sex differences
in the effects of GDM exposure on feed-
ing behavior in offspring.

In addition, we found that children ex-
posed to GDM before 26 weeks of gesta-
tion had greater OFC responses to food
cues compared with unexposed children.
However, GDM as a whole was only mar-
ginally associated with the OFC food cue
reactivity. We speculate, on the basis of
prior evidence (48,58), that exposure to
GDM during early gestation (i.e., before
26 weeks’ gestation) may have a larger
effect on brain development, and thus,
exposure to GDM before 26 weeks of
gestation would have a larger effect on
the child’s brain reward system than
GDM exposure later in gestation (i.e.,
after 26 weeks’ gestation). The OFC plays
an important role in reward processing,
specifically the incentive motivational ef-
fects of food rewards. A meta-analysis re-
ported that the OFC was among the
regions implicated in the processing of
appetitive food cues in youth (62). Prior

studies showed that greater OFC food
cue reactivity predicted greater food con-
sumption in children (63) and greater fu-
ture weight gain in adolescents (25). Prior
animal and human studies indicated that
GDM exposure disrupted the brain’s
hypothalamic circuitry, which subse-
quently led to overeating and obesity
(43-48). Because the hypothalamus and
mesolimbic areas (e.g., OFC) are structurally
and functionally connected (19,64,65), it is
possible that the OFC may also be vulner-
able to early life insults, such as in utero
exposure to GDM. Indeed, there is sug-
gestive evidence from animal studies that
the fetal programming of feeding behav-
ior involves the OFC (66). Although there
is suggestive evidence of heightened OFC
responses to food cues in children ex-
posed to GDM diagnosed =26 weeks’
gestation, this finding needs to be repli-
cated in a larger sample size.

The effects of the timing of GDM ex-
posure on behavioral and brain measures
that we observed here were consistent
with our prior work, which showed that
children exposed to GDM before 26
weeks’ gestation had altered hypothal-
amic responses to glucose that predicted
future weight gain (48). While genetic fac-
tors may contribute to the intergenera-
tional effects of obesity, the effects of the
timing of GDM exposure found here indi-
cate a specific role for the intrauterine
environment in the programming of neu-
robehavioral systems underlying obesity
risk.

We previously reported that children
exposed to GDM had larger WHR than
unexposed children, but groups did not
differ in BMI z-scores or %BF in the Brain-
Child cohort, suggesting that GDM expos-
ure has a larger impact on abdominal fat
distribution than overall adiposity during
childhood (48). Here, we additionally
showed a positive relationship between
daily El and WHR, suggesting that greater
food intake may be related to abdominal
fat accumulation. Although a formal me-
diation analysis was not performed, our
exploratory analysis showed that the re-
lationship between GDM exposure and
WHR was attenuated after controlling for
daily El, suggesting that daily El may, in
part, play a mediating role of the link be-
tween GDM exposure and WHR. Future
study is needed to robustly test this me-
diation model.

Contrary to our hypothesis, maternal
prepregnancy BMI was not significantly
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related to daily food intake or food cue
reactivity within brain reward regions in
children. We speculate that other neural
pathways (e.g., metabolic signaling path-
way [48], inhibition control pathway [67])
may underlie the effects of prenatal ex-
posure to maternal obesity on risk for
obesity in offspring. Indeed, prior studies
have shown that intrauterine exposure to
maternal obesity was associated with al-
tered glucose-linked hypothalamic signal-
ing (48), which could lead to dysregulation
of energy balance. Alternatively, exposure
to maternal obesity may affect food intake
and brain food cue reactivity indirectly
through GDM exposure.

Given that daily El, brain food cue re-
activity, and adiposity were all collected
at the same time in the child participants,
we were not able to tease apart temporal
relationships among these variables. A
number of important child and maternal
covariates were controlled for in our
models, but other uncontrolled variables
(e.g., early feeding practices, parental
dietary patterns) may contribute to the
observed group differences. While the fo-
cus of this study is brain reward regions
engaged during the food cue task, we
recognize that there might be other im-
portant brain regions that we did not
examine that could be affected by expos-
ure to GDM or maternal obesity.

In conclusion, exposure to GDM in ute-
ro, in particular before 26 weeks’ gesta-
tion, is associated with increased El,
enhanced OFC food cue reactivity, and in-
creased WHR in children. This work pro-
vides biological insights into potential
pathways by which exposure to GDM in
utero leads to increased risk for obesity
in offspring. Future studies that include a
larger sample size and/or longitudinal de-
sign are merited to assess whether great-
er daily El and/or OFC food cue reactivity
mediate the relationship between GDM
exposure and childhood adiposity.
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