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Pharmacological modeling of antiparasitic treatment based on a drug’s pharmacokinetic and pharmacodynamic properties
plays an increasingly important role in identifying optimal drug dosing regimens and predicting their potential impact on con-
trol and elimination programs. Conventional modeling of treatment relies on methods that do not distinguish between parasites
at different developmental stages. This is problematic for malaria parasites, as their sensitivity to drugs varies substantially dur-
ing their 48-h developmental cycle. We investigated four drug types (short or long half-lives with or without stage-specific kill-
ing) to quantify the accuracy of the standard methodology. The treatment dynamics of three drug types were well characterized
with standard modeling. The exception were short-half-life drugs with stage-specific killing (i.e., artemisinins) because, depend-
ing on time of treatment, parasites might be in highly drug-sensitive stages or in much less sensitive stages. We describe how to
bring such drugs into pharmacological modeling by including additional variation into the drug’s maximal killing rate. Finally,
we show that artemisinin kill rates may have been substantially overestimated in previous modeling studies because (i) the para-
site reduction ratio (PRR) (generally estimated to be 104) is based on observed changes in circulating parasite numbers, which
generally overestimate the “true” PRR, which should include both circulating and sequestered parasites, and (ii) the third dose
of artemisinin at 48 h targets exactly those stages initially hit at time zero, so it is incorrect to extrapolate the PRR measured over
48 h to predict the impact of doses at 48 h and later.

Identifying optimal deployment policies and improved drug
stewardship (for example, suppression of monotherapies and

detection of counterfeit drugs) have become major public health
objectives designed to minimize the onset of resistance to the cur-
rently recommended first-line drugs for uncomplicated malaria,
i.e., artemisinin-based combination therapies (ACTs). One
method to identify best practice for their deployment is pharma-
cological modeling of drug action. This has been widely used in
other infectious diseases, notably bacteria (recently reviewed in
reference 1). Its application to malaria treatment is now being
strongly recommended to optimize deployment practices (2, 3),
and the World Health Organization (WHO) has recommended
the development of models to improve the understanding of an-
timalarial drug resistance and management (4). Recent examples
of pharmacological modeling can be found elsewhere (5–17),
although a less mechanistic approach can also be employed by
fitting curves to observed clinical data (e.g., see reference 18).
Pharmacological models have a potentially huge impact in con-
tributing to the rational design and deployment of drug therapies
that can potentially save several million lives annually.

The conventional in silico method of predicting the therapeutic
outcome of malaria treatment is to track the number of parasites
following drug treatment using ordinary differential equations
(ODEs) (e.g., see reference 19) (see discussion of equation 1, be-
low). Some antimalarial drugs can act against liver stages and/or
gametocytes, but it is the asexual blood stages (rings, trophozoites,
schizonts, and merozoites) in human red blood cells (RBCs) that
cause symptoms. In this work, we focus exclusively on modeling
drug action against these asexual blood stages. This approach has
one major inherent drawback when applied to malaria: it assumes
that the malaria parasites within a patient are entirely homoge-
nous, i.e., that all parasites are in identical states so that, given a
certain drug concentration, all parasites are equally likely to be
eliminated by the drug and, if they are not eliminated, are all

equally likely to reproduce. This assumption of parasite homoge-
neity is violated in malaria, where a single infection may harbor
individual parasites that become distinctly heterogeneous as they
pass through their development processes within RBCs. Plasmo-
dium falciparum, the most deadly of the Plasmodium species caus-
ing human malaria (20), has a characteristic 48-h infection cycle
within RBCs. Parasites infect a RBC, establish several membranes
and transport systems to support their subsequent development,
digest and detoxify hemoglobin, and finally initiate DNA synthe-
sis to produce 20 to 40 new parasites that emerge from the RBC
when it ruptures 48 h after its infection. These developmental
processes are reflected in large changes in parasite metabolism.
Critically, drugs are active only against those stages that utilize
metabolic processes targeted by the drugs so that drug stage spec-
ificity occurs. As an example, many partner drugs in ACTs are
believed to target heme digestion/detoxification and are effective
only against trophozoite and schizont stages (21), when rapid
heme digestion is occurring. These partner drugs, however, have
long half-lives and are present at active concentrations for several
48-h cycles after treatment, so parasites pass through all stages in
the presence of the drugs, and the lack of stage specificity in the
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models is not conjectured to be too problematic. Partner drugs in
ACTs are combined with artemisinins. Recent reports on artemis-
inin resistance potentially evolving in Southeast Asia led to an
increased focus on their performance (22–25). It is unknown how
artemisinin resistance may affect clinical impact on therapeutic
outcomes, and reliance on killing effects of the partner drug in
ACTs is imperative. As resistance to these partner drugs starts to
evolve, more pressure is placed on the artemisinin component to
ensure that the ACT remains effective. Clearly, combination drugs
with novel components are necessary. Artemisinins target most of
the stages targeted by partner drugs (trophozoites and schizonts),
but additionally, they also act against ring stages. They also have
marked differences in their potencies against different asexual
blood stages (see discussion of the hypersensitive profile, below)
(Fig. 1). The other key difference is that artemisinins have rela-
tively short half-lives, resulting in their presence at active concen-
trations for only �4 to 6 h posttreatment (15). Patients often
present for treatment with their infections semisynchronized
around a mean developmental age of typically �5 h (e.g., see ref-
erence 14). In these circumstances, the stage specificity of drug
action has an important impact: if a patient presents with parasites
in stages highly sensitive to artemisinin, then the drug will have a
large effect. Conversely, if a patient has parasites that are predom-
inantly in less sensitive stages, then the artemisinin drug action
will be severely compromised.

Several studies have used pharmacokinetic/pharmacodynamic

models that include more than one parasite stage (26–30). How-
ever, to our knowledge, there has been no comprehensive evalua-
tion of the consequences of assuming parasite homogeneity in
conventional continuous-time models. Heterogeneity cannot be
captured by the conventional ODE approach based on a single
compartment for parasite burden in red blood cells, so the estab-
lished method to investigate malaria heterogeneity and drug stage
specificity is to replace the continuous-time/ODE approach with a
discrete-time model using difference equations (6). This ap-
proach, first described by Hoshen et al. (6) and used by others (14,
15, 31), can be briefly summarized as follows: the model tracks
malaria infection by dividing parasite development within RBCs
into 48 “age bins,” with each bin representing 1 h of development.
These discrete-time models therefore require that each patient’s
treatment be described by 48 equations, each of which has to be
updated for each hour of patient follow-up after treatment (typi-
cally up to 63 days [32]). While discrete-time models properly
incorporate parasite heterogeneity in malaria infections, they are
computationally more demanding. Furthermore, they have been
described in principle (6), but to date, there appears to have been
no clear investigation of how they should be applied in practice for
simulation of mass malaria treatment used to optimize deploy-
ment practices (e.g., alternating deployment scenarios such as
age- or weight-based dosing bands or the impact of poor patient
compliance in tens of thousands of malaria patients [13]).

The objectives of this study are therefore as follows. The first
objective was to investigate the validity of previous models of
antimalarial drug treatment that used the continuous-time ap-
proach and therefore accepted the inherent assumptions of para-
site homogeneity (e.g., see references 5, 7–13, 18, and 33). The
second objective was to quantify how much more accurate and/or
less biased discrete-time approaches are and to identify their ap-
propriate calibration from clinical, field, and laboratory studies.
The third objective was to identify computational shortcuts that
improve the accuracy of the continuous-time approach, as the
discrete-time approach is relatively slow even using modern su-
percomputers, so a faster continuous-time approach may provide
rapid analyses appropriate in most research environments.

MATERIALS AND METHODS
For clarity, the methods are presented in a qualitative, intuitive manner so
that the concepts are, hopefully, accessible to nonmodelers. The strategy is
to compare and reconcile the continuous-time and discrete-time ap-
proaches by altering the parasite killing rates to match predicted parasite
numbers between the two approaches. For simplicity, we give details on
monotherapy only; a discussion of how individual drug calibrations can
be combined for combination therapies can be found elsewhere (12). We
assume that drugs have either long or short half-lives and either do or do
not have stage-specific killing. We look at all combinations, giving four
drug types in total:

• “Hypothetical drug 1,” with a long half-life and without stage-spe-
cific killing.

• An ACT “partner drug,” with a long half-life and stage-specific
killing. Typical examples are mefloquine and lumefantrine (killing
in age bins 18 to 40 inclusive) as well as piperaquine (killing in age
bins 12 to 36 inclusive) (15).

• “Hypothetical drug 2,” with a short half-life and without stage-
specific killing.

• An “artemisinin derivative,” with a short half-life and stage-specific
killing.

FIG 1 Pharmacodynamic profiles of antimalarial drugs used in the discrete-
time methodology. The profiles describe the fraction of parasites killed per
hour by the drug for each of the 48-h age bins (i.e., 1 � �b,t from equation 5).
Calibrations are based on an asynchronous, “uniform” parasite infection,
which results in a PRR48 of 103 (lumefantrine, mefloquine, and piperaquine)
or a PRR48 of 104 (artemisinins). We investigated two profiles of sensitivity to
artemisinins. The “isosensitive” profile assumes that all parasite stages are
equally sensitive to artemisinin: this is essentially the same profile as that for
partner drugs but with a wider range of stages being killed. The other “hyper-
sensitive” profile assumes differential artemisinin killing between the stages.
This seems intuitively plausible because drug sensitivity presumably depends
on the metabolic processes taking place at each stage of development and also
reflects recent findings that P. falciparum appears far more sensitive to arte-
misinins in the early ring stages than in later stages (43).
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The two hypothetical drugs have properties that do not match any
existing antimalarial drugs but are investigated for several reasons. First,
hypothetical drugs are investigated to understand and illustrate the gen-
eral principles underlying the treatment dynamics. Second, novel antima-
larial drugs that have these characteristics may eventually be developed.
Third, the methodology is not restricted to malaria: in principle, it can be
used as a general model for treatment of infectious agents with stage
specificity.

The continuous-time and discrete-time approaches must be recon-
ciled so that they yield the same observed killing rates (quantified as the
parasite reduction ratio [see the supplemental material]). All calculations
were performed by using the R statistical software package (version 3.1.1)
(34).

Continuous-time models. The basic method is based on ODEs and is
widely applied for simulating antimicrobial drug treatment (see reference
35 for a review). For malaria, an ODE is used to track the change in
parasite number according to the amount of drug present, i.e.,

dP

dt
� P�a � f�I� � f�C�� (1)

where P is the number of parasites in the infection; t is time after treat-
ment; a is the parasite growth rate (here we assume that each schizont
releases 10 merozoites that successfully reinvade RBCs, giving an a value
of 0.048 per 48 h); f(C) is drug parasite killing, which depends on the drug
concentration, C; and f(I) is the killing resulting from hosts background
immunity. The critical point to note is that P in equation 1 does not
distinguish between parasite developmental stages (which we term age
bins [see below]), so this standard methodological approach cannot ex-
plicitly account for stage-specific drug action. The number of parasites at
time t after treatment (Pt) is obtained by using conventional calculus as

Pt � P0 eat e��
0

t

f�C�dt (2)

where P0 is the number of parasites at the time of treatment, i.e., t � 0 (for
details on how this equation is derived, see, for example, the supplemental
material in reference 11). If the minimum predicted number is �1, then
the infection is assumed to be cleared.

The drug killing function, f(C), usually follows the Michaelis-Menten
equation, i.e.,

f�C� � Vmax � �Ct�n

�Ct�n � IC50
n� (3)

where Ct is the drug concentration at time t (for details, see reference 12),
Vmax is the maximal drug kill rate per hour or per day, IC50 is the concen-
tration at which 50% of maximal killing occurs, and n is the slope of the
dose-response curve. Two factors determine drug killing after treatment
for each drug type: its specific pharmacodynamic profile (Fig. 1) and its
Michaelis-Menten function. The amount of drug killing plateaus at high
concentrations at Vmax (equation 3), so a useful simplification (relaxed in
Section 4 in the supplemental material) is to assume that the drugs are
either present and killing at maximal effect (i.e., Vmax) or present at neg-
ligible concentrations (i.e., essentially absent). This simple presence-ab-
sence assumption seems appropriate for the partner drugs because their
long half-lives mean that they are likely to be present at high concentra-
tions over the period of the stage-specific simulations, typically 4 days (96
h). In the case of drugs with very short half-lives, such as artemisinins, we
simply define a duration of activity posttreatment (the default value being
6 h [15]). This allows the continuous- and discrete-time approaches to be
matched simply by specifying a duration of time that the drug is present
(and killing at maximal effect) posttreatment and matching Vmax in the
continuous-time methodology (equation 3) to its discrete-time counter-
part, V=max (see discussion of equation 4, below): this matching will there-
fore enable the continuous- and discrete-time models to be directly com-
pared.

Discrete-time models. Parasites exposed to drug treatment may be in
any stage of development within their 48-h life cycle in RBCs and hence

differ in their sensibility to the drugs. A conventional method for dealing
with such continuous data is by splitting the data into a computationally
manageable number of discrete “bins.” In principle, there can be any
number and length of bins in the discrete-time model, but here, according
to methods described by Hoshen et al. (6), we use a simple linear approach
and split the 48-h parasite development cycle in RBCs into 48 1-h bins. We
refer to these entities as “bins” or “age bins” interchangeably depending
on the context and need for clarity (note that Hoshen et al. [6] refer to
them as “boxes”). Patients may present for drug treatment with parasites
in an infinite variety of distributions among these 48 bins. If drugs pref-
erentially act against certain age bins in the 48-h cycle, then the distribu-
tion of parasites among the age bins at the time of treatment may have an
impact on the subsequent dynamics of parasite clearance. Consequently,
each patient must have his/her distribution of parasites among age bins
defined at the time of treatment. For illustrative purposes, we identify five
“paradigm distributions” (PD1 to PD5; see Section 1 in the supplemental
material) of infections that differ in distributions at the time of the start of
treatment. Briefly, these are as follows:

• PD1, asynchronous and equally distributed over all age bins

• PD2, mainly in early ring stages with a relatively tight distribution
across age bins

• PD3, mainly in early ring stages with a relatively wide distribution
across age bins

• PD4, mainly in the late ring stages with a relatively tight distribu-
tion across age bins

• PD5, mainly in trophozoite stages with a relatively tight distribu-
tion across age bins

The first step is to define a “pharmacodynamic profile” for each drug
that specifies its parasite killing for each 1-h age bin (Fig. 1). We then
combine the duration of drug killing after treatment with the drug’s phar-
macological profile to identify a value for the maximal drug killing rate,
V=max. These calculations are provided in Sections 2 and 3 in the supple-
mental material and are summarized in Table 1 . The killing in each age
bin, b, at time t is then given as

Vmax
b,t � Yb ZtV�max&ApplyFunction; (4)

where Yb is the pharmacodynamic profile so that, in the simplest case, Yb

equals 1 if the drug kills parasites in age bin b and Yb equals 0 if it does not
kill parasites in that age bin. Zt tracks the drug concentration posttreat-
ment so that Zt equals 1 if the drug is present at time t and Zt equals 0 if the
drug is not present. This allows the proportion of parasites in age bin b, at
time t, that survive the subsequent hour to be calculated as

�b,t � e�Vmax
b,t

(5)

which is used in equations 6 and 7 below to track parasitemia.
A two-dimensional matrix, the “parasite matrix” (PM), tracks the to-

tal number of parasites in each bin for each hour posttreatment. The first
column (t � 1) of the PM holds the initial age bin distribution of parasites
at the time of treatment. The algorithm then simply tracks the number of
parasites in the 48 bins after treatment using the standard index method-
ology dating back to the study by Hoshen et al. (6) and subsequent studies
(e.g., see references 14, 15, 17, and 31); i.e., for every age bin (b) at each
time (t) posttreatment, the algorithm calculates how parasites survive
drug treatment and then moves the survivors on an hour into the next age
bin (i.e., b � 1) and into the next time period posttreatment (i.e., t � 1),
i.e.,

PMb�1,t�1 � PMb,t �b,t (6)

Note that for b � 1, we allow for the production of new parasites at the end
of age bin 48, i.e.,

PM1,t�1 � PM48,t �b,t PMR (7)

where PMR is the parasite multiplication rate, i.e., the average number of
merozoites released from a schizont that successfully infect new RBCs.
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Reconciling the continuous- and discrete-time approaches. The cal-
ibration requires that equivalent killing rates are identified, i.e., Vmax in
equation 3 and V=max in equation 4, so that parasite numbers obtained
from the continuous- and discrete-time methodologies match at the end
of each 48-h cycle (see below). The values of Vmax used in the continuous-
and discrete-time methodologies are distinguished by using a prime sym-
bol for the latter, i.e., V=max. A circumflex above Vmax (V̂max) indicates that
an adjustment has been made for the effects of stage specificity and the
lack of drug killing in nonsensitive stages. A tilde above Vmax (Ṽmax)
indicates that an adjustment has been made for the short half-life of the
drug and the times when the drug is absent (and hence not killing) during
the 48-h (or 96-h) census period.

The parasite reduction ratio (PRR) is conventionally measured in the
clinic as the number of (observable) parasites present at the time of treat-
ment divided by their number 48 h later. The continuous- and discrete-
time models can be calibrated by using PRR as a metric of drug killing by
making allowances for the drug’s half-life and the susceptible parasite age
bins. The basic equations are given in Table 1, which shows how the kill
rate calibrations depend on the amount of drug killing (i.e., PRR), the
duration posttreatment that the drug is active, and parasite growth rate, a.
In the case of discrete-time modeling, it also captures the number of age
bins in which killing occurs (q).

A problem arises with the “artemisinin drug,” as it is impossible to
match max,48 and =max,48 such that continuous- and discrete-time
models give identical parasite numbers at the end of each 48-h cycle (see
below). This mismatch arises because the age bin distribution at the time
of treatment has a large effect on subsequent dynamics, so max and
=max had to be matched by using the parasite reduction ratio predicted

to occur over 96 h (PRR96), i.e., the number of parasites present at the time
of treatment divided by the number 96 h later. The calculations required
for this are given in Section 3 in the supplemental material.

Parameterization of models. We used previously reported results
where available and attempted to identify plausible values otherwise. In all
cases, we use rather than endorse these calibrations, so this approach
makes it straightforward for readers to calibrate the simulations according
to their own local clinical and epidemiology settings.

Simulation of artemisinin treatment in patient populations using
continuous-time models. The methods described above allowed us to
calibrate the continuous-time method such that it captures the effects of
stage specificity. The obvious practical application of the new methodol-
ogy is to simulate the deployment of ACTs for mass treatment of patients
and to assess the impact of stage specificity on predicted population-wide
drug effectiveness; the latter has been missing from previous analyses.
This source of variation has not been incorporated into previous simula-
tions of ACT treatment (e.g., see references 11 and 12), so we need to
incorporate and assess its likely impact on the predicted treatment out-
comes. We do this by rerunning our previous simulations of artemether-
lumefantrine (AM-LF) and artesunate-mefloquine (AS-MQ) treatment
(12). The process for doing so is described in Section 3 in the supplemen-

tal material. In brief, we ran the model for multiple patients to determine
the population PRR96 and used this to obtain a continuous-time approx-
imation for =max,96. This new estimate of =max,96, and its associated
interpatient variability, was then incorporated into mass simulations of
ACTs to account for the stage-specific effects of the artemisinin compo-
nent.

RESULTS
Continuous-time and discrete-time models for different types
of drugs. The parasite numbers predicted by the continuous-time
and discrete-time models for a drug with a long half-life that kills
all parasite stages (hypothetical drug 1) are compared in Fig. 2A.
The lack of stage-specific killing means that variation around the
continuous-time approximation is due solely to differences
caused by parasites reproducing at the end of their 48-h cycle.
Infections that were initially in late age bins, such as PD5, will
rupture and produce new parasites (merozoites) early in the 48-h
census period, so parasite numbers will remain higher than the
continuous-time prediction over most of the census period. Those
infections that were initially in early age bins of the cycle, such as
PD2, release merozoites late in the 48-h census period, so their
numbers will usually lie below the continuous-time approxima-
tion. As expected, all predicted numbers converge to the same
value at the end of each 48-h census period.

Figure 2B compares parasite numbers predicted by the contin-
uous-time and discrete-time models for a drug with a long half-
life that has stage specificity. The example shown in Fig. 2B is for
the “lumefantrine” pharmacodynamic profile, but similar results
were obtained for the “piperaquine” profile (see Fig. S3 in the
supplemental material). The major difference between the data in
Fig. 2A and B is that in Fig. 2B, the effect of stage specificity is
added to the effect of initial age bin distributions, and the variation
around the continuous-time approximation is substantially in-
creased compared to that shown in Fig. 2A. The patterns of vari-
ation can be understood as the interaction between these two ef-
fects. In an infection with parasites that are predominantly in late
age bins at the start of treatment (e.g., PD5), some parasites are
killed, but many parasites survive to rupture and release merozo-
ites that are then unaffected by the drug for the next 18 h (Fig. 1).
Consequently, parasite numbers in an infection with PD5 stay well
above the continuous-time approximation for the whole census
cycle. When parasites are mainly in early bins (e.g., PD2) at the
time of treatment, they are not affected by the drug, and their total
number is initially above the approximation until the time point
when the parasites start to enter the sensitive bins (at 18 h), where

TABLE 1 Drug killing rates for the continuous-time and discrete-time modelsa

Drug Half-life
Stage
specificity Continuous-time model Discrete-time model

Hypothetical drug 1 Long No Vmax � ln(PRR48)/48 � a V=max � ln(PRR48)/48 � a
Partner drug Long Yes V̂max � ln(PRR48)/48 � a V̂=max � V̂max 48/q
Hypothetical drug 2 Short No Ṽmax � [ln(PRR48) � 48a]/ta Ṽ=max � [ln(PRR48) � 48a]/ta

Artemisinin derivative PRR48 calibration Short Yes max,48 � [ln(PRR48) � 48a]/ta =max,48 � max,48 48/q
Artemisinin derivative PRR96 calibration Short Yes max,96 � [ln(PRR48) � 96a]/3ta Obtained by iteration
a a is the instantaneous parasite growth rate over the 48-h parasite RBC cycle, PRR48/PRR96 is the reduction in parasite number over 48 or 96 h (i.e., one or two parasite RBC cycles)
following drug treatment (the value is different for each drug but identical for both models when used for the same drug), q is the number of 1-h bins during which killing occurs,
and ta is the duration of drug action after each dose. Shown are the equations required to convert the discrete-time model to its continuous-time equivalent for a single patient, i.e.,
to match the maximal parasite kill rate (Vmax in equation 3) in the instantaneous model to its equivalent V=max value in the discrete-time model (equation 4), the latter being
denoted by the prime symbol. The circumflex or tilde above Vmax indicates whether adjustment has been made for the effects of stage specificity or short half-life, respectively, to
compensate for the lack of drug killing in nonsensitive stages and times when the drug is not present during the 48-h (or 96-h) census period.
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intense killing brings their total number down below the number
predicted by the continuous-time model. Parasites initially dis-
tributed according to PD4 suffer badly from both effects, as their
mean age is 20.5 h; i.e., parasites are initially killed very effectively
by the drug, and only when significant rupture and release of
merozoites occur at around 20 h posttreatment does their number
start to reconverge toward that predicted by the continuous-time
model.

Figures 2C and D compare parasite numbers predicted by the
continuous-time and discrete-time models for a drug with a short
half-life that kills all stages (i.e., hypothetical drug 2). The major
difference between data in Fig. 2A (hypothetical drug 1) and those
in Fig. 2C and D is that hypothetical drug 2 persists for only a
relatively brief period after treatment. The short half-life means
that such drugs would probably be given repeatedly, so the dy-
namics are shown for both a single dose (Fig. 2C) and three re-

peated doses (Fig. 2D). Parasite numbers initially fall rapidly, and
their subsequent recovery is then driven by the same dynamics as
those for longer-half-life drugs without stage specificity (Fig. 2A);
i.e., parasite numbers in PDs with a high mean (e.g., PD5) multi-
ply sooner in the 48-h census period and are thus usually higher
than predicted by continuous-time models, while those in PDs
that have a low mean (e.g., PD2) multiply later in the 48-h census
and are thus usually lower than predicted. Critically, all PDs and
the continuous-time approximation reconverge at the end of each
48-h cycle.

Figure 3 compares the continuous-time and discrete-time
models for a drug with a short half-life with the stage-specific
characteristics of the artemisinin class of drugs. It is extremely
difficult to capture the posttreatment dynamics by a single con-
tinuous-time equation because of the impact of an infection’s age
bin distribution at the time of treatment. Figure 3 used the con-
tinuous-time approximation with a max,48 calibrated from PD1
(using Equation S16 in the supplemental material). Note that, for
instance, PD4 is very poorly captured by this approximation, and
importantly, the parasite numbers do not reconverge every cycle
(Fig. 3A in contrast to 2A to D), so the mismatch will be perpetu-
ated over subsequent cycles (Fig. 3B). This makes it necessary to
use a different continuous-time calibration for each of the five
paradigm distributions by using the approach leading to Equation
S26 in Section 3 in the supplemental material (Fig. 4). Slight dif-
ferences between the discrete- and continuous-time methods for
each paradigm distribution occur, but importantly, the continu-
ous- and discrete-time methods always reconverge after 96 h (Fig.
4), irrespective of the age bin distribution at the time of treatment
(the panels in Fig. 4 illustrate five very different starting age bin
distributions), and every 48 h thereafter, as shown in Fig. S4 in the
supplemental material. The first convergence occurs after 96 h
because parasite killing of artemisinins has to be calibrated over a
96-h period (rather than the 48-h period for the other examples).
The convergence in subsequent 48-h census periods is due to the
match in the PMR.

Mass simulations of treatment. We replicated our recent mass
simulation of AM-LF and AS-MQ treatment (12) to include the
stage-specific drug action of artemisinins by allowing an addi-
tional 2-fold variability around the artemisinin max,96 (see Equa-
tion S28 in the supplemental material). Its inclusion made very
little difference in the results (see Fig. S5 and S6 and Table S2 in the
supplemental material): cure rates using our original mean

max,96 of 27.6 per day changed from 84.74% to 84.13% for
AS-MQ and from 92.29% to 91.76% for AM-LF. There was sim-
ilarly a very small effect of stage specificity when we reduced the
artemisinin max,96 to 14.6 per day (the reasons for using this
lower artemisinin max,96 are explained below).

DISCUSSION
Comparison of outputs from continuous-time and discrete-
time models for different types of drugs. The calibrations pre-
sented in the supplemental material and summarized in Table 1
enabled the continuous- and discrete-time methods to be cali-
brated in an equivalent manner. This allowed us to investigate the
extent to which the continuous-time approximation captures the
more biologically realistic discrete-time models.

Initial investigations used the simplest example of hypothetical
drug 1, which is assumed to have a long half-life and kill all age
bins. This isolated the effect of replication at the end of the RBC

FIG 2 Changes in parasite numbers following treatment. The graph shows the
number of parasites over time posttreatment. Parasites present at the time of
treatment were distributed among age bins according to PD1 to PD5 (see
Section 1 in the supplemental material). Note that the number of parasites is
the true number, i.e., circulating plus sequestered, plus 1 [it is conventional to
plot parasites � 1 when using a log scale because log(0) is undefined]. (A) Drug
with a long half-life and equal killing in all age bins (e.g., hypothetical drug 1).
This was produced by using the pharmacodynamic profile of hypothetical
drug 1. The discrete-time model used a drug killing rate, V=max, of 0.1919 and
a Yb of 1 for age bins 1 to 48, and the continuous-time model used a drug killing
rate, Vmax, of 0.1919. (B) Drug with a long half-life and stage-specific killing
(e.g., lumefantrine). This was produced by using the pharmacodynamic pro-
file of the drug lumefantrine. The discrete-time model used a drug killing rate,
V̂=max, of 0.4005, a Yb of 1 for age bins 18 to 40 inclusive, and a Yb of 0 for age
bins 0 to 17 and 41 to 48 inclusive, and the continuous-time model used a drug
killing rate, V̂max, of 0.1919. (C) Drug with a short half-life and equal killing in
all age bins (i.e., hypothetical drug 2), given as a single dose and assuming that
the drug is present and acting at maximal killing for 6 h posttreatment (15).
The discrete-time model used a drug killing rate, Ṽ=max, of 0.1919; a Yb of 1 for
age bins 1 to 48; and a Zb of 1 for the 6 h that the drug was present, and the
continuous-time model used a drug killing rate, Ṽmax, of 1.919 for a single dose
administered at time zero (green arrow). (D) Same as for panel C but with
three doses administered at 0, 24, and 48 h (green arrows).

Modeling Stage Specificity of Antimalarials

May 2016 Volume 60 Number 5 aac.asm.org 2751Antimicrobial Agents and Chemotherapy

http://aac.asm.org


life cycle to be the only difference between the continuous- and
discrete-time approaches. Results suggest that replication solely at
the end of the 48-h cycle introduced only a small amount of vari-
ation around the treatment dynamics predicted by a continuous-
time approach (Fig. 2A). The discrepancy between predicted and

actual numbers is small, about plus/minus half a log10 unit, and,
importantly, is constant over subsequent cycles. The latter point is
important because the infection is deemed to have been cleared if
the expected number of parasites falls below 1, and the variation
around the predicted parasite number at that point is relatively

FIG 3 Changes in parasite numbers following treatment by a drug with a short half-life and stage-specific killing (e.g., artemisinin derivative). This was produced by
using the isosensitive pharmacodynamic profile of the artemisinins (Fig. 1) and assuming that the drug is present and acting at maximal killing for 6 h after each dose (15).
Artemisinins are simulated as a monotherapy for clarity. They can later be combined to simulate combination therapies (12), so parasite numbers start to increase shortly
after the final dose. Parasites present at the time of treatment were distributed among age bins according to PD1 to PD5 (see Section 1 in the supplemental material). The
continuous-time model used a single-drug killing rate, max, of 0.52408, i.e., the one calibrated to give a PRR48 of 104 for a uniform distribution (Table 2). Note that the
number of parasites is the true number, i.e., circulating plus sequestered, plus 1 [it is conventional to plot parasites�1 when using a log scale because log(0) is undefined].
(A) Dynamics in detail up to 96 h; (B) how parasite numbers remain separate thereafter.

FIG 4 Changes in parasite numbers following treatment by a drug with a short half-life and stage-specific killing with continuous-time approximation corrected
for patients’ differing bin distributions at the time of treatment. This was produced by using the isosensitive pharmacodynamic profile of the artemisinins (Fig.
1) and assuming that the drug is present and acting at maximal killing for 6 h after each dose (15). Parasites present at the time of treatment were distributed
among age bins according to PD1 to PD5 as described in the text. Unlike Fig. 3, the discrete-time analysis of stage specificity and its continuous-time
approximation reconverge at 96 h for each paradigm distribution. The artemisinins have disappeared from the circulation by this time, so the continuous-time
approximation captures the total amount of artemisinin drug killing. These examples use the continuous-time kill rate, max,96, appropriate for each distribution
(Table 2), i.e., a max,96 of 0.524 for PD1 (A), a max,96 of 0.591 for PD2 (B), a max,96 of 0.518 for PD3 (C), a max,96 of 0.837 for PD4 (D), and a max,96 of
0.588 for PD5 (E). Note that the number of parasites is the true number, i.e., circulating plus sequestered, plus 1 [it is conventional to plot parasites � 1
when using a log scale because log(0) is undefined].
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low, suggesting that the continuous-time approximation for ther-
apeutic outcome (i.e., cure/fail) should be applicable for this type
of drug. Our (subjective) interpretation of these results is that the
assumption of continuous replication is unlikely to have a signif-
icant impact on the results from studies where drugs lack stage-
specific activity.

The next step was to add stage-specific drug action to a long-
half-life drug (i.e., the ACT partner drugs). This combined the
impact of stage specificity with that of replication occurring only
at the end of the 48-h life cycle. The results are illustrated in Fig.
2B. As might be expected, stage specificity introduces considerably
more variation around the continuous-time approximation.
These are important examples, as they characterize an antimalar-
ial “partner” drug whose treatment has been previously examined
by using a continuous-time approach by both us (e.g., see refer-
ences 11–13) and others (e.g., see references 7, 10, and 33). An
important, and long overdue, question is the extent to which the
continuous-time approach truly predicts the drug posttreatment
parasite dynamics. We would argue, again subjectively, that the
approximation is good. The key factors are that the variation dis-
appears every 48 h and that it scales with parasite number such
that the maximum deviation is around 2 log10 units, i.e., a factor of
100. The continuous-time approach defines the infection as
“cured” when the predicted number of parasites falls below 1.
Figure 2B and Fig. S3 in the supplemental material suggest that
this may arise if the predicted number was within 2 log10 units on
either side, i.e., from 0.01 to 100. It seems intuitively likely that
discrepancies of this relatively small magnitude would rarely
occur and, consequently, that continuous-time simulations would
be accurate. This argument also assumes the worst-case scenario,
i.e., that the drug instantaneously disappears at exactly the point
when the discrepancy is maximal. In reality, the smooth transition
from maximum killing to ineffective concentrations would likely
help smooth out the discrepancies.

The third drug class investigated was drugs with a short half-
life and without stage-specific killing (i.e., hypothetical drug 2).
The short half-life means that parasite numbers initially fall rap-
idly but recover once the drug is not present anymore (Fig. 2C and
D). The change in parasite number is driven by the same dynamics
as those of longer-half-life drugs without stage specificity (Fig.
2A), and the continuous-time approximation reconverges at the
end of each 48-h cycle. This reconvergence plus the relatively small
deviations between the model types suggest that, should such an
antimalarial be discovered and deployed, the continuous-time
methodology would be an appropriate simulation method.

Finally, the effects of short half-life, stage-specific killing, and
replication only at the end of the 48-h cycle were investigated (i.e.,
the artemisinin derivatives). The implications are much more se-
rious for the continuous-time approach. Figure 3 shows the dy-
namics of artemisinin treatment: the deviation from the continu-
ous-time approximation is larger, e.g., �3 log10 units or 103-fold
in the case of PD4, and critically, the deviation does not periodi-
cally disappear (as it does every 48 h for partner drugs) (Fig. 2B;
see also Fig. S3 in the supplemental material). Consequently, de-
viations persist over time and will plausibly have an impact on the
predicted therapeutic outcome. In our opinion, this is an unac-
ceptable level of divergence, and we conclude that artemisinin
treatment cannot be adequately modeled in the same way as the
other drugs because the initial age bin distribution at the time of
treatment has such a large effect on the PRR.

Figure 4 shows that a continuous-time approximation cali-
brated for initial bin distribution accurately tracks killing over the
two 48-h parasite life cycles that artemisinins are present and sup-
ports our assertion that the use of infection-specific continuous-
time kill rates, max,96 (see Fig. S7 in the supplemental material),
can capture the variation introduced into posttreatment dynamics
by patients’ differing age bin distributions at the time of treat-
ment. The essence of our argument is that the effects of differing
bin distributions at the time of treatment can be incorporated
simply by inflating the variation in a drug’s maximal kill rates.

Estimates of artemisinin kill rates. The inclusion of stage
specificity into our recent mass simulation of AM-LF and AS-MQ
treatment (12) made very little difference in the results (see Fig. S5
and S6 and Table S2 in the supplemental material). There was
similarly a very small effect of stage specificity when we reduced
the artemisinin max,96 to 14.6 per day (the reasons for investigat-
ing this reduced max,96 are explained below). The analyses show
that artemisinin kill rates ( max,96 of �0.6 per h) (Table 2; see also
Fig. S7 in the supplemental material) are much lower (by a factor
of �2) than estimated in our previous studies, which used values
of 27.6 per day (12, 13), equivalent to 1.15 per h (i.e., 27.6/24).
There appear to be two underlying reasons for this: one is the use
of the PRR to calibrate the killing and the other is the extrapola-
tion of the PRR to overall kill rates (each is discussed below).

Previous simulations of artemisinin treatment were calibrated
by using the observed PRR (i.e., the reduction in circulating and
sequestered parasites) of �104 as reported in the literature and
defined as the reduction in the number of parasites observed in the
peripheral blood by microscopy. This is potentially misleading
because it does not capture changes in the number of sequestered
parasites. Our simulations allow us to calculate both “apparent”
and “true” PRRs and suggest that the apparent PRR48 is substan-
tially higher than the true PRR48 (Table 2). The effect of short
pulses of stage-specific artemisinin killing on observable, circulat-
ing parasites (age bins up to 14) and sequestered parasites (age
bins 15 and above), and, hence, on the observed PRR, varies

TABLE 2 Impact of age bin distribution at time of treatment on
continuous-time artemisinin kill ratesa

Distribution
(mean, SD [h])

True
PRR48

Apparent
PRR48

True
PRR96

Apparent
PRR96

Kill rate
( max,96)

PD1 (uniform) 541 10,054 125 14,268 0.52408
PD2 (10.5, 5) 2,032 20,024 416 34,692 0.59085
PD3 (10.5, 10) 518 11,873 112 17,533 0.51776
PD4 (20.5, 5) 324 84,293 34,822 8,770,475 0.83684
PD5 (35.5, 5) 1,889 3,069 397 3,145 0.58822
a The true PRR is the reduction in the total number of parasites, and the apparent PRR
is the reduction in observable (i.e., nonsequestered and, thus, circulating) number of
parasites per 48 or 96 h. A discrete-time artemisinin kill rate ( =max,48 � 1.164) was
obtained, which gave an apparent parasite reduction ratio (PRR48) of �104 (actually
10,054) by using the following assumptions: (i) there is a uniform age bin distribution,
(ii) three doses of an artemisinin are given at 0, 24, and 48 h (although, obviously, only
the first two doses contribute to the PRR48) and persist for 6 h following each dose, (iii)
there is an isosensitive pharmacodynamic profile (14), and (iv) parasites immediately
disappear from the circulation at age bin 14 (see the supplemental material for
methodological details and Table S1 in the supplemental material for more results). The
continuous-time-equivalent artemisinin drug kill rate ( max,96) is calculated from the
true PRR96 by using Equation S26 in the supplemental material. Note that the discrete-
time kill rates are identical for each row ( =max,48 � 1.164) so that the variation in the
continuous-time kill rate ( max,96) is caused solely by the differences in age bin
distribution at the time of treatment. The dynamics of treatment are shown in Fig. 4.
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greatly depending on the initial age bin distribution of the para-
sites (see Fig. S10 and S11 in the supplemental material).

The second factor behind the discrepancy in artemisinin max-
imal kill rates arises because, in vivo, the PRR is typically measured
over 48 h. This omits the impact of the final dose at 48 h, and it is
assumed that the results for the first two doses (which determine
the PRR) may be extrapolated for the third dose. However, a dose
of artemisinin given 48 h after the first dose will affect exactly the
same age bins already targeted by the first dose. Consequently, this
third dose is likely to have much less of an impact than the first two
doses. Calibration against PRR48 captures the effects of only the
first two doses and will thus overestimate the impact of the third
dose. Calibration against PRR96, as done here, incorporates the
reduced impact of the third dose, and so the estimated artemisinin
kill rates, max,96, are further reduced.

As may be expected, this reduction in the artemisinin kill rate
may have a significant impact on simulated drug effectiveness.
Our mass simulations based on previous work (12) show that
reducing the max,96 from 27.6 to 14.4 per day (i.e., 24 � 0.6 �
14.4 to convert hourly to daily kill rates) roughly doubled the
number of predicted treatment failures (see Table S2 in the sup-
plemental material).

Impact of stage specificity on mass simulations of ACT treat-
ment. Incorporation of the 2-fold variation caused by age bin
distributions again had a negligible effect, as seen with the higher
kill rate. The underlying reason appears to be that this 2-fold vari-
ation adds very little to the natural variation in parasite sensitivity
to the drug’s max,96, whose coefficient of variation (CV) was
assumed to be 0.3 (12) (this is shown in Fig. S5 and S6 in the
supplemental material). Recall that we first sampled max,96 from
a normal distribution to reflect the natural variation among par-
asites in their max,96 values; the resulting simulated distributions
are shown as rows A and C in Fig. S5 and S6 in the supplemental
material. We then resampled max,96 from a 2-fold range around
this selected value to allow for differences in the age bin distribu-
tion of infections at the time of treatment (see Fig. S7 in the sup-
plemental material); the distributions of these resampled values
are shown in rows B and D in Fig. S5 and S6 in the supplemental
material. Note that the variation increases slightly as this 2-fold
effect is included and that the distribution becomes slightly more
right-skewed. The skew arises because the uniform distributions
are scaled against the selected value of max,96 (see Equation S28 in
the supplemental material), so high values (at the right-hand side
of the distribution) have higher additional variation that tends to
slightly skew the distribution at this side. The important point is
that the variation in max,96 values increases only marginally in
rows A and C versus rows B and D in Fig. S5 and S6 in the supple-
mental material. In effect, it appears that the additional variation
introduced by artemisinin stage-specific killing and its short half-
life is largely incorporated into the natural background version in

max,96 so that the impact on cure rates, at least in our examples, is
negligible (see Table S2 in the supplemental material).

Variation in age bin distributions at the time of treatment
therefore appears to have little impact on our simulations, but
there is no guarantee that this will be the case in all studies, and it
is good practice to incorporate this effect if possible. The results
shown in Fig. S7 in the supplemental material suggest a general
rule of thumb: in the absence of any better information, the nat-
ural variation in the artemisinin kill rate, max,96, should be aug-
mented 2-fold to incorporate age bin variation in patients at the

time of treatment. Our mass simulation, however, showed that the
addition of this variability to an individual’s drug killing rate,

max,96, did not affect predicted cure rates (see Table S2 in the
supplemental material). The natural variation around the mean of

max,96 is so large (i.e., CV � 0.3) that the distribution of the
patients’ max,96 barely changes when the correction for stage
specificity is added (see Fig. S5 and S6 in the supplemental mate-
rial).

Impact of adherence. The simulations assumed full patient
adherence to 24-h dosing intervals. However, in practice, patients
may miss a dose, delay a dose by several hours, or finish treatment
early. We investigated adherence in a previous report (13) but
assumed that artemisinin doses were all equally effective. In real-
ity, the impact of dose timing and the fact that the third dose of the
artemisinin appears to have less of an impact suggest that a more
nuanced approach could be used to investigate the impact of poor
adherence. This could be incorporated in the same way as the
effects of the initial bin distribution, i.e., by simulating a range of
initial age bin distributions with a range of adherence patterns,
computing PRR96 for each patient within the population, and us-
ing this to generate the distribution of max,96 analogous to that
shown in Fig. S7 in the supplemental material, which also incor-
porates the effect of adherence patterns.

Conclusions. The potential impact of age bin distribution on
drug treatment may be obvious in retrospect. In fact, it is not a new
idea but seems to have been lost in the artemisinin era (just when
it was most relevant). The stage-specific action of antimalarials has
been investigated since the early 1980s (21, 36, 37), so it is there-
fore not surprising that chronotherapy for malaria, i.e., the science
of the timing of drug application so as to achieve optimal thera-
peutic success for the treatment of disease, is an old idea (38).
Following the administration of an ACT, the partner drug is pres-
ent in a patient’s blood at concentrations above the MIC over
several parasite life cycles of 48 h (39), so it is therefore unlikely
that the timing of partner drug application would affect treatment
outcome (Fig. 2B). However, the artemisinins are present in the
blood at concentrations above the MIC only during a very short
period of time, i.e., 4 to 6 h (15), and chronotherapeutic consid-
erations seem justified (Fig. 3). It is difficult to envisage exactly
how this would be achieved in practice (it would be unethical to
delay treatment), but more frequent dosing with artemisinins, as
occurs in the twice-per-day regimen of AM-LF treatment, may
help in this respect and deserves further investigation. As men-
tioned above, the WHO recently recommended the use of math-
ematical models of antimalarial chemotherapy for a better under-
standing of drug resistance and its management (40). The
advantage of mathematical models is that they can overcome
some of the experimental, ethical, or logistic issues associated with
in vitro experiments or clinical trials on the stage specificity of
antimalarials.

The discrete-time methodology will remain the “gold-stan-
dard” simulation method, but we believe that continuous-time
methods will continue to be used in the foreseeable future because
they offer a substantial increase in computational speed with, as
we show in this study, no compromise in the validity of their
results. The increase in speed arises because the discrete-time
models track 48 parasite developmental “bins,” each of which has
to be updated every hour (i.e., 24 times per day). In contrast, the
continuous-time method tracks only the total number of parasites
and, for most malaria drugs, is updated only daily. The ratio of
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computations (and, hence, basic speed) is therefore 1:(48 � 24),
making the continuous-time approach 	1,000-fold faster (with
the exception of artemether-lumefantrine, which is administered
twice daily, in which case the computational advantage halves to
�500-fold). Moreover, this simple calculation ignores the com-
putational opportunity of time-saving by using calculus to project
forward after the final dose in the continuous-time methods (see
the appendix in reference 7). In crude terms, this means that the
continuous method can run overnight (half-day) what the dis-
crete-time method would take around a year to achieve. These
simulations are highly suitable for parallel or batch processing
over multiple computer cores, but no matter how many batches or
cores are used, the 500- to 1,000-fold speed advantage still
remains. Computational speed is important because malaria
simulations have grown increasingly complex to take advan-
tage of increased computational power, and large-scale model-
ing is envisaged to play a significant role in optimizing malaria
control and elimination programs (3). For example, we have
embedded a continuous-time methodology of drug treatment
into the large-scale OpenMalaria microsimulation of malaria ep-
idemiology (e.g., see references 41 and 42). Testing of various
permutations of malaria epidemiology, transmission, and clinical
practices typically takes 2 to 3 weeks to complete, so computa-
tional speed remains a priority in such situations. Similarly, inves-
tigating the large number of different permutations of age- and
weight-banding patterns under a variety of target dose ranges (in
milligrams per kilogram of body weight) (see reference 13) is com-
putationally intensive, and a 500- to 1,000-fold increase in speed is
extremely valuable in this context. What this paper has achieved is
to validate a methodology, with particular relevance for artemis-
inins, that offers an extremely large increase in computational
speed and that confirms the validity of previous analyses using the
continuous-time approach.

This piece of work is overdue and ideally would have been
performed before undertaking the mass simulations of malaria
treatment that ignored stage specificity (we consider ourselves as
guilty as anyone in this respect). It is interesting that the sizes of the
impacts of the three features of stage specificity are in reverse order
of those anticipated at the start of this work. Stage specificity of
artemisinin killing inflates the variance associated with treatment
but is largely lost in the context of “natural” parasite variation in
drug sensitivity (see Fig. S5 and S6 in the supplemental material)
and had little impact on our predicted ACT effectiveness (see Ta-
ble S2 in the supplemental material). Stage specificity and the long
half-life of partner drugs have some impact on the minimum
number of predicted parasites and, hence, the predicted therapeu-
tic outcome, but the likely size of this effect seemed small and can
be monitored by recording the minimum number of predicted
parasites in each patient (see Table S2 in the supplemental mate-
rial). The largest effect arose from the combination of sequestra-
tion and a reduced impact of the third dose of artemisinin. This
led to the estimated artemisinin killing being around half that
obtained previously from a cruder interpretation of the PRR over
48 h (i.e., assuming that all parasites are observable) and had a
large impact on predicted cure rates (see Table S2 in the supple-
mental material). However, we stress that these are initial conclu-
sions based on a reanalysis of some of our previous simulations of
ACT treatment with the specific pharmacokinetic/pharmacody-
namic calibrations described above. Our explicit objective here
was to develop and present the computational techniques neces-

sary to bring stage specificity into mass simulations of drug treat-
ment regimens. In order to maintain a publication of manageable
size, we chose not to undertake a systematic investigation of pa-
rameter space. We have attempted to be as transparent and flexi-
ble as possible so that users can easily calibrate and apply the
techniques to their own particular settings and simulations. We
strongly recommend that stage specificity be explicitly considered
in simulations of malaria treatment and look forward to the re-
sults obtained from other studies.
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