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Formal derivation of the Laughlin 
function and its generalization 
for other topological phases 
of FQHE
Janusz E. Jacak 

Using the braid symmetry we demonstrate the derivation of the Laughlin function for the main 
hierarchy 1/q of FQHE in the lowest Landau level of two-dimensional electron system with a 
mathematical rigour. This proves that the derivation of Laughlin function unavoidably requires some 
topological elements and cannot be completed within a local quantum mechanics, i.e., without global 
topological constraints imposed. The method shows the way for the generalization of this function 
onto other fractions from the general quantum Hall hierarchy. A generalization of the Laughlin 
function is here formulated.

Correlations in multi-electron systems are induced by the interaction of electrons which can drive various types 
of collective system organizations. In conventional scheme of phase transitions the correlated multiparticle state 
is assigned by local order parameter linked to a mass operator in some channel of coherent scattering of electrons 
and associated with a spontaneous breaking of some symmetry. In a superconductor, the U(1) gauge symmetry is 
broken via Cooper pairing. The related gap in single-particle spectrum plays the role of an order parameter and 
occurs due to binary attraction of electrons on the Fermi surface by virtue of exchange of  phonons1,2. Breaking 
of spin rotation symmetry results in magnetic ordering in spin interacting systems in Heisenberg or Ising chan-
nels with local magnetization as the order  parameter3. In ordered phase the Goldstone-type gap-less collective 
excitation usually occurs which restores the lost  symmetry4. Nevertheless, in 2D systems these Goldstone modes 
disrupt the long range correlations at nonzero temperatures according to Mermin-Wagner  theorem5,6, which 
dismisses a conventional phase transition in planar systems. Instead, a topological type ordering can occur in 
2D multi-electron systems with most famous Kosterlitz-Thouless scheme for a phase  transition7. Topological 
correlations are neither assigned by a local order parameter nor assisted with a symmetry breaking. To this class 
of topological phases belong also correlated states of fractional quantum Hall effect (FQHE) in 2D multi-electron 
systems exposed to quantizing perpendicular magnetic  field8. FQHE has been experimentally discovered in 
 19829 by Tsui, Stormer and Gossard in GaAs 2DES and the multiparticle wave function for the corresponding 
correlated state has been proposed by Laughlin in  198310. Both these achievements have been distinguished with 
the Nobel prize in 1998.

The Laughlin function has been, however, proposed without a  derivation10,11 in order to distinguish in a 
phenomenological manner the state of interacting 2D electrons at fractional filling of the lowest Landau level 
(LLL) from the gaseous system described by the Slater function constructed of single particle Landau states for 
the case of the completely filled LLL without interaction. This proposition resolved itself to the substitution of 
the Vandermonde polynomial, 

∏N
i,j;i>j(zi − zj) , in the Slater function for completely filled LLL of noninteracting 

2D electrons by the Jastrow polynomial, 
∏N

i,j;i>j(zi − zj)
q , where q is an odd integer and zi is the i-th electron 

position on the plane expressed as the complex number. Such a function is not any more the Slater determinant 
but it occurred to be an almost perfect approximation of the ground state for interacting electrons at fractional 
filling ν = 1

q of the LLL, which has been verified with accuracy ca. 99% by exact diagonalization of the Coulomb 
interaction in toy planar system with 3  electrons10,11, and next also verified for higher number of electrons, up. to 
ca 20. Though some additional motivation by thermodynamic analogy have been  presented10,12, none derivation 
of the Laughlin function has been provided. The lack of the derivation of the Laughlin function causes the basic 
problem with understanding of the physics related to the described by this function FQHE states, interpreted 
also only phenomenologically, e.g., using the model of composite fermions, hypothetical particles composed of 
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electrons and attached to them quanta of flux of auxiliary but fictitious magnetic  field13. Other various trials to 
derive or interpret the Laughlin function have been also undertaken, including conformal field theory approach 
using so-called Chern-Simons gauge  field14–16, vortex approach by  Read17, multi-component development of the 
Laughlin function by  Halperin18, pseudopotential approximation by  Haldane19 or algebraic approach using Jack 
 polynomials20, chiral boson approach and others. In particular, it has been proved that the Laughlin function with 
the exponent q in the Jastrow polynomial is the exact ground state if the so-called Haldane pseudopotentials (the 
matrix elements of Coulomb interaction of an electron pair with relative angular momentum m) are neglected 
for m > q− 219,21. All these approaches did not, however, supply a complete derivation of the Laughlin function.

In the present paper we formulate the derivation of the Laughlin function with the mathematical rigour from 
the first rules utilizing the braid symmetry of multi-electron interacting 2D systems in the presence of magnetic 
field. We base on our formerly developed braid group approch to  FQHE8,22, but the detailed derivation of the 
Laughlin function is original. The method occurs to be sufficiently meaningful for the generalization of the 
derivation onto other filling fractions at which FQHE effect has been observed apart from simple fractions 1q , 
and for which the analytical exact wave-function-forms of the multiparticle ground states have not been known. 
We propose a general form of the multi-electron wave function for various homotopy phases of interacting 2D 
electrons corresponding to an arbitrary filling fraction from the general hierarchy of FQHE in the LLL, again 
with all the details presented for the first time in general case and for explicit examples related to the filling frac-
tions both of composite fermion type and of so-called enigmatic FQHE states in the LLL. The energies of these 
exemplary fractional states have been assessed for varying number of electrons.

Landau levels at rotational symmetry gauge
For the symmetric gauge of magnetic field B = (0, 0,B) perpendicular to a plane (x, y),

the rotational invariance is preserved (infinite planar multi-electron system exposed to perpendicular magnetic 
field supports both translation and cylindrical symmetry, and we choose the gauge consistent with circular shape 
of the finite sample with the surface S = πR2 ). Let us consider first a single 2D electron  problem19,23. One can 
introduce the mutually conjugated operators (of annihilation and creation type),

and

where ∂ = ∂
∂z = 1

2
(∇x − i∇y) , ∂̄ = ∂

∂ z̄ = 1
2
(∇x + i∇y) , z = x + iy , z̄ = x − iy (z denotes the electron position 

on the plane represented as the complex number). Note that ∂z = ∂̄ z̄ = 1 , ∂ z̄ = ∂̄z = 0 (thus z and z̄ are inde-
pendent variables in partial derivatives). One can check that [a, a+] = 1 . Landau Hamiltonian of a single 2D 
electron in magnetic field has the form,

and its ground state is the solution of the equation,

The solution of the above equation attains the form,

where f(z) is an arbitrary analytic function, lB =
√

�c
eB  is the so-called magnetic length—the length-scale at 

magnetic field presence. The freedom in choice of f(z) function displays the degeneracy of LLs. One can choose 
f(z) as independent monomials zn (n non-negative integer)—the basis of analytic Taylor decomposition (though 
other bases are also possible). Then,

with the normalization condition ( zz̄ = r2 , i.e., the square of cylindrical radius),

(1)A =
B

2
(−y, x, 0),

(2)a = −i

√

�c

2eB

(

2∂̄ +
eB

2�c
z

)

(3)a+ = −i

√

hc

2eB

(

2∂ −
eB

2�c
z̄

)

,

(4)H = �ω

(

a+a+
1

2

)

, ω =
eB

mc
,

(5)a|0� = −i

√

�c

2eB

(

2∂̄ +
eB

2�c
z

)

ψ(z, z̄) = 0.

(6)ψ(z, z̄) = f (z)e−eBzz̄/4�c = f (z)e−zz̄/4l2B ,

(7)ψn(z, z̄) = Anz
ne−zz̄/4l2B ,

(8)
A

2
n

∫

dr2πrr2ne−eBr2/2�c = A
2
nπ

(

2�c
eB

)n+1

Ŵ(n+ 1)

= A
2
nπ

(

2�c
eB

)n+1

n! = 1,
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which gives An =
(

n!π
(

2�c
eB

)n+1
)−1/2

 . Note that, 
〈

r2
〉

= A
2
n

∫

duun+1e−eBu/2�c = (n+ 1) 2�ceB  , u = r2 , the 

average radius squared is further away from the origin for larger n. From the boundary condition 
r2max = (2n+ 1)�ceB < R2 for the circular sample with radius R, one gets n ≤ eBπR2

hc  , i.e., the total magnetic flux 
BπR2 divided by magnetic field flux quantum hce  . The maximal value of radius, rmax is determined from the 
condition ddr 2πr|ψn|2 = 0 , which gives r2max = (2n+ 1)�ceB.

Excited states can be found by acting the creation operator a+ on the ground state, e.g., the first exited states 
(indexed by n) are,

with the same energy E1 = 3
2�ω for all n (whereas the ground state energy of Hamiltonian (4) was E0 = 1

2�ω).

The Laughlin function
If one considers N electrons on a plane neglecting their interaction (the gas) and exposed to the perpendicular 
magnetic field, then the state for completely filled LLL must be described by the Slater function of degenerate 
ground states of a single electron, which differ between them only by factor zn (and by unimportant normali-
zation constant) as demonstrated in Eq. (7). Thus the Slater function attains the shape of the Vandermonde 
determinant,

where zi is the complex coordinate of i-th electron on the plane, lB =
√

�c
eB  is the magnetic length and the number 

of electrons N = N0 = BSe
hc  , S = πR2 is the surface of a circular sample, B is the external perpendicular magnetic 

field, N0 is the degeneracy of LLs, B is the normalization constant.
Tha Laughlin ansatz consists in the substitution of the the Vanderomode polynomial in (10) by the Jastrow 

polynomial, i.e., Laughlin substituted the factor (zi − zj) by the factor (zi − zj)
q , q—odd integer. The Laughlin 

function has thus the form,

where C is the normalization constant, and Laughlin argued that N = N0

q  , i.e., the function (11) corresponds to 
the filling fraction of the LLL, ν = N

N0
= 1

q , in the case of Coulomb interacting electrons (at the magnetic field 
q times larger than that for the function (10) at the same N and S, as the degeneracy of LLs is proportional to 
magnetic field B).

This function appeared to be correct and it has been demonstrated that it agrees with exact diagonalization of 
Coulomb interaction in small finite models of few electrons at ν = 1

q with accuracy ca. 99% (a little discrepancy 
is connected rather with inaccuracy of the exact diagonalization along the Lanczos method in this case). The 
derivation of Eq. (11) had never been done.

We will argue that the formal derivation of the Laughlin function needs topological methods and thus was 
not possible upon the local quantum mechanics.

Instead of conducting a derivation Laughlin motivated that the square modulus of the function (11) has the 
shape of the thermodynamic Boltzmann distribution function,

Formally, this is the classical Boltzmann distribution function for the two-dimensional homogeneous plasma of 
particles with charge q at the temperature T = q

kB
 ( kB is Boltzmann constant)12. The term with logarithm cor-

responds to Coulomb interaction in 2D of i-th and j-th particles with charges q, ∼ −q2 ln |zi − zj| , whereas the 
second term in the exponent mimics the interaction of particles with oppositely charged jellium with the charge 
density 1

2π l2B
 . The equilibrium for such a plasma system is attained when the system is electrically balanced, i.e., 

when 1

2π l2B
= qN

S  (where S is the sample surface), which gives the filling fraction ν = N
N0

= N
(BSe/hc) =

1
q . Thus, 

the maximal value of the Laughlin function is also attained at filling fraction ν = 1
q.

As each N-electron wave function (including interaction) can be decomposed on the basis of Slater functions 
of noninteracting N-particle states from the LLL (if mixing with next LLs is precluded), then such a function 
must be of the general form,

(9)a+ψn = −i

√
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where g(z1, . . . , zN ) is an polynomial (which is a consequence of Eq. (7) and next of Eq. (10)). The function 
g(z1, . . . , zN ) must be a holomorphic function (analytic function on the whole domain) due to form of the single 
particle LLL states, which are given by Eq. (6) with analytic factor f(z) (without the loss of generality, conven-
tionally assumed as zn ), thus, in general, possible to be decomposed into power series in the whole domain. 
The envelope function e−

∑N
i |zi |2/4l2B is common for an arbitrary N-electron function in the LLL ( N ≤ N0 ). The 

total angular momentum of electrons, which is given by the degree of the polynomial g(z1, . . . , zN ) , is a good 
quantum number for Coulomb interacting particles, thus the eigen-function of the total angular momentum 
must be a homogeneous polynomial. This is, however, too loose to restrict the form of polynomial g(z1, . . . , zN ) . 
Laughlin, assuming a perfect antisymmetry of g (addressed to the Pauli principle), guessed this polynomial in 
the form of Jastrow function,

However, the derivation of (14) was never provided.
Below we will demonstrate that a proof of the choice in form of (14) unavoidably requires some topologi-

cal arguments, which make the derivation complete and mathematically rigorous. Moreover, the topological 
approach can be generalized onto other filing fractions of FQHE hierarchy (apart from only 1q).

Derivation of the Laughlin function
It has been  proved24–26 that the multiparticle wave function �(r1, . . . , rN ) must transform according to scalar uni-
tary representation of the braid if coordinates of this function transpose their positions in the manner prescribed 
by this braid (cf. “Appendix 1”). Braid groups are collections of nonhomotopic classes of loops in the multiparticle 
configuration space (the closed N-thread trajectories, which cannot be transformed one onto another one by 
any continuous deformation without cutting)24,27–30. The configuration space of N identical indistinguishable 
particles is defined as follows,

where M is the physical space (mathematically a manifold) on which all particles are located (it can be 3D space 
R
3 , or 2D space R2 or other manifolds like the surface of a sphere or of a torus), MN = M ×M ×M × · · · ×M 

is N-fold product of the manifold M, � is the diagonal subset of MN in which the coordinates of at least two 
particles coincide, and � set is subtracted in order to ensure the particle number conservation. The division by 
the permutation group SN introduces the indistinguishability of particles, i.e., the points in the configuration 
space FN , which differ only by a permutation of particle positions, coincide after the division by SN . The space 
FN is always multiply connected (for N ≥ 3)27,31 and its first homotopy group π1(FN ) called as the full braid 
group is  nontrivial27,29.

Scalar unitary representations of the braid group assign quantum statistics of particles in the space FN27,28,30 
(cf. “Appendix 1” for explanation). Various representations define different quantum particles corresponding 
to the same classical ones. In this way one can rationalize bosons and fermions for M with dimension > 2 and 
anyons for dimM = 224,26,32. The difference between 2D systems and higher dimensional ones originates from 
the fact that for dimM > 2 the braid group is always the finite group SN (the permutation group of N elements) 
with only two unitary representations, ei0 (bosons) and eiπ (fermions), whereas for M = R2 the full braid group 
is the infinite Artin  group29,33 with scalar unitary representations eiα , α ∈ [0, 2π) (anyons).

Nevertheless, in the case when M = R2 and at the presence of magnetic field the situation changes con-
siderably. The braid group structure becomes here much more  complicated8. On 2D plane the positions of 
particles ( ri ) can be represented as complex numbers zi and exchanges of particle positions in FN can be imag-
ined as transpositions of points on the complex plane. Let us first consider such a picture for the Artin group, 
π1(FN ) = π1((M

N −�)/SN ), M = R2 . This group is an infinite multi-cyclic group generated by N − 1 gen-
erators, σi , i = 1, . . . ,N − 1 describing exchanges of i-th particle with (i + 1)-th one on the plane (at arbitrary, 
but fixed, numeration of particles being equivalent one to another due to particle indistinguishability). The 
braid corresponding to σi is depicted in Fig. 1 using the conventional graphical presentation of  braids24,27,29. The 
Artin group can be defined as the abstract group generated by elements σi , i = 1, . . . ,N − 1 , which satisfy two 
 conditions29,33,

the graphical presentation of above conditions is shown in Fig. 2. For Artin group it follows from Eq. (16) that 
scalar unitary representations of σi are independent of i (because by virtue of (16) σi = σi+1σiσi+1σ

−1
i σ−1

i+1 and 
due to the commutation of scalar representations, eiαi = eiαi+1 = eiα , where eiαi is the scalar unitary representa-
tion of σi , i.e., σi → eiαi = eiα ). For M = R3 (or higher dimensional space) the full braid group is the permutation 
group SN , for which σ 2

i = e (neutral element). Thus for SN scalar unitary representation must be only σi → ±1.
In the case of electrons on the plane exposed to perpendicular magnetic field braids have, however, a specific 

cyclotron shape as no other trajectories exist at magnetic field presence. Moreover, the planar braids acquire a 
finite spatial metric because planar cyclotron orbits of electrons are of a finite size, so braids obligatory built of 
pieces of cyclotron orbits are also of the same finite size. This metric we mean here a spatial finite range of the 
braid trajectories (no axiomatic metric as in metric spaces) because these trajectories are halves of a cyclotron 

(14)g(z1, . . . , zN ) =
N
∏

i,j;i>j

(zi − zj)
q, q - odd positive integer.

(15)FN = (MN −�)/SN ,

(16)σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ N − 2,

(17)σiσj = σjσi , for 1 ≤ i, j ≤ N − 1, |i − j| ≥ 2,
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orbits of 2D electrons exposed to perpendicular magnetic  field34, which on the plane are of a finite size. For 2D 
electrons their cyclotron orbits must lie on the plane and their surface area is defined by the magnetic field flux 
quantum divided by magnetic field—cf. “Appendix 2”. Moreover, the area of these cyclotron orbits is immune to 
deformations of orbits caused by electron interaction in multi-electron system, as proved by application of the 
Bohr–Sommerfeld  rule22—this proof is summarized in “Appendix 2”. The limitation of the size of the cyclotron 
orbits of the 2D electrons causes the same confinement of the braid size as braids at magnetic presence must be 
built of fragments of cyclotron orbits (as no other trajectories are available at magnetic field presence). Note that 
in 3D cyclotron movement is not limited because of possible drift along the magnetic field direction and none 
metric can be imposed on 3D braids at magnetic field presence.

In 2D gas of non-interacting particles the described above metric of braids does not impose any topological 
restriction because distances between gaseous particles can be arbitrary. However, if the interaction between 
2D particles is switched on (like for electrons on the plane where they mutually interact via Coulomb forces) 
the situation is  changing8. Repulsing electrons deposited on the positive uniform jellium (ensuring the bal-
ance of charges in total) create in 2D at T = 0 K the classical Wigner hexagonal crystal—the triangle lattice of 
electron positions, which minimizes their repulsion energy (cf. Fig. 3, in which the hexagonal Wigner lattice 
is presented with in colour distinguished nearest and next-nearest neighbours up to 4-th rank). In Fig. 4 there 
are illustrated Bravais elementary cells for consecutive sublattices in classical Wigner lattice spanned by nearest 
and next-nearest neighbours up to 4-th rank. Sizes of consecutive Bravais cells define the surface per electron 
belonging to next-nearest neighbours electron subsets. As visible in Fig. 4 (and clarified in more detail in Ref.8), 
these subsets count N/3, N/4, N/7, N/9 electrons, which corresponds to the sizes of four first elementary cells 
of next-nearest neighbours of four first ranks, S = ah, 3ah, 4ah, 7ah, 9ah , where a is the side of the smallest 
triangle in the Wigner lattice and h =

√
3
2
a is the height in this triangle—cf. Figs. 3 and 4.

The presented above Wigner lattice is the classical distribution of electrons on the plane (when the kinetical 
energy is quenched at zero temperature) with minimal energy of Coulomb inter-particle interaction. In this case 
all braids from the braid group must be commensurate with the Wigner crystal, as the braids describe exchanges 
of electrons on the plane. This commensurability of braids with distribution of electrons on the plane is of central 
significance because braids describe exchanges of electrons (here on the plane) and in the case when the braid size 
is finite and precisely defined by the metric imposed by the 2D cyclotron orbit size, these braids must perfectly 
fit to electron position in the classical Wigner lattice. Otherwise the braids cannot be defined as being too short 
or too long in comparison to electron positions.

In particular the generators σi can be implemented (i.e., defined) exclusively in the case when the cyclotron 
size of σi (described above metric of this braid) perfectly coincides with the distance between nearest electrons in 
the Wigner lattice (at electron enumeration that i + 1 denotes the closest neighbour of i-th electron in the lattice; 
such an enumeration is possible as it is evident for a selected electron in the Wigner lattice and all electrons are 
indistinguishable, thus it holds for all electrons). This cyclotron braid commensurability one can express in terms 
of the surface per particle in the Wigner lattice SN  (S is the surface of the sample, N is the number of electrons in 
this sample, both kept fixed and constant) which must coincide with the surface of the cyclotron orbit. Such a 
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i i+
1(a)          (b)             (c)

Figure 1.  (a) Conventional geometric presentation for the generator σi of the Artin  group29,33—this generator 
describes the transposition of a particle i-th with (i + 1)-th one on the plane R2 when other particles remain on 
their positions. (b) Inverse braid σ−1

i  . (c) Square of generator σ 2
i  , which for M = R2 is not a neutral element of 

the group (though for M = R3 , σ 2
i = e and this a reason of simplicity of the braid group in 3D in contrary to 2D 

case).
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Figure 2.  Formal conditions for generators, defining Artin group, i.e., the full braid group for M = R2 , (a) the 
graphical presentation of Eq. (16) in the convention as in Fig. 1 and (b) the graphical presentation of Eq. (17).
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definition of the commensurability is invariant with respect to interaction variation because the surface of cyclo-
tron orbits is invariant to interaction—cf. “Appendix 2”. We avoid thus the problem of deformation of cyclotron 
planar orbits by the interaction of electrons. Considering the nearest neighbour electrons in the Wigner lattice we 
get thus the homotopy invariant (the cyclotron braids σi fit perfectly to nearest neighbours in the Wigner lattice),

where hceB is the size of the singleloop cyclotron orbit in the LLL (this is the magnetic flux quantum hce  divided 
by the magnetic field B)—cf.8,35. Note that the braid σi is the half-piece of the cyclotron orbit as schematically 
illustrated in Fig. 534. The homotopy in the name of this invariant emphasizes the fact that it has a topological 

(18)
S

N
=

hc

eB
,

Figure 3.  Classical 2D Wigner lattice of electrons with lowest energy of their interaction (at T = 0 K when 
the classical kinetical energy is vanished). The lattice is hexagonal one with the elementary cell consisted of 
two triangles. The nearest neighbours and next-nearest neighbours up to 4-th rank are marked with different 
colours, cf. Ref.8.

(c)(b)(a)

(d) (e)

Figure 4.  Bravais elementary cells in hexagonal sublattices of nearest (a) and next-nearest (b–e) neighbours in 
the classical Wigner lattice from Fig. 3 for 4 first ranks of neighbours (cf. Ref.8 for more detail).
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nonlocal character related to the class of the homotopy of trajectories in the system controlled by the braid 
group – the first homotopy group of the multiparticle configuration space. Both sides of. Eq. (18) are invariant 
to interaction, the surface portion per single particle, SN as well as the planar cyclotron orbit surface area hceB rigidly 
fixed by magnetic flux quantum hce .

The scalar unitary representation of σi (the Artin group generators) has the form eiπ for electrons (the same 
for all i = 1, . . . ,N − 1 ), as electrons are fermions and from the general representation eiα we must choose α = π
27,29. As the multiparticle wave function (13) must transform according to this representation when i-th particle 
transposes with (i + 1)-th one, thus the function (13) must contain the factors,

where i = 1, . . . ,N − 1 and i + 1 denotes the nearest neighbour in the Wigner lattice with respect to i-th electron. 
This is clear, as the transposition of i-th particle with (i + 1)-th one resolves itself to the rotation by π of the 
complex number zi − zi+1 . i.e., the transposition of these particles must give eiπ (zi − zi+1) , which agrees with 
the unitary representation eiπ . This representation causes the shape of the factor (19) which must contribute to 
the multiparticle wave function. The situation here is trivial as the representation eiπ of the generator σi of the 
Artin group coincides in this special case with the fermionic representation of the permutation group SN . Hence, 
in this case the factor (19) displays ordinary antisymmetry when variables of the multiparticle wave-function 
are exchanging. For 2D electron wavefunctions the exchange of their arguments (classical positions of electrons) 
is, however, not a simple permutation in general, which manifest itself by other scalar unitary representations 
corresponding to more specific braid groups. Other form of this unitary representation will force other form of 
the factor contributing to the multiparticle wave function than that given by (19), as will be illustrated below—cf. 
Eq. (25).

Now let us consider in this simplest case of the factor (19) its generalization for two arbitrarily enumerated 
particles, let say i-th and j-th ones. Then the braid realizing exchange of arbitrary i-th and j-th particles has the 
form,

and this braid is visualized in Fig. 6a. Scalar unitary representation of this long braid is obviously also eiπ (as for 
each generator it is eiπ and scalar representation is Abelian). Thus the pair of particle coordinates zi and zj must 
enter the polynomial g in Eq. (13) as the factor

due to the same arguments as for (19). Hence, the polynomial g in (13) must be of the form,

(19)zi − zi+1,

(20)σiσi+1σi+2 . . . σj−1σ
−1
j−2 . . . σ

−1
i+2σ
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i+1σ

−1
i
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N
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Figure 5.  Schematic illustration that the elementary braids (generators) in the Artin group, σi , and in its 
cyclotron subgroups, σ q

i  (in the figure for q = 3 ), must be half-pieces of cyclotron orbits. The illustration is 
shown in individual coordinates of two particles in the pair on the plane and in relative coordinates, both for 
braid group generators—the elementary braids and for cyclotron orbits—the square of braids.



8

Vol:.(1234567890)

Scientific Reports |          (2022) 12:616  | https://doi.org/10.1038/s41598-021-04672-z

www.nature.com/scientificreports/

and this shape is the uniquely determined homogeneous polynomial (it cannot contain any other multiplicative 
factor of zi enhancing its rank).

This completes the derivation of the Laughlin function for interacting electrons at the field when singleloop 
braids perfectly fit to nearest neighbours in the Wigner lattice. In this case the homotopy invariant (18) can be 
equivalently rewritten as,

which shows that the field protected by the homotopy invariant (18) corresponds to the completely filled LLL. It 
must be emphasized that the Laughlin function with q = 1 as derived it above defines the ground state of strongly 
correlated state of interacting electrons on the plane (this is the state for integer quantum Hall effect (IQHE)), 
though the shape of this multiparticle wave function coincides with the Slater function of N noninteracting 
fermions (10). The same wave function corresponds here to two different systems, with and without electron 
interaction. In the first case this wave function is the ground state of interacting electrons, thus strongly corre-
lated, whereas in the second case the same wave function describes the completely filled LLL of the gas without 
any correlations induced by interaction (which is absent in a gas). Thus we see, that the correlations protected 
by the homotopy invariant (18) is not built in the wave function in this exceptional case of ν = 1 . Or, in other 
words, the correlations induced by the Coulomb interaction at ν = 1 are topologically indistinguishable from 
Pauli correlations of noninteracting electrons at the complete filling of the LLL.

However, if the magnetic field changes, then the multiparticle wave function of interacting electrons also 
changes. Let us consider q times stronger field B. For such a field the filling fraction of the LLL diminishes q 
times as the LL degeneracy is proportional to the magnetic field.

But at so strong magnetic field the singleloop ordinary cyclotron orbits, hceB , are too small to reach even closest 
electrons in the Wigner lattice. It has been proved by application of the Bohr–Sommerfeld  rule22,35 (cf. “Appendix 
2” for short summary of this proof) that in the case when the braids σi cannot be implemented as too short, 
the role of the elementary braids (transpositions of nearest neighbours in the Wigner lattice) take the braids σ q

i  
(q—odd positive integer). Such braids also describe the exchange of neighbouring particles but with additional 
q−1

2
 loops. In the case when σi braids cannot be implemented, the braids σ q

i  have larger metric equal to qhceB
8,35, cf. 

“Appendix 2”. Such larger braids are thus protected by the homotopy invariant,

By comparison of (18) and (24) we see that the latter is fulfilled by the field B greater q times than that required 
for the former condition (18). The correlation defined by the invariant (24) defines the state for FQHE at ν = 1

q . 

Note that the Bohr–Sommerfeld rule applied to identify the effective magnetic flux quanta in many-particle 
correlated systems is independent of particle interaction and it holds for arbitrarily strongly or weakly interact-
ing multiparticle systems (as the quasiclassical approach is not of perturbative type with respect to interaction). 
Hence, the values of effective quanta of magnetic flux are also interaction independent (invariant) for all various 
homotopy classes, although the selection of possible trajectories in (x, y) space is conditioned by the Coulomb 
repulsion of 2D charged particles (which allows the definition of the classical Wigner crystal needed to intro-
duce the cyclotron commensurability). In the gas system of noninteracting particles their mutual positions are 
arbitrary, which dismisses any cyclotron commensurability and multiloop cyclotron orbits.

The new braid generators σ q
i  for i = 1, . . . ,N − 1 , i.e., the simplest now exchanges of nearest-neighbours in 

the Wigner lattice, generate the subgroup of the original full braid group. This subgroup we call as the cyclotron 
 subgroup22. Scalar unitary representations of the cyclotron subgroup are projective representations of the full 
braid group confined to the subgroup. These representations of cyclotron subgroups have the form eiqα , and for 
original fermionic electrons attain the form eiqπ . Thus, the multiparticle wave function for FQHE state at ν = 1

q 
must contain the factor,

(23)
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Figure 6.  (a) The braid given by Eq. (20) defining the transposition of arbitrary particles i-th and j-th ones 
upon the structure of Artin group. (b) The braid given by Eq. (26) defining the transposition of particles i-th and 
j-th ones upon the cyclotron braid subgroup with q = 3.
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for pairs of nearest-neighbouring electrons. This factor (25) must have this form as at exchanges of arguments 
of the multiparticle wave function, zi and zi+1 , it must contribute multiplicatively to this wave function in the 
unique way to produce the phase shift eiqπ . The braid from the cyclotron subgroup, which describes transposition 
of two arbitrary electrons i-th and j-th ones, must be of the following form,

because here σ q
i  are now generators instead of σi . This braid is visualized in Fig. 6b for q = 3 . We see that the 

scalar unitary representation of the braid (26) is eiqπ for electrons, which forces a factor,

in the polynomial part of the function (13). In total this polynomial must be thus of the form,

which completes the formal derivation of the Laughlin function.

Derivation of multiparticle wave functions for FQHE states in the LLL 
for an arbitrary ν from FQHE hierarchy
For identical indistinguishable particles their numeration is arbitrary in principle. Without any loss of general-
ity one can consider that (i + 1)-th particle is a nearest neighbour (in the sense of the classical Wigner crystal 
at T = 0 K) of i-th one. It is sufficient to note that it can hold for a selected i and thus for all N particles as for 
each particle in the Wigner lattice it exists its nearest neighbour. Because of indistinguishability the problem 
of conventional numeration of electrons on the plane is loosen of its significance. The enumeration of indistin-
guishable electrons is not intuitive. The problems with enumeration of conventional distinguishable particles 
disappear here. Similarly with next-nearest neighbours. For indistinguishable electrons important are only the 
integers xα = N

Nα
 , where Nα is the number of next-nearest neighbours, which create the Wigner sublattice of α

-rank next-nearest neighbours. In 2D there exist only two types of classical Wigner  lattice3—the hexagonal (of 
regular triangles) and regular (of squares), the latter energetically unstable. Thus sublattices must belong also 
to these classes. For hexagonal structure xα = 3, 4, 7, 9, .. . Though the regular lattice is of higher energy than 
hexagonal one, its sublattice of next-nearest neighbour of first rank offers xα = 2 not attainable in hexagonal 
lattice case. This needs some rearrangement of hexagonal lattice but it is convenient energetically as the first rank 
next-nearest neighbours in hexagonal stronger reduces the electron subset to xα = 3 . Finally, xα = 2, 3, 4, 7, 9, . . . , 
cf. Ref.8 for more detail.

The general homotopy invariant for cyclotron electron correlations of 2D electrons has the  form8,

where q is the number of loops of cyclotron orbit and xi indicates the index (one of numbers xα ) of next-nearest 
neighbours in Wigner lattice commensurate with i-th loop. The form of the invariant (29) results from the com-
mensurability condition of singleloop cyclotron orbit with next-nearest neighbours of rank α (the number of this 
next-neighbours is Nα = N/xα ), BS

N/xα
= hc

e  , or BSN = hc
xαe

 . The extension of this onto q-loop orbit gives equation 

(29). Taking the general commensurability condition (29) for q-loop cyclotron orbit with nearest neighbours 
only, the invariant can be written as (neglecting ± in favour of + only),

where the latter sum has q components, which coincides with (24). The signs ± in (29) indicate a possible inverted 
(−) or congruent ( + ) circulation of a particular loop with respect to the preceding one.

To the invariant (29) it corresponds the filling fraction,

as ν = N
N0

 and the degeneracy of LLs, N0 = BSe
hc  . The filling fraction hierarchy of composite fermions, ν = y

(q−1)y±1
 , 

with q = 1, 3, 5, 7 and y = 1, 2, 3, . . .13, is the specific case of (29) and is given by (31) for x1 = · · · = xq−1 = 1 , 

xq = y and ± before only last term.
To the invariant (29) there correspond generators of a particular cyclotron subgroup in the following form,
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where the segment,

corresponds to exchange of the electron j-th with (j + xi)-th one along the i-th loop of q-loop cyclotron orbit 
and the fraction 1xi ≤ 1 (as xi is one of integers xα ) denotes here the fraction of next-nearest neighbours nested 
with this loop. For xi = 1 (the nearest neighbours) this whole segment (33) is simply σj.

The generators (32) define elementary exchanges of particles. Not all transpositions are possible but only 
those defined by the generators. Scalar unitary representations of generators (32) are ei(1±1±···±1)π , as for origi-
nal fermionic electrons we had chosen σj → eiπ and σ−1

j → e−iπ . The exponent in ei(1±1±···±1)π is always odd 
number multiplied by π because q is odd.Therefore, the segment (33) must induce the factor to the multiparticle 
wave function,

(N ′ is the collection of admissible values of j at which the generator (32) can be defined, it is equal to N −max(xi) 
for xi entering (32)) as the projective scalar unitary representation of this segment is eiπ (or e−iπ if it enters as 
inverted operator). In the above formula mod(j, xi , 1) is the rest of the division of j by xi with offset 1. Thus the 
total multiparticle wave function corresponding to generators (32) acquires the form,

for both two possibilities of scalar unitary representations related to ± in (29) causing only unimportant change 
of sign.

One can notice that in the case of x1 = x2 = · · · = xq = 1 , the Laughlin function (11) is reproduced from 

(35). The envelope part of function (35), e−i
∑N

i=1 |zi |2/4l2B , is correct only in GaAs (where the gaseous envelope is 
assumed) and this envelope changes in graphene according to explicit form of single electron LL functions in 
graphene (due to crystal field in graphene).

Simple examples. It is instructive to write out explicitly some elementary examples of the function (35). 
For q = 3 , x1 = x2 = 1 and x3 = 2 the filling fraction (31) is, ν = (1+ 1+ 1/3)−1 = 3/7 , the generators are 
given by Eq. (32) and the wave function by Eq. (35). For N = 6 this wave function has the explicit form,

which is apparently antisymmetric for admissible particle exchanges according to the generators (32), which in 
this case have the form,

for j = 1, 2, 3 . These generators are illustrated in Fig. 7. No other electron transpositions are admitted in this 
case, i.e., for homotopy invariant given by Eq. (29) with q = 3 , x1 = x2 = 1 and x3 = 3 for N = 6 . Function 
(36) is not antisymmetric for arbitrary permutations of electron indices because they are not elements of the 
cyclotron braid subgroup for the homotopy pattern {1, 1, 3}—this subgroup (for N = 6 ) is generated by only 3 
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bj = (σjσj+1 . . . σj+x1−2σj+x1−1σ
−1
j+x1−2 . . . σ

−1
j )

(σjσj+1 . . . σj+x2−2σj+x2−1σ
−1
j+x2−2 . . . σ

−1
j )±1

. . .

(σjσj+1 . . . σj+xq−2σj+xq−1σ
−1
j+xq−2 . . . σ

−1
j )±1,

j = 1, . . . ,N ′, N ′ = N −max(xi),

(33)(σjσj+1 . . . σj+xi−2σj+xi−1σ
−1
j+xi−2 . . . σ

−1
j )

(34)
N ′ ,N/xi
∏

j=1,k=1;j<mod(j,xi ,1)+(k−1)xi

(zj − zmod(j,xi ,1)+(k−1)xi ),

(35)

�(z1, . . . , zN ) = A

N ′ ,N/x1
∏

j=1,k=1;j<mod(j,x1,1)+(k−1)x1

(zj − zmod(j,x1,1)+(k−1)x1)

×
N ′ ,N/x2
∏

j=1,k=1;j<mod(j,x2,1)+(k−1)x2

(zj − zmod(j,x2,1)+(k−1)x2)

× . . .

×
N ′ ,N/xq
∏

j=1,k=1;j<mod(j,xq ,1)+(k−1)xq

(zj − zmod(j,xq ,1)+(k−1)xq )

× e−i
∑N

i=1 |zi |2/4l2B ,

(36)

�3/7(z1, z2, z3, z4) =A (z1 − z2)
2(z1 − z3)

2(z2 − z3)
2(z1 − z4)

3

× (z2 − z4)
2(z3 − z4)

2(z1 − z5)
2(z2 − z5)

3(z3 − z5)
2(z1 − z6)

2

× (z2 − z6)
2(z3 − z6)

3e−
∑4

i=1 |zi |2/4l2B ,

(37)bj = σ 2
j σjσj+1σj+2σ

−1
j+1σ

−1
j = σ 3

j σj+1σj+2σ
−1
j+1σ

−1
j ,



11

Vol.:(0123456789)

Scientific Reports |          (2022) 12:616  | https://doi.org/10.1038/s41598-021-04672-z

www.nature.com/scientificreports/

generators (37), at action of which the function (36) transforms according their scalar unitary representation 
(assuming that original σi → eiπ).

For another example let us take ν = 4
7
= (1+ 1/2+ 1/4)−1 , i.e., q = 3 , x1 = 1 , x2 = 2 , x3 = 4 . From Eqs 

(35) and (32) we get for N = 6,

and related generators,

for j = 1, 2 . Function (38) is apparently antisymmetric for admissible transpositions of electrons defined by 
generators (39). No other exchanges are possible at the filling fraction ν = 4

7
 for the homotopy invariant (29) 

with q = 3 , x1 = 1 , x2 = 2 and x3 = 4 at N = 6 (cf. Fig. 8). Note that polynomials in (36) and (38) are homo-
geneous as required.

For multiparticle wave functions (35) one can assess the energy. In order to assess the energy corresponding 
to multiparticle trial wave function the contribution to energy of mutual electron interaction as well as of inter-
action with positive jellium must be accounted for. For the geometry of a disc with the radius r = R

lB
=

√

2N
ν

 in 

units of lB =
√

�c
eB  (where ν = N

N0
 , N0 = BSe

hc  and ρ = ν
2π

—the density of electrons NS  when S is expressed in l2B 
units), to the energy per single electron will  contribute36,

• the energy of electrostatic interaction of the uniform jellium with itself, 

• the energy of interaction of the positive uniform jellium with electrons distributed according to the multi-
particle wave function, 
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Figure 7.  The generators for the homotopy pattern (1, 1, 3) at ν = 3

7
 and N = 6.
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• the energy of interaction of electrons with electrons, 

where F(u) =

{

2E(u2)
π

, for u < 1,

2F1(
1
2 ,

1
2 ; 2;

1
u2
), for u ≥ 1,

 here E(x) is the complete elliptic integral, and 2F1(a, b; c; x) is 

the hypergeometric function. Ejj , Eje , Eee—the energies of jellium-jellium, jellium-electron and electron-electron 
interactions, respectively, are all calculated per single electron in the correlated state �(r1, . . . , rN ) . The energy 
Ejj is taken analytically (is independent of electron distribution), whereas Eje and Eee depend on the electron 
distribution defined by the appropriate multi-electron wave functions (for particular homotopy patterns, cf. Eq. 
(35)) and can be estimated by Metropolis Monte Carlo method of calculation of integrals with multi-argument 
integrand. The activation energy in the state �(r1, . . . , rN ) (per single particle and in units e

2

lB
 at Gauss unit system) 

equals to E = Ejj + Eje + Eee . For the exemplary homotopy phases presented above with the wave functions 
explicitly written at N = 6 in Eqs (36) and (38), these energies calculated for larger N are listed in Tables 1 and 2.

From Tables 1 and 2 we can notice that the activation energy grows with the increase of N in a similar man-
ner as it has been demonstrated for the Laughlin  functions36. Some other examples of various homotopy phases, 
their generators, wave functions and activation energies are presented in Ref.22.

Conclusion
We have proved with the mathematical rigour that the derivation of the Laughlin function unavoidably must 
contain a topological element. This function cannot be derived within the local quantum mechanics (i.e., without 
nonlocal topological homotopy-type conditions imposed on Hamiltonian eigen-equation), which elucidates why 
the proof for the Laughlin ansatz was absent. Inclusion of multiloop cyclotron orbits with loops which can nest 
with next-nearest neighbours in the Wigner lattice shows how to generalize the Laughlin function onto more 
complicated cases protected by corresponding other homotopy invariants.

Appendix 1: The role of scalar unitary representations of braid groups
The central role of scalar unitary representations of the braid group can be understood within the Feynman 
path integral quantization approach to multiparticle  systems37–39. For N indistinguishable identical particles the 
Feynman path integral has the  form24,37,
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Table 1.  Activation energy for exemplary homotopy pattern {xi} = (1, 1, 3) for ν = 3

7
 of FQHE correlations of 

composite fermion type (with q = 3 and x1 = x2 = 1 and x3 = 3).

energy 
[

e
2

lB

]

N = 15 N = 20 N = 30 N = 40 N = 50

Ejj 1.52181 1.75724 2.15217 2.48511 2.77844

Eje − 3.07717 − 3.55714 − 4.32402 − 4.99321 − 5.58363

Eee 1.20496 1.42615 1.77256 2.09566 2.38900

E − 0.350396 − 0.373753 − 0.399290 − 0.412444 − 0.416203

Table 2.  Activation energy for exemplary homotopy pattern {xi} = (1, 2, 4) for ν = 4

7
 of FQHE correlations 

not of composite fermin type (with q = 3 and x1 , x2 = 2 and x3 = 4).

energy 
[

e
2

lB

]

N = 15 N = 20 N = 30 N = 40 N = 50

Ejj 1.75724 2.02908 2.48511 2.86956 3.20826

Eje − 3.61860 − 4.10162 − 5.01700 − 5.76466 − 6.44849

Eee 1.53389 1.70839 2.13082 2.47066 2.80887

E − 0.327470 − 0.364154 − 0.401065 − 0.424442 − 0.431358
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I(r1, . . . , rN , t; r′1, . . . , r′N , t′) is the propagator, which is defined as the matrix element of the evolution operator of 
the total N-particle system in the position representation. This propagator determines the probability amplitude 
(complex in general) for quantum transition in the multi-particle coordination space FN , from point, r1, . . . , rN , 
in time instant t to the other point, r′1, . . . , r

′
N , in time instant t ′ . d�l denotes the measure in the path space sector 

numerated by l-th element of the braid group π1(FN ) (l is a discrete index as braid groups are always countable). 
S[�l(r1, . . . , rN , t; r′1, . . . , r′N , t′)] in the above formula is the classical action for the trajectory �l joining selected 
points in the configuration space FN and lying in l-th sector of the trajectory space, i.e., with the l-th braid loop 
attached to an open trajectory joining start and final points in FN . Such a structure of (43) results from the fact 
that to any open trajectory in FN can be attached (in arbitrary time instant between t and t ′ ) an arbitrary closed 
loop form the braid group. As braids are nonhomotopic, thus the whole domain of the path integral decomposes 
into disjoint sectors numbered by braid group elements. Discontinuity between these sectors precludes the 
definition of an uniform measure in the whole domain of trajectories. Instead, the separate measures d�l must 
be defined in disjoint nonhomotopic sectors of the path domain, and the summation over sectors accounts for 
their contributions to the total integral (43). However, each sector can contribute to the sum with the separate 
unitary (due to causality) scalar weight factor eiαl . These weight factors establish a scalar unitary representation 
of the braid  group30. Each distinct such a representation of the braid group defines thus a distinct quantization 
of the same classical multiparticle system. As the braids define exchanges of particles in FN , thus their scalar 
unitary representations assign quantum statistics in the system.

As was proved by  Sudarshan26,28 a specific scalar unitary representation of a particular braid defines a phase 
shift of the multiparticle wave function �(r1, . . . , rN ) when the arguments of this function, r1, . . . , rN (i.e., clas-
sical positions of particles on the manifold M) exchange themselves mutually according to this braid.

Appendix 2: Summary of the proof that braids σ q

i
 have larger size than σi

The Bohr–Sommerfeld rule links the area of the 1D phase space ranged by the closed classical phase trajectory 
with the corresponding number of quantum states. The quasiclassical wave function for a particle in an arbitrary 
1D well U(x) can be written in equivalent forms starting from opposite turning points a and b40,

where p(x) =
√
2m(E − U(x)) and for simplicity assuming vertical infinite borders of the well. From the unique-

ness of the wave function requirement one gets,

This is the Bohr–Sommerfeld quantization rule (h is the Planck constant, n is an integer; for arbitrary non infinite 
vertical borders, Sxp = (n+ 1

2
)h40). The formula (45) has been derived upon the condition that the trajectory 

between turning points is loopless. However, for a different homotopy class where only multiloop trajectories 
are available one obtains,

for a trajectory (a, b) with additional k loops in the simplest trajectory (i.e., when loopless trajectories are not 
available). It is easy to notice that each loop of all 2k loops pinned symmetrically (by k loops) to both branches, 
’upper’ ( +p ) and ’lower’ ( −p ), of the full closed phase trajectory between a and b turning points in the integral 
∮

pdx adds 2π.
The Bohr–Sommerfeld rule can be applied to the effective 1D phase-space ( Y , Py ) created by x, y components 

of the kinematic momentum of a 2D particle in the presence of a perpendicular magnetic field. The kinematic 
momentum components (at the Landau gauge choice, A = (0,Bx, 0)),

do not commute,

This commutator does not depend on the magnetic field gauge choice. Because of (48), the pair of operators, 
Y = c

eBPx and Py , can be treated as operators of canonically conjugated generalized position Y and momentum 
Py , for which [Y , Py]− = i� . The 1D effective phase space, (Y , Py) , is in fact the 2D space, (Px , Py) . Each closed 
trajectory in 2D kinematic momentum space is, on the other hand, the renormalized by the factor c2

(eB)2
 and 

(43)I(r1, . . . , rN , t; r′1, . . . , r
′
N , t

′) =
∑

l∈π1(FN )
eiαl

∫

d�le
iS[�l(r1,...,rN ,t;r′1,...,r′N ,t′)]/�.

(44)�(x) =

{

c√
p sin

1
�

∫ x
a pdx, for �(a) = 0,

c′√
p sin

1
�

∫ x
b pdx, for �(b) = 0,

(45)2

∫ b

a
pdx =

∮

pdx = Sxp = n2π� = nh.

(46)2

∫ b

a
pdx =

∮

pdx = Spx = (2k + 1)n2π� = n(2k + 1)h,

(47)
Px =− i�

∂

∂x
,

Py =− i�
∂

∂y
−

e

c
Bx,

(48)[Px , Py]− = i�
e

c
B.
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turned in plane by π/2 , the corresponding trajectory in 2D space (x, y), which is clear by virtue of the quasiclas-
sical Lorentz force formula, F = dP

dt = e
c
dr
dt × B , as it gives relation between both trajectory shifts, dPx = e

c Bdy 
and dPy = − e

c Bdx.
In 2D position space, trajectories (x, y) may belong to distinct homotopy classes and may be obligatory attrib-

uted to non-contractible additional loops (as happens in interacting multi-electron planar systems exposed to a 
sufficiently strong magnetic field, for which loopless braid trajectories are excluded as too short). Only possible 
trajectories are thus with additional loops. If multiloop trajectory is taken as the simplest trajectory between 
turning points, then the Bohr–Sommerfeld rule (with multiloop trajectories between turning points) gives,

or rewritten to (x, y) space,

The above formula defines the effective quantum of the magnetic field flux, for �n = 1,

�Sx,y denote here the smallest change of Sx,y in Eq. (50), when n is changed by 1. Only for k = 0 , i.e., for the 
homotopy class without additional loops in elementary braids (here taken as trajectories between turning points), 
the magnetic flux quantum equals to its fundamental lowest value �0 = hc

e  . For k > 0 , the homotopy constraints 
and resulted correlations topologically protected force the effective flux quantum to be 2k + 1 multiple of the 
fundamental one.

For q = (2k + 1)-loop cyclotron orbits (or braids with k additional loops) the size of orbit is thus �Sxy = qhc
eB  , 

i.e., is q times larger than singleloop orbit hceB.
The quasiclassical method of the Bohr–Sommerfeld rule applied to many-particle systems is independent 

of particle interaction as the quasiclassical approach is not of perturbative type. Hence, the values of effective 
quanta of magnetic flux and related size of cyclotron orbits are also interaction independent.
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