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Abstract: The potential of inhibitory metabolites of perpetrator drugs to contribute to drug-drug
interactions (DDIs) is uncommon and underestimated. However, the occurrence of unexpected DDI
suggests the potential contribution of metabolites to the observed DDI. The aim of this study was to
develop a physiologically-based pharmacokinetic (PBPK) model for bupropion and its three primary
metabolites—hydroxybupropion, threohydrobupropion and erythrohydrobupropion—based on
a mixed “bottom-up” and “top-down” approach and to contribute to the understanding of the
involvement and impact of inhibitory metabolites for DDIs observed in the clinic. PK profiles
from clinical researches of different dosages were used to verify the bupropion model. Reasonable
PK profiles of bupropion and its metabolites were captured in the PBPK model. Confidence
in the DDI prediction involving bupropion and co-administered CYP2D6 substrates could be
maximized. The predicted maximum concentration (Cmax) area under the concentration-time
curve (AUC) values and Cmax and AUC ratios were consistent with clinically observed data. The
addition of the inhibitory metabolites into the PBPK model resulted in a more accurate prediction
of DDIs (AUC and Cmax ratio) than that which only considered parent drug (bupropion) P450
inhibition. The simulation suggests that bupropion and its metabolites contribute to the DDI between
bupropion and CYP2D6 substrates. The inhibitory potency from strong to weak is hydroxybupropion,
threohydrobupropion, erythrohydrobupropion, and bupropion, respectively. The present bupropion
PBPK model can be useful for predicting inhibition from bupropion in other clinical studies. This
study highlights the need for caution and dosage adjustment when combining bupropion with
medications metabolized by CYP2D6. It also demonstrates the feasibility of applying the PBPK
approach to predict the DDI potential of drugs undergoing complex metabolism, especially in the
DDI involving inhibitory metabolites.

Keywords: physiologically based pharmacokinetic model; drug-drug interactions; bupropion;
hydroxybupropion; threohydrobupropion; erythrohydrobupropion; inhibitory metabolites

1. Introduction

Metabolized drug-drug interactions (mDDIs) have been one of the main reasons for the failure
of new drug research and development; a variety of drugs have been forced to withdraw from the
market due to serious DDIs [1–4]. With the increasing and development of new drugs and usage,
clinical combination therapy has become very common and inevitably increases the probability of
occurrence of DDI. Consequently, evaluation of a potential risk of mDDIs is essential to improve safety
and minimize the clinical risks associated with drug interactions [5].
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In general, metabolites are formed primarily via metabolic enzymes, which play an important
role in pharmacological activity and toxicity. Compared to the parent drug, it is generally considered
less likely to cause metabolized drug interactions due to more polarity. In vitro studies of parent drugs
are sufficient to avoid DDI risks [6].

However, it has recently been found that some important metabolites of inhibitors also have
inhibitory effects [6–8]. In the latest Food and Drug Administration (FDA) draft guidance [9], it is
explicitly stated that metabolites should be studied in DDI if the metabolite’s area under the plasma
concentration-time curve (AUC) is greater than or equal to 25% of the parent AUC (AUCm/AUCp
≥ 0.25). The European Medicines Agency (EMA) further emphasizes that, for metabolites with
AUCm/AUCp > 0.25 and represent >10% of total drug-related material [10], it is recommended to
evaluate their DDI. In addition, regulators are also strongly proposing to predict and understand
potential clinical DDI from the perspective of physiologically-based pharmacokinetic (PBPK), especially
those complex DDIs [9–11]. The PBPK model provides a dynamic method for evaluation of DDI based
on the physiological mechanism [12–15]. Compared with the static approach, it is reasonable to
anticipate that the dynamic model is more accurate in the predication of DDIs, such as simultaneous
inhibition and induction [16,17], the DDI of both substrate and inhibitory metabolites [15,18,19] and
multiple DDIs. Recently, PBPK models have been widely applied in research and development, and
even some good models are accepted by regulatory agencies and can be used to exempt some clinical
trials [11,20–23].

Bupropion is widely used in the treatment of major depressive disorder and smoking cessation.
As a classical probe substrate for CYP2B6, it is metabolized to hydroxybupropion. In human, carbonyl
reductase also plays an important role in the metabolism of bupropion. Threohydrobupropion
and erythrohydrobupropion are two major metabolites produced by the reduction of the carbonyl
group [24–27] (Figure 1). Although bupropion is not a substrate for CYP2D6, it also inhibits CYP2D6
activity [27,28]. Clinical studies have shown that there is a significant increase in substrate exposure
when bupropion was administered in combination with substrates for CYP2D6. For desipramine,
a five-fold increase in exposure was caused [29]. However, in vitro studies have shown that bupropion
and hydroxybupropion are weak CYP2D6 inhibitors (IC50 = 58 and 74 µM, respectively) [27]. Thus,
bupropion was chosen as the model drug. To better understand the complex DDI, a PBPK model was
taken in the present study.
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Figure 1. Bupropion and metabolism. Bupropion is metabolized by CYP2B6 to form 
hydroxybupropion and by carbonyl reductase to form the diastereoisomers threohydrobupropion 
and erythrohydrobupropion. CR: carbonyl reductase. 

Figure 1. Bupropion and metabolism. Bupropion is metabolized by CYP2B6 to form
hydroxybupropion and by carbonyl reductase to form the diastereoisomers threohydrobupropion and
erythrohydrobupropion. CR: carbonyl reductase.

The objectives of the present work are (1) to build a PBPK model that can describe the PK profile
of bupropion, hydroxybupropion, threohydrobupropion and erythrohydrobupropion; (2) to verify
the bupropion PBPK model on the basis of the results of different-dose bupropion PK studies; and



Pharmaceutics 2018, 10, 1 3 of 20

ultimately (3) to apply the PBPK model to predict the clinically observed DDIs with bupropion and
its metabolites as the CYP2D6 inhibitors, and to better understand the involvement and impact of
inhibitory metabolites for DDIs.

2. Materials and Methods

2.1. Physiologically-Based Pharmacokinetic (PBPK) Model Development

The Simcyp software package version 15 (Simcyp Limited, a Certara company, Sheffield, UK) was
used to develop the PBPK model of bupropion and its metabolites. The absorption and distribution of
bupropion was described by the first-order absoption and full PBPK model. For other metabolites,
a minimal PBPK model were used to describe their distribution. To better predict the DDIs involving
bupropion and its metabolites as CYP2D6 inhibitors, the model was first developed to simulate
the PK of bupropion, hydroxybupropion, threohydrobupropion and erythrohydrobupropion when
bupropion was given in different doses. Then, the verified model was used for the prediction of
the involvement and impact of inhibitory metabolites in DDIs. Bufuralol, tolterodine, metoprolol,
desipramine, and dextromethorphan as the CYP2D6 substrates from the Simcyp simulator library were
used to simulate the DDIs. In addition, the PBPK model of venlafaxine was also built to simulate the
DDI with bupropion. The observed clinical data were digitized from the graphs provided in literature
using DigIt version 1.04 (Simulations Plus, Inc., Lancaster, CA, USA), a plot digitizer tool.

2.2. PBPK Model for Bupropion

The physicochemical properties of bupropion, including molecular weight, logP, pKa,
blood-to-plasma ratio and fraction unbound in plasma were obtained from literature and in silico
prediction as listed in Table 1. Bupropion binding to human plasma protein is 82% to 88%. Its absorption
was described with a first-order absorption model. It has been reported that the absorption of
bupropion is close to 100% [26]. A full PBPK model was used to describe the distribution of bupropion.
The distribution of bupropion was predicted with Rogers method [30] based on the fitted Kp scalar to
comparable to the observed value of 19 L/kg [31]. Bupropion is mainly metabolized by the liver and
less than 1% of the parent drug is found in the urine [26,29]. According to the in vitro studies [27,32,33]
with human liver microsomes, the enzyme kinetic parameters (Vmax and Km) of bupropion to form
hydroxybupropion, threohydrobupropion and erythrohydrobupropion were integrated into the model.
Considering the other metabolic pathways of bupropion, the formation of threohydrobupropion
and erythrohydrobupropion were by carbonyl reductase. Therefore, in this model, we assumed that
threohydrobupropion and erythrohydrobupropion were cleared likewise by CYP2B6. The fu,mic is
used to correct the expression of carbonyl reductase to obtain the best simulation results closest to
observed data.

Table 1. Parameters for bupropion used in physiologically-based pharmacokinetic (PBPK) modeling.

Parameter
Bupropion

Value References/Comments

Mol weight (g/mol) 239.74 Drug bank
Log Po:w 3.28 Drug bank

pKa 8.22 Drug bank
B/P 0.82 [29]
fu,p 0.16 [28]
fa 1 [26]

ka (h−1) 0.8 [34]
Tlag (h) 0.8 [31]

Kp scalar 5.4 Simcyp best fit
Vss (L/kg) 19 [31]

Enzyme CYP2B6 Metabolite: hydroxybupropion
Vmax (pmol/min per milligram) 3623 [27]

Km (µM) 89 [27]
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Table 1. Cont.

Parameter
Bupropion

Value References/Comments

fu,mic 0.16 Assumed = fu,p
Enzyme CYP2B6 Metabolite: threohydrobupropion

Vmax (pmol/min per milligram) 98.4 [33]
Km (µM) 186.3 [33]

fu,mic 0.003 Simcyp best fit, correct expression of carbonyl reductase
Enzyme CYP2B6 Metabolite: erythrohydrobupropion

Vmax (pmol/min per milligram) 2.6 [33]
Km (µM) 41.4 [33]

fu,mic 0.003 Simcyp best fit, correct expression of carbonyl reductase

B/P, blood-to-plasma ratio; fu,p, free fraction in plasma; fa, fraction of dose absorbed; ka, first-order absorption rate
constant; Tlag, lag time; Vss, steady-state volume of distribution; Km, Michaelis constant; Vmax, Maximum metabolic
rate; fu,mic, free fraction in liver microsome.

2.3. PBPK Model for Hydroxybupropion, Threohydrobupropion and Erythrohydrobupropion

The physicochemical properties of the three metabolites were obtained from in silico prediction.
The distribution of metabolite hydroxybupropion, threohydrobupropion and erythrohydrobupropion
were described by a minimal-PBPK distribution model with tissue partition coefficients predicted
by the Rodgers method [30]. A single adjusting compartment in Simcyp optimized the Vss of
hydroxybupropion and threohydrobupropion. The elimination of all metabolites are fitted based on
the corresponding observed clinical data. The corresponding parameters are listed in Table 2.

Table 2. Parameters for hydroxybupropion, threohydrobupropion and erythrohydrobupropion used
in PBPK modeling.

Parameter
Hydroxybupropion Threohydrobupropion Erythrohydrobupropion

Value References/
Comments Value References/

Comments Value References/
Comments

Mol weight
(g/mol) 255.74 ACD-ilab 241.757 ACD-ilab 241.757 ACD-ilab

Log Po:w 2.03 ACD-ilab 2.88 ACD-ilab 2.88 ACD-ilab
pKa 7.4 ACD-ilab 7.4 ACD-ilab 9.6 ACD-ilab

B/P 0.82 Assigned using
bupropion value 0.82 Assigned using

bupropion value 0.82 Assigned using
bupropion value

fu,p 0.23 [28] 0.58 [28] 0.58 [28]
Vsac (L/kg) 0.5 Simcyp best fit 5.83 Simcyp best fit N/A

Vss (L/kg) 2.15 Predicted with Rogers
method 9.11 Predicted with Rogers

method 1.47 Predicted with Rogers
method

Kp scalar 1 Simcyp default value 1 Simcyp default value 2 Simcyp best fit
CLpo (L/h) 5.76 Simcyp best fit 21.15 Simcyp best fit 21.69 Simcyp best fit

B/P, blood-to-plasma ratio; fu,p, free fraction in plasma; Vsac, volume of distribution of compartment; Vss,
steady-state volume of distribution; CLpo, oral clearance; N/A, not available. ACD-ilab, the online prediction
engine from Advanced Chemistry Development, Inc.

2.4. PBPK Model for Venlafaxine

In addition, venlafaxine was also used as a CYP2D6 substrate to run the simulation with
bupropion. To simulate the DDI between bupropion with venlafaxine, a PBPK model for venlafaxine
was developed. The model of venlafaxine was built by a minimal PBPK model with tissue partition
coefficients predicted by the Poulin and Theil method [35] combined with a first order absorption.
The model parameters of venlafaxine are placed in Table 3. An oral absorption up to 92% was found.
The Kp scalar of 2.3 was used to predict the Vss comparable to the observed value of 7 L/kg [36–38].
The plasma protein binding of venlafaxine is low at 27% [37]. There is a consensus that the metabolic
pathway of venlafaxine is mediated predominantly by CYP2D6. The CYP2C19, 2C9, and 3A4 isoforms
also play a role in the metabolism of the drug, but to a lesser extent. The elimination of venlafaxine is
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fitted based on the corresponding observed clinical data. The intrinsic clearance (Clint) was calculated
using retrograde model, assuming 80% Hep CL via CYP2D6 [39].

Table 3. Parameters for venlafaxine used in PBPK modeling.

Parameter
Venlafaxine

Value References/Comments

Mol weight (g/mol) 277.402 [40]
Log Po:w 2.8 [40]

pKa 9.4 [40]
B/P 1.17 [40]
fu,p 0.73 [40]
fa 0.92 [37]

ka (h−1) 1.31 [38]
Tlag (h) 1.44 Simcyp best fit

Kp scalar 2.3 Predicted with Poulin and Theil method
Vss (L/kg) 7 [38]

Enzyme CYP2D6
CLint (µL/min/pmol of

isoform) 5.825 Retrograde calculation in Simcyp to account for 80%
Hep CL from CYP2D6

CLint-additional
(µL/min/mg protein) 11.65 Simcyp predicted

B/P, blood-to-plasma ratio; fu,p, free fraction in plasma; fa, fraction of dose absorbed; ka, first-order absorption rate
constant; Tlag, lag time; Vss, steady-state volume of distribution.

2.5. Simcyp Simulation

The Simcyp software package version 15 (Simcyp Limited, a Certara company, Sheffield, UK) was
used to build and develop the PBPK model of bupropion and its metabolites. The model parameters
mentioned above were integrated into the PBPK model to simulate PK and DDI. The healthy volunteer
population database in the Simcyp simulator is a powerful capability that allows us to assess the
combined effects of variations in physiology and pharmacokinetics within populations, as well as
formulate variables that are not precise values, but for which distributions of values can be estimated.
Each subject is randomly (“Monte Carlo”) generated to have a unique set of generic, anatomic,
demographic, and tissue specific parameters, plasma protein binding, hepatic blood flow rate, and
pharmacokinetic parameters. The default trial designed by Simcyp is selected to build the model
of bupropion and its metabolites. A virtual population of 100 healthy volunteers (10 trials with 10
subjects each) aged 20–50 years with a female/male ratio of 0.5 was used in the simulation of PK
following different single oral doses of bupropion (150, 75 and 100 mg).

2.6. Simulation of Drug-Drug Interaction (DDI)

In these DDI model, bufuralol, tolterodine, metoprolol, desipramine, and dextromethorphan
from the Simcyp simulator library were selected as the CYP2D6 substrates to simulate the DDIs
with bupropion and its metabolites. Venlafaxine, whose model was built by us, was also used in the
simulation of DDIs. The detailed DDI parameters of bupropion and its metabolites are shown in
Table 4.

Table 4. In vitro P450 inhibition parameters for bupropion and its metabolism.

Parameter Bupropion Hydroxybupropion Threohydrobupropion Erythrohydrobupropion

Ki (µM) 21 13 5.4 1.7

All data from [28]. Ki here are apparent values, and are corrected for free fraction in microsome (fu,mic = 0.01)
estimated in the Simcyp model.

Trials used in the DDI simulations were designed consistent with the reported clinical studies.
The details of the trials were as follows:
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(1) The subjects (10 trials × 15 subject, aged 20–50, female/male ratio 0) received 150 mg bupropion
or matching placebo orally twice daily for 10 days, and on day 11 the subjects received a single
oral dose of 50 mg desipramine. Plasma concentrations of bupropion and desipramine were
simulated during the drug treatment period.

(2) The subjects (10 trials × 18 subject, aged 20–50, female/male ratio 0.5) received bupropion (at a
daily dose of 150 mg/day) with venlafaxine (at a daily dose of 75 mg/day) for 8 weeks. Plasma
concentrations of bupropion and venlafaxine were simulated during the drug treatment period.

(3) The subjects (10 trials× 13 subject, aged 21–64, female/male ratio 0.5) received 150 mg bupropion
or matching placebo orally twice daily for 17 days, and on day 18 the subjects received a single oral
dose of 30 mg dextromethorphan. Plasma concentrations of bupropion and dextromethorphan
were simulated during the drug treatment period.

(4) The subjects (10 trials × 10 subject, aged 20–56, female/male ratio 0.5) received bupropion (at a
twice daily dose of 150 mg) with metoprolol (at a twice daily dose of 75 mg) for 12 days. Plasma
concentrations of bupropion and metoprolol were simulated during the drug treatment period.

(5) The subjects (10 trials× 10 subject, aged 20–50, female/male ratio 0.5) received 150 mg bupropion
or matching placebo orally twice daily for 2 weeks, and on day 15 the subjects received a single
oral dose of 20 mg bufuralol or 2 mg tolterodine. Plasma concentrations of bupropion, bufuralol
and tolterodine were simulated during the drug treatment period.

The fold-error was used to assess the success of model building and the accuracy of the
predicted pharmacokinetic profile and data. Basically, two-fold-error was publicly recognized in
the simulation [35,41–44]. The model was considered to have a goodness-of-fit when the fold-error
was less than two. The fold-error was defined as observed/predicted or predicted/observed, where
the numerator is greater than the denominator. The DDI effect, expressed as a ratio of AUC and Cmax

in the presence and absence of bupropion, was compared with observed data. The results are listed in
Tables 5 and 6.

Table 5. PBPK model-predicted drug-drug interactions (DDIs) between bupropion and
desipramine/venlafaxine.

Inhibitors AUC Ratio Cmax Ratio Tmax Ratio

Bupropion + Desipramine (observed) 5.2 1.9 2
Bupropion (predicted) 2.27 1.15 1.10

Hydroxybupropion (predicted) 4.58 1.76 1.84
Threohydrobupropion (predicted) 3.47 1.61 1.47

Erythrohydrobupropion (predicted) 2.83 1.45 1.47
Bup + H-Bup + T-Bup + E-Bup (predicted) 5.05 1.79 1.84

Bupropion + Venlafaxine (observed) N/A 2.5 N/A
Bupropion (predicted) 1.30 1.27 1

Hydroxybupropion (predicted) 2.49 1.94 1
Threohydrobupropion (predicted) 2.14 1.80 1

Erythrohydrobupropion (predicted) 1.76 1.60 1
Bup + H-Bup + T-Bup + E-Bup (predicted) 3.03 2.24 1

Bup, Bupropion; H-Bup, Hydroxybupropion; T-Bup, Threohydrobupropion; E-Bup, Erythrohydrobupropion; AUC
(concentration–time curve) ratio, AUC in the presence of inhibitor/AUC in the absence of inhibitor; Cmax ratio,
Cmax in the presence of inhibitor/Cmax in the absence of inhibitor; Tmax ratio, Tmax in the presence of inhibitor/Tmax
in the absence of inhibitor; N/A, not available.

Table 6. PBPK model-predicted DDIs between bupropion with other potential CYP2D6 substrates.

Substrate AUC Ratio Cmax Ratio

Bufuralol 2.04 1.55
Tolterodine 2.91 2.17
Metoprolol 3.53 2.57

Dextromethorphan 4.06 3.05

AUC ratio, AUC in the presence of inhibitor/AUC in the absence of inhibitor; Cmax ratio, Cmax in the presence of
inhibitor/Cmax in the absence of inhibitor.
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2.7. PBPK Model for Stereo-Selective Bupropion and Its Metabolites

The PBPK model for stereo-selective bupropion and its metabolites were further developed based
on the above model. The corresponding parameters are listed in Table 7. Other parameters not
mentioned in Table 7 are similar to those of non-stereo selective bupropion and its metabolites.
The absorption and distribution of R-bupropion and S-bupropion were described by the first-order
absoption and full PBPK model. For other metabolites, a minimal PBPK model were used to
describe this distribution. The in vitro studies showed that R-bupropion was metabolized to
form RR-hydroxybupropion via CYP2B6 2C19 and 3A4, respectively, RR-threohydrobupropion
and SR-erythrohydrobupropion via carbonyl reductase, and R-4’-hydroxybupropion via CYP2C19;
while the S-bupropion was metabolized to form SS-hydroxybupropion via CYP2B6 2C19 and 3A4,
respectively, SS-threohydrobupropion and RS-erythrohydrobupropion via carbonyl reductase, and
S-4′-hydroxybupropion via CYP2C19 [45]. We have integrated these metabolic pathways into our
model. The CYP2J2 was used to define the carbonyl reductase. These corresponding intrinsic
clearance rates are calculated by retrograde calculation in Simcyp to account for their proportion
in the total clearance rate base on the in vitro study [46]. The total elimination of R-bupropion
is divided into 34% hydroxybupropion, 50% threohydrobupropion, 8% erythrohydrobupropion
and 8% 4′-hydroxybupropion. For S-bupropion, the proportion of these metabolites
are 12% hydroxybupropion, 82% threohydrobupropion, 4% erythrohydrobupropion and 2%
4′-hydroxybupropion, respectively. The Vss of SS-hydroxybupropion and RS-erythrohydrobupropion
were predicted with Rogers method and Poulin and Theil method based on the optimized Kp value,
respectively. The elimination of all metabolites are fitted based on the corresponding observed
clinical data.

Table 7. Parameters for R-bupropion, S bupropion, RR-hydroxybupropion, SS-hydroxybupropion,
RR-threohydrobupropion, SS-threohydrobupropion, SR-erythrohydrobupropion and
RS-erythrohydrobupropion used in PBPK modeling.

Parameter Value References/Comments

R-BUP

Clint (µL/min per pmol)

CYP2B6 12
Metabolite: RR-OHBUP

Retrograde calculation in Simcyp to
account for 34% of total CL [46]

CYP2C19 5.36
CYP3A4 0.58

CYP2J2 27 Metabolite: RR-TB Retrograde calculation in Simcyp to
account for 50% of total CL [46]

CYP2J2 4.24 Metabolite: SR-EB Retrograde calculation in Simcyp to
account for 8% of total CL [46]

CYP2C19 4.24 Metabolite: R-4′-OHBUP Retrograde calculation in Simcyp to
account for 8% of total CL [46]

S-BUP

Clint (µL/min per pmol)

CYP2B6 20.56
Metabolite: SS-OHBUP

Retrograde calculation in Simcyp to
account for 12% of total CL [46]

CYP2C19 12.61
CYP3A4 1.37

CYP2J2 236.16 Metabolite: SS-TB Retrograde calculation in Simcyp to
account for 82% of total CL [46]

CYP2J2 11.52 Metabolite: RS-EB Retrograde calculation in Simcyp to
account for 4% of total CL [46]

CYP2C19 5.76 Metabolite: S- 4’-OHBUP Retrograde calculation in Simcyp to
account for 2% of total CL [46]

RR-OHBUP

CLpo (L/h) 6.76 Simcyp best fit



Pharmaceutics 2018, 10, 1 8 of 20

Table 7. Cont.

Parameter Value References/Comments

SS-OHBUP

Vss (L/kg) 10.5 Predicted with Rogers method
Kp scalar 5 Simcyp best fit

CLpo (L/h) 305.8 Simcyp best fit

RR-TB

Vss (L/kg) 4.7 Predicted with Poulin and Theil method
Kp scalar 1 Simcyp default value

CLpo (L/h) 20 Simcyp best fit

SS-TB

Vss (L/kg) 4.7 Predicted with Poulin and Theil method
Kp scalar 1 Simcyp default value

CLpo (L/h) 120 Simcyp best fit

SR-EB

Vss (L/kg) 3.07 Predicted with Poulin and Theil method
Kp scalar 1 Simcyp default value

CLpo (L/h) 11.69 Simcyp best fit

RS-EB

Vss (L/kg) 9.08 Predicted with Poulin and Theil method
Kp scalar 3 Simcyp best fit

CLpo (L/h) 52 Simcyp best fit

R-BUP, R-Bupropion; S-BUP, S-Bupropion; RR-OHBUP, RR-Hydroxybupropion; SS-OHBUP, SS-Hydroxybupropion;
RR-TB, RR-Threohydrobupropion; SS-TB, SS-Threohydrobupropion; SR-EB, SR-Erythrohydrobupropion; RS-EB,
RS-Erythrohydrobupropion; R-4′-OHBUP, R-4′-Hydroxybupropion; S-4′-OHBUP, S-4′-Hydroxybupropion.

3. Results

3.1. Prediction of Bupropion and Its Metabolites Pharmacokinetics

The PBPK model of bupropion was successfully built based on the parameters in Table 1.
The simulated PK profiles after oral doses of 150 mg bupropion are shown in Figure 2. There is
a good match between predicted concentration profile and clinically observed data. The predicted
Cmax, AUC and Tmax of bupropion were 136 ng/mL, 1402 ng·h/mL, and 1.8 h, respectively. All of
them were within a two-fold error of the observed results (Cmax = 143 ng/mL, AUC = 1161 ng·h/mL
and Tmax = 2.9 h) [47] (Figure 2A).

The simulated concentration-time profiles for hydroxybupropion, threohydrobupropion and
erythrohydrobupropion are reasonably well consistent with the observed data based on the model
parameters mentioned above (Figure 2B–D). The predicted PK parameters for hydroxybupropion
were as follows: Cmax, AUC and Tmax were 457 ng/mL, 13,564 ng·h/mL, and 5.8 h, respectively.
The observed Cmax, AUC and Tmax were 433 ng/mL, 16,651 ng·h/mL, and 7.7 h, respectively [47].
A fold error of less than two was simulated. The predicted Cmax and AUC for threohydrobupropion
were 96 ng/mL and 1358 ng·h/mL, respectively. The simulated Cmax and AUC were also in good
agreement with (<two-fold error) the observed results (Cmax = 109 ng/mL, AUC = 1219 ng·h/mL) [34].
The predicted erythrohydrobupropion Cmax and AUC were 12 ng/mL and 144 ng·h/mL, respectively.
The simulated Cmax and AUC were less than 2 fold error compared with the observed results (Cmax =
15 ng/mL, AUC = 133 ng·h/mL) [34].

To verify the PBPK model, the PK profile of bupropion and its metabolites after oral different
dose was also simulated and compared with reported data. Following a single oral doses of 75 mg
bupropion to healthy subjects, the PK profiles of bupropion and its metabolites are shown in Figure 3.
The predicted Cmax (66 ng/mL), AUC (435 ng·h/mL) and Tmax (1.9 h) less than 2 fold error compared
with the observed data (Cmax = 117 ng/mL, AUC = 456 ng·h/mL and Tmax = 1.6 h, respectively)
(Figure 3A) [48]. For the metabolites, the predicted PK parameters were as follows: Cmax, AUC and
Tmax of hydroxybupropion were 222 ng/mL, 3827 ng·h/mL, and 5.8 h, respectively; Cmax, AUC and
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Tmax of threohydrobupropion were 51 ng/mL, 719 ng·h/mL, and 4.6 h, respectively; Cmax, AUC and
Tmax of erythrohydrobupropion were 7 ng/mL, 87 ng·h/mL, and 4.5 h, respectively. The simulated
results compared reasonably well with the observed PK data (hydroxybupropion: Cmax = 134 ng/mL,
AUC = 2248 ng·h/mL, and Tmax = 4.6 h; threohydrobupropion: Cmax = 57 ng/mL, AUC = 647 ng·h/mL,
and Tmax = 1.9 h; erythrohydrobupropion: Cmax = 7 ng/mL, AUC = 113 ng·h/mL, and Tmax = 2.6 h,
respectively) (Figure 3B–D) [48]. The simulated results compared reasonably well with the observed
data: the predicted PK parameters were within a two-fold error of the observed data, whereas the Tmax

of threohydrobupropion was slightly overpredicted by two-fold error.
The PK profiles of bupropion and its metabolites after a single oral dose of 100 mg bupropion

are shown in Figure 4. The predicted results were as follows: bupropion: Cmax = 89 ng/mL, AUC
= 586 ng·h/mL, and Tmax = 1.9 h; hydroxybupropion: Cmax = 299 ng/mL, AUC = 7764 ng·h/mL,
and Tmax = 5.8 h; threohydrobupropion: Cmax = 68 ng/mL, AUC = 1329 ng·h/mL, and Tmax = 4.6 h;
erythrohydrobupropion: Cmax = 9 ng/mL, AUC = 133 ng·h/mL, and Tmax = 4.6 h, respectively. They
were in agreement with (<two-fold error) the observed PK data (bupropion: Cmax = 74 ng/mL, AUC =
360 ng·h/mL, and Tmax = 1.7 h; hydroxybupropion: Cmax = 281 ng/mL, AUC = 7468 ng·h/mL, and
Tmax = 4.2 h; threohydrobupropion: Cmax = 73 ng/mL, AUC = 1354 ng·h/mL, and Tmax = 3.0 h) [49].
However, no concentration-time profile data for erythrohydrobupropio from this study was available
for direct comparison.
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Figure 2. Predicted and observed mean plasma concentration-time profiles of bupropion (A);
hydroxybupropion (B); threohydrobupropion (C) and erythrohydrobupropion (D) after a single oral
dose of 150 mg bupropion. The solid lines represent the predicted mean. The dotted lines represent
the 5th and 95th percentile of the predicted values for virtual population. Symbols represent mean
observed data (n = 17) [34,47].
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Figure 3. Predicted and observed mean plasma concentration–time profiles of bupropion (A);
hydroxybupropion (B); threohydrobupropion (C) and erythrohydrobupropion (D) after a single oral
dose of 75 mg bupropion. The solid lines represent the predicted mean. The dotted lines represent 5th
and 95th percentile of the predicted values for virtual population. Symbols represent mean observed
data (n = 7) [48].
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Figure 4. Predicted and observed mean plasma concentration–time profiles of bupropion (A);
hydroxybupropion (B); threohydrobupropion (C) and erythrohydrobupropion (D) after a single oral
dose of 100 mg bupropion. The solid lines represent the predicted mean. The dotted lines represent 5th
and 95th percentile of the predicted values for virtual population. Symbols represent mean observed
data (n = 8) [49].
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3.2. Prediction of the Bupropion-Desipramine DDI

Desipramine is a substrate of CYP2D6. Although published in vitro data showed that bupropion
and a major active metabolite, hydroxybupropion, were relatively weak CYP2D6 inhibitors (IC50 = 58
and 74 µM, respectively) [27], drug interactions resulting in increased exposure of CYP2D6-metabolized
drugs following coadministration with bupropion were observed in clinic.

In this simulation, subjects were given a dose of 150 mg bupropion twice a day for 10 days before
the administration of a single dose of 50 mg desipramine. The predicted and observed mean plasma
concentration–time profiles of desipramine in the absence and presence of bupropion are shown in
Figure 5. The predicted and observed pharmacokinetic parameter values are summarized in Table 5.
The clinical interaction results showed a 5.2, 1.9 and 2.0-fold increase in the AUC, Cmax and Tmax

of desipramine, respectively, when desipramine was codosed with bupropion [28]. The simulated
results is reasonably well compared to the observed data when all of the inhibition from bupropion
and its metabolites were integrated. The predicted AUC, Cmax and Tmax ratio were 5.05, 1.79 and
1.84-fold, respectively.
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Figure 5. Predicted and observed mean plasma concentration-time profiles of desipramine after a
single oral dose of 50 mg desipramine in the absence or presence of a twice-daily dose of 150 mg
bupropion. The black solid lines represent the predicted mean concentrations when administered alone;
the gray solid lines represent the predicted mean concentrations when co-administered with bupropion.
The black and gray dotted lines represent 5th and 95th percentile of the predicted values for virtual
population before and after co-administered with bupropion, respectively. Closed circles, observed
plasma concentrations when administered alone (n = 15) [28]; Stars, observed plasma concentrations
when co-administered with bupropion (n = 15) [28].

Simultaneously, the contribution of DDI for bupropion and its metabolites were simulated using
the PBPK model. The model predicted a 2.27, 1.15 and 1.10-fold increase in desipramine AUC, Cmax

and Tmax, respectively, when bupropion was considered alone as an inhibitor. If each of the metabolites
were considered as the only inhibitor, the AUC, Cmax and Tmax ratio of metabolites were as follows:
hydroxybupropion (4.58, 1.76 and 1.84-fold), threohydrobupropion (3.47, 1.61 and 1.47-fold), and
erythrohydrobupropion (2.83, 1.45 and 1.47-fold), respectively. The results indicate that bupropion and
its metabolites all are involved in the DDI between bupropion and desipramine. While the inhibition
of bupropion is weaker than its metabolites, hydroxybupropion is a relatively strong CYP2D6 inhibitor.

3.3. Prediction of the Bupropion-Venlafaxine DDI

Venlafaxine is another substrate of CYP2D6. The clinical results showed inhibition of venlafaxine
metabolism, resulting in a significant, 2.5-fold higher plasma venlafaxine concentration at steady state
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following co-adminstration of bupropion with venlafaxine [50]. To simulate the DDI, a PBPK model
of venlafaxine was developed in the first place. The PBPK model of venlafaxine was successfully
built based on the parameters in Table 3. Following a single dose of 75 mg venlafaxine to healthy
subjects, the predicted Cmax (50 ng/mL) and AUC (608 ng·h/mL) matched the observed data well
(Cmax = 34 ng/mL, AUC = 463 ng·h/mL) [51].

Then, a simulation of DDI was performed by the PBPK model. In the study, subjects received
bupropion (at a daily dose of 150 mg/day) with venlafaxine (at a daily dose of 75 mg/day) for
8 weeks. The simulated results showed a 2.24-fold of Cmax ratio when the inhibition from bupropion
as well as its metabolites were considered. This model can reasonably predict the clinical DDI. The
contribution of DDI for bupropion and its metabolites were also analyzed by this model. The predicted
Cmax ratio of bupropion, hydroxybupropion, threohydrobupropion and erythrohydrobupropion
were 1.27, 1.94 1.80 and 1.60-fold. The result was similar to the DDI of bupropion on venlafaxine.
There was a minimal effect on bupropion, whereas when the inhibition from hydroxybupropion,
threohydrobupropion and erythrohydrobupropion were incorporated, significant DDI was captured
(Table 5). In general, the inhibition from hydroxybupropion is the strongest, while bupropion has a
relatively weak inhibitory effect.

3.4. Prediction of DDI between Bupropion with Other Potential CYP2D6 Substrates

The PBPK model was also used to predict more DDI of bupropion on other CYP2D6 substrates.
The predicted interaction effect on different drugs was listed in Table 6. A simulation of bupropion
inhibits dextromethorphan following a single oral dose of 30 mg dextromethorphan after 17 days
of co-administration of bupropion (150 mg twice a day) was performed. According to the model,
a 4.06 and 3.05-fold of AUC and Cmax ratio was predicted, respectively. There are reports showed that
interaction occurs when dextromethorphan is co-administered with bupropion in healthy volunteers,
the mean dextromethorphan/dextrophan ratio was significantly increased in urine [52]. Even though
no concentration-time profile data for the DDI study is available for direct comparison, a significant
increase in exposure of dextromethorphan after co-administration of bupropion was predicted by
our model.

In a case report, a severe bradycardia occurred between buproprion and metoprolol. It suggested
that the serious adverse event might be attributed to the CYP2D6 inhibition of bupropion [53].
Following 12 days multiple oral administration of metoprolol 75 mg twice daily with and without
coadministration of bupropion (150 mg twice a day), the predicted AUC and Cmax ratio of metoprolol
were 3.53 and 2.57-fold, respectively. This further confirms the need for caution when combining
bupropion with metoprolol.

More drug interactions were studied based on the PBPK model. Following a single oral dose of
20 mg bufuralol or 2 mg tolterodine after 2 weeks of coadministration of bupropion (150 mg twice
a day), the predicted AUC and Cmax ratio of bufuralol were 2.04 and 1.55-fold respectively, and the
predicted AUC and Cmax ratio of tolterodine were 2.91 and 2.17-fold, respectively.

3.5. Prediction of Stereo-Selective Bupropion and Its Metabolites Pharmacokinetics and DDI

The above-established PBPK model of stereo-selective bupropion and its metabolites were used to
simulate the PK profiles for the subject of 100 mg bupropion administered orally. The results showed
that good PK profiles were captured by the PBPK model. All of the predicted Cmax and AUC were
within a two-fold error of the observed results and are shown in Table 8.
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Table 8. Observed versus predicted PK data (AUC, Cmax and Tmax) of stereo-selective bupropion and
its metabolites in the PBPK model of stereo-selective bupropion and its metabolites study.

PK Parameter
AUC (nM·h) Cmax (nM)

Predicted Observed [54] Predicted Observed [54]

R-BUP 1343.68 1162 196.37 288
S-BUP 291.27 193 53.20 47

RR-OHBUP 37,777.63 37,421 1564.59 1240
SS-OHBUP 524.75 580 33.85 35.9

RR-TB 3228.59 3326 117.19 79.9
SS-TB 1813.4 1433 159.34 168
SR-EB 872.65 942 33.31 30.5
RS-EB 195.48 185 8.12 10.6

R-BUP, R-Bupropion; S-BUP, S-Bupropion; RR-OHBUP, RR-Hydroxybupropion; SS-OHBUP, SS-Hydroxybupropion;
RR-TB, RR-Threohydrobupropion; SS-TB, SS-Threohydrobupropion; SR-EB, SR-Erythrohydrobupropion;
RS-EB, RS-Erythrohydrobupropion.

On this basis, a DDI between bupropion with desipramine is further simulated following a dose
of 150 mg bupropion twice a day for 10 days before the administration of a single dose of 50 mg
desipramine. The simulated and observed DDI effect are listed in Table 9. The value of Ki was
predicted base on IC50 from in vitro reports [55] in the Simcyp model. A 2.53, 1.21, and 1.47-fold
of AUC, Cmax and Tmax ratio were predicted, respectively, when the inhibition from R-bupropion,
RR-hydroxybupropion, threohydrobupropion and erythrohydrobupropion were integrated. Although
the predicted DDI was lower than the observed clinical data. The results indicated that the
RR-hydroxybupropion was a major coutribution to the inhibition of CYP2D6 from bupropion.

Table 9. PBPK model-predicted DDIs of between bupropion with desipramine.

Inhibitors Ki AUC Ratio Cmax Ratio Tmax Ratio

Bupropion + Desipramine (observed) 5.2 1.9 2
R-BUP + RR-OHBUP + EB + TB (predicted) 2.53 1.21 1.47
S-BUP + SS-OHBUP + EB + TB (predicted) 1.93 1.03 1.10

R-BUP (predicted) 12.5 1.83 0.96 1.10
S-BUP (predicted) 0.91 1.84 0.97 1.10

RR-OHBUP (predicted) 1.5 2.45 1.19 1.47
SS-OHBUP (predicted) 4.3 1.84 0.97 1.10

Threohydrobupropion (predicted) 3.97 1.88 0.99 1.10
Erythrohydrobupropion (predicted) 0.91 1.87 0.98 1.10

Bup, Bupropion; H-Bup, Hydroxybupropion; T-Bup, Threohydrobupropion; E-Bup, Erythrohydrobupropion;
AUC ratio, AUC in the presence of inhibitor/AUC in the absence of inhibitor; Cmax ratio, Cmax in the presence
of inhibitor/Cmax in the absence of inhibitor; Tmax ratio, Tmax in the presence of inhibitor/Tmax in the absence
of inhibitor.

4. Discussion

It is common to think that the possibility of causing drug interactions for metabolites compared
with the parent drug is low. However, recently, more and more studies have shown that the perpetrator
drug’s metabolites may also have a significant impact on CYP-mediated DDI. With the development
of the PBPK model, it has been widely used in various stages of drug development, especially
in evaluation of DDIs. The PBPK model can simulate a dynamic process which is closer to the
in vivo behavior based on in vitro biotransformation and physicochemical parameters. Many studies
have successfully evaluated drug interactions using PBPK model [12,56–58]. However, only a few
studies have built a PBPK model to evaluate DDI caused by inhibitory metabolite [18,59–61]. Many
compounds, such as bupropion, have an unexpected DDI in clinic, although in vitro study showed that
bupropion was a weak CYP2D6 inhibitor. It is possible that the inhibition from metabolites contributes
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to the observed DDI. To better address this apparent discrepancy between in vitro and in vivo studies,
bupropion was chosen as an example, and the PBPK model was employed to describe the complex
drug interactions involving inhibitory metabolite.

First, an accurate simulation of PK profiles of both parent and metabolite is required to maximize
the confidence in the DDI prediction. Therefore, in our study, many observed PK profiles of different
doses were used to verify the bupropion model. A full PBPK distribution model and first order
absorption model was used for a good description of bupropion PK profile. Bupropion is mainly
metabolized by the liver, and less than 1% of the parent drug is found in the urine [26,29]. In addition
to hydroxybupropion that are mediated by CYP enzymes, bupropion is also metabolized by 11β-HSD
to form threohydrobupropion and erythrohydrobupropion [62,63]. To better describe and build the
PBPK model, CYP2B6 instead of carbonyl reductase was set in Simcyp as the metabolic enzymes of
formation of threohydrobupropion and erythrohydrobupropion, and a fu,mic was used to correct the
expression of carbonyl reductase to obtain the best simulation results compared to observed data.

For those uncertain or unknown parameters, a sensitivity analysis is performed to assess the
importance and effect of these parameters in human PK and DDI prediction. In the PBPK model of
bupropion, the logP, pKa, and three fu,mic were considered for sensitivity analysis. According to the
analysis, the logP, pKa and the fu,mic for formation of erythrohydrobupropion were not sensitive to
the prediction of PK. However, fu,mic for formation of hydroxybupropion and threohydrobupropion
has a certain impact on the prediction of PK and the fu,mic for formation of erythrohydrobupropion.
Thus, the logP and pKa from the drug bank were inputted into the model. The fu,mic for formation of
hydroxybupropion and threohydrobupropion were optimized at the 0.16 and 0.003, respectively. The
erythrohydrobupropion and threohydrobupropion are formed via reduction of the carbonyl group.
Thus, the same fu,mic is integrated into the model. The detailed sensitivity analysis results are shown
in Supplementary Figure S1.

Based on the in vitro data and the mechanisms mentioned above, 1% of the fe (fraction of
total body clearance via renal excretion) and geometric mean 174 (L/h) of CL were reasonably
predicted by the PBPK model. Studies have shown that the CL for bupropion is in the range of
113 to 215 L/h [31,47,49,64–68]. For the PK profile of metabolites, the minimal PBPK distribution
model or minimal PBPK distribution model + adjusting compartment distribution model have a good
description based on in vitro data, in silico data and clinical PK data. More importantly, the developed
PBPK model was well captured the PK profile after oral dose of 75 mg and 100 mg bupropion.

In the Simcyp, the user can only simultaneously select one specified inhibitor metabolite to
simulate the interaction effects. To better describe the actual clinical DDI, metabolites were regarded as
different inhibitors and combined with bupropion to simulate the complex DDI with other CYP2D6
substrates. A sensitivity analysis on the dosage of metabolites was conducted; the results predicted by
the model were in good agreement with the observed PK profiles when doses of hydroxybupropion,
threohydrobupropion and erythrohydrobupropion were assumed to be 90 mg, 30 mg and 4 mg,
respectively. This indicates that the plasma concentration of metabolites formed by single oral 150 mg
bupropion is equivalent to plasma levels in vivo after a single oral of 90 mg hydroxybupropion, 30 mg
threohydrobupropion and 4 mg erythrohydrobupropion, respectively. (Figure 6). The predicted
Cmax (hydroxybupropion 443 ng/mL threohydrobupropion 107 ng/mL and erythrohydrobupropion
16 ng/mL) and AUC (hydroxybupropion 15,215 ng·h/mL, threohydrobupropion 1178 ng·h/mL and
erythrohydrobupropion 185 ng·h/mL) were within 2-fold error of the observed values [34,47].

To sum up, dynamic PK process of bupropion and its metabolites were well characterized in PBPK
models. The successful simulations of clinically observed PK profiles build confidence in the prediction
and mechanistic understanding of the DDI caused by bupropion, and particularly the unexpected DDI
potential contributed by its metabolites. On the basis of the above model, we then applied the PBPK
model to predict the clinically observed DDIs involving bupropion and its metabolites as the CYP2D6
inhibitors. The result contribute to the understanding of the involvement and impact of inhibitory
metabolites on DDIs observed in the clinic.
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In the simulation of bupropion-desipramine interaction, the addition of the inhibitory 
metabolites into the PBPK model resulted in more accurate prediction of DDIs (AUC and Cmax ratio) 
compared with that when only the inhibition of P450 from the parent drug (bupropion) was taken 
into account. The simulation suggests that bupropion and its metabolites contribute to the DDI 
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Figure 6. Predicted and observed mean plasma concentration–time profiles of hydroxybupropion with
90 mg (A); threohydrobupropion with 30 mg (B) and erythrohydrobupropion with 4 mg (C). The solid
lines represents the predicted mean. The dotted lines represents 5th and 95th percentile of the predicted
values for virtual population. Symbols represent mean observed data which is metabolized from a
single oral dose of 150 mg bupropion (n = 17) [34,47].

In the simulation of bupropion-desipramine interaction, the addition of the inhibitory metabolites
into the PBPK model resulted in more accurate prediction of DDIs (AUC and Cmax ratio) compared
with that when only the inhibition of P450 from the parent drug (bupropion) was taken into account.
The simulation suggests that bupropion and its metabolites contribute to the DDI between bupropion
and desipramin. Although in vitro study showed that the inhibitory potency from strong to weak
were erythrohydrobupropion, threohydrobupropion, hydroxybupropion and bupropion, respectively,
the simulation of in vivo DDI suggests that hydroxybupropion is the most potent competitive CYP2D6
inhibitor. It can be possible due to the greater exposure of hydroxybupropion. The plasma level
of hydroxybupropion is five- to ten-fold higher than the parent drug [29,69–72]. The exposure of
threohydrobupropion is similar to the parent drug; however, it has a stronger in vitro inhibition
constant than parent drug and hydroxybupropion. For the erythrobupropion, it is predicted to have
similar importance in in vivo DDIs as hydroxybupropion, despite the fact that its plasma concentration
is much lower than hydroxybupropion. This may be related to its strongest inhibition constant.
Conversely, even though the exposure of bupropion is similar to threohydrobupropion. The PBPK
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simulation shows bupropion is the weakest competitive CYP2D6 inhibitor. The result may attribute to
the relatively weakest inhibition constant.

Consistently, a minimal effect of bupropion on venlafaxine was predicted if only the competitive
inhibition from the parent drug was considered. With the addition of the inhibitory metabolites into the
PBPK model, there was a more accurate prediction of DDIs. The inhibitory potency from strong to weak
was hydroxybupropion, threohydrobupropion, erythrohydrobupropion, and bupropion, respectively.

In the DDI study of bupropion with other CYP2D6 substrates, the significant increase in exposure
of dextromethorphan, metoprolol, bufuralol and tolterodine after coadministration of bupropion
was predicted. These DDI predictions may explain the occurrence of severe sinus bradycardia
after coadministration of bupropion and metoprolol and highlight the need for caution and dosage
adjustment when combining bupropion with medications metabolized by CYP2D6.

To better understand the effect of stereo-selective bupropion and its metabolites on the DDI,
a stereo-selective PBPK model for bupropion and its metabolites was further developed. The PBPK
model considered multiple metabolic pathways including CYP2B6, 2C19, 3A4 and carbonyl reductase,
and it is reasonable to describe the proportion of each metabolite in total clearance of bupropion. The
simulated PK profile was a good match with the observed clinical data, although, in the simulation
of DDI between bupropion with desipramine, the predicted DDI was lower than the observed. The
results indicated that RR-hydroxybupropion was a major contributor to the inhibition of CYP2D6 from
bupropion. The inhibitory effect of bupropion on CYP2D6 may be the result of synergistic production of
all stereo-selective parent drugs and its metabolites. Currently, all inhibitors cannot be simultaneously
integrated into the model for simulation. Only four inhibitors can be allowed to integrate into the model
in Simcyp. In addition, the stereo-chemical threohydrobupropion and erythrohydrobupropion may
have different inhibitory contributions compared to non-stereo-chemical, and the in vitro inhibition
rate constants of the stereo-chemical threohydrobupropion and erythrohydrobupropion have not been
reported. The PBPK model of stereo-selective bupropion and its metabolites still need to be further
improved and optimized after obtaining more data in the future.

Overall, we successfully developed a PBPK model to describe the dynamic PK process of
bupropion and its metabolites and understand the involvement and impact of inhibitory metabolites
for DDIs observed in the clinic. The present bupropion PBPK model can be useful for predicting
inhibition from bupropion in other clinical studies. However, the use of the PBPK model for a true
prospective prediction of DDI caused by inhibitory metabolite is still very challenging, as the in vitro
inhibition and human PK data for the metabolite are not routinely generated. To maximize confidence
in the DDI prediction, more information is needed for the inhibitory potency of the metabolites towards
the P450 enzymes.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4923/10/1/1/s1,
Figure S1: Sensitivity analysis results expressed as plasma concentration-time profiles from Simcyp PBPK
model simulations: (A) logP; (B) pKa; (C) fu,mic for formation of hydroxybupropion, (D) fu,mic for formation of
threohydrobupropion, (E) fu,mic for formation of erythrohydrobupropion. The parameter ranges assessed were
logP, 0.33−32.8, pKa, 0.82−14.00, fu,mic, 0.0005−1.
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