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Kidney renal clear cell carcinoma (KIRC) is a heterogeneous malignant

tumor with high incidence, metastasis, and mortality. The imbalance of

copper homeostasis can produce cytotoxicity and cause cell damage. At

the same time, copper can also induce tumor cell death and inhibit

tumor transformation. The latest research found that this copper-

induced cell death is different from the known cell death pathway, so

it is defined as cuproptosis. We included 539 KIRC samples and

72 normal tissues from the Cancer Genome Atlas (TCGA) in our study.

After identifying long non-coding RNAs (lncRNAs) significantly

associated with cuproptosis, we clustered 526 KIRC samples based on

the prognostic lncRNAs and obtained two different patterns

(Cuproptosis.C1 and C2). C1 indicated an obviously worse prognostic

outcome and possessed a higher immune score and immune cell

infiltration level. Moreover, a prognosis signature (CRGscore) was

constructed to effectively and accurately evaluate the overall survival

(OS) of KIRC patients. There were significant differences in tumor

immune microenvironment (TIME) and tumor mutation burden (TMB)

between CRGscore-defined groups. CRGscore also has the potential to

predict medicine efficacy.
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Introduction

Kidney cancer accounts for about 2% of newly diagnosed cancers

and is the second most malignant tumor in the genitourinary system

after prostate and bladder cancers (Siegel et al., 2021). Kidney cancer is

characteristic of high incidence and mortality (Xu et al., 2019a; Xu

et al., 2020a), among which the incidence in North America is much

higher than in other countries and regions, reaching 14.9/per 100,000

(Padala et al., 2020). It was reported that about 180,000 people

worldwide died of kidney cancer in 2020 (Sung et al., 2021). The

subtype with the highest proportion is kidney renal clear cell

carcinoma (KIRC), which has an awful degree of malignancy

(Ravindranathan et al., 2021). Due to the asymptomatic

characteristics of KIRC, about one-third of patients had distant

metastasis when KIRC was initially diagnosed, and a high

proportion of patients still had distant metastasis after operation

(Padala et al., 2020; Ravindranathan et al., 2021). The specific median

survival of patientswithmetastaticKIRC is only 1.2 years (Lohse et al.,

2015). Due to the limited benefit of surgical treatment for patients

with advanced metastatic KIRC, molecular targeted therapy, and

novel immunotherapy have become the standard treatment for

metastatic KIRC (Greef and Eisen, 2016). However, several clinical

trials have shown that drug adjuvant therapy has limited clinical

efficacy in patients (Meissner et al., 2018). Therefore, it is necessary to

find effective indicators for drug selection and prognosis prediction to

improve the survival prognosis of advancedmetastatic KIRC patients.

Copper is an essential cofactor in the human body and

actively maintains a very low level in cells through a cross-

concentration gradient (Royer and Sharman, 2022). Copper is a

double-edged sword. A higher concentration of copper will

produce cytotoxicity and damage organs, such as liver injury

and spleen injury (Yu et al., 2021; Guo et al., 2022). Copper can

also induce tumor cell death and inhibit tumor transformation.

Copper ionophore and copper chelator are considered anticancer

agents (Hu et al., 2021a; Guo et al., 2021; Jiang et al., 2022).

Initially, this copper-induced cell death was considered apoptosis

(Bhatt et al., 2021; Chen et al., 2021). However, the latest research

shows that copper ionophore induces a particular form of

programmed cell death, which is called cuproptosis (Tsvetkov

et al., 2022). It is found that the direct combination of copper and

the fatty acylation components of the TCA cycle resulted in

cuproptosis. A fatty acylation is a broad form of protein

modification, which can change protein hydrophobicity and

affinity for lipid bilayer (Resh, 2021). Protein acylation was

also found to mediate necroptosis (Pradhan et al., 2021). Long

noncoding RNA (lncRNA), an RNA transcript with a length of

more than 200 nucleotides that does not encode protein (Bridges

et al., 2021), in addition to mediating cancer-related biological

processes, has a high predictive value for tumor diagnosis and

prognosis (Peng et al., 2017; Huang, 2018; Xu et al., 2019b). At

present, some studies have confirmed the relevance of

cuproptosis-related genes with the prognosis and tumor

microenvironment (TME) of KIRC by bioinformatics methods

(Bian et al., 2022; Ji et al., 2022; Xu et al., 2022). Consequently, we

used multi-omics bioinformatics analysis to elucidate the

phenotypic characteristics of cuproptosis in KIRC and its

correlation with the TME with the expression spectrum of

cuproptosis-related lncRNAs.

Herein, a cuproptosis lncRNAs-related prognostic signature

(CRGscore) was constructed to evaluate the immune

characteristics and clinical prognosis of KIRC patients. Finally,

it was confirmed that CRGscore was closely correlated with over

survival (OS), clinicopathological characteristics, somatic

mutation, tumor immune microenvironment (TIME), and

medicine curative effects in KIRC patients, and had an

accurate and stable ability to be the independent prognostic

factor.

Method

Cell culture

The normal renal cell line HK-2, human renal cancer cell line

786-O and Caki-1 were all from the cell bank of the typical

Culture Committee of the Chinese Academy of Sciences

(Shanghai, China). RPMI 1640 medium, McCoy’s 5A

medium, trypsin, streptomycin, and penicillin were purchased

from Wuhan Boster Biological Technology, LTD. (Wuhan,

China). Fetal bovine serum (FBS) was purchased from GIBCO

(Grand Island, New York, United States). The medium of HK-2

and 786-O cell lines contained 90% RPMI 1640, 10% FBS, and

1% antibiotics (100 μ g/ml streptomycin and 100 U/ml

penicillin). Caki-1 was cultured in 90% McCoy’s 5A

supplemented with 10% FBS and 1% streptomycin and

penicillin. All cell lines were cultured in 5% CO2 at 37°C. The

culture medium was renewed every 2–3 days. Experiments were

then performed on passaged three to five cells.

Acquisition of cuproptosis-related
LncRNAs

A total of 10 cuproptosis-related mRNAs (CRGs) were

obtained from the research, including seven positive hits

(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB) and

three negative hits (MTF1, GLS, and CDKN2A) (Tsvetkov et al.,

2022). 188 correlated lncRNAs were determined with |Cor| >
0.4 and p-value < 0.001. The “igraph” R package was employed to

establish the co-expression network.

Collection and processing of raw data

The transcriptional RNA-sequencing data of 539 KIRC tissue

samples and 72 normal tissue samples were downloaded from the
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Cancer Genome Atlas (TCGA) database, and were also

log2 transformed. After integrating clinical information,

526 KIRC samples with complete OS were included

(Supplementary Table S1). The simple nucleoside variation

data of 336 samples were also downloaded for somatic

mutation analysis and tumor mutation burden (TMB)

calculation. Then we applied the “caret” R package to

categorize the 526 samples into the training cohort (n = 264)

and test cohort (n = 262) (Supplementary Table S2).

Identification of the prognostic-related
differentially expressed LncRNAs

Wecalculated the cuproptosis-related lncRNAs expression profile

in normal and tumor tissues, and identified 79 differentially expressed

lncRNAs with |log2 (fold change)| >1 and false discovery rate

(FDR) < 0.05 via the “limma” R package (Supplementary Table

S3). Then we constructed further extracted the prognostic lncRNAs

with the p-value<0.05 (Supplementary Table S4).

Non-negative matrix factorization
clustering

Prognostic lncRNAs were analyzed by using the non-

negative matrix factorization (NMF) algorithm of the “NMF”

R package, and the overall TCGA cohort was divided into clusters

with distinct cuproptosis phenotypes (Devarajan, 2008). The

optimal cluster number was selected by the cophenetic

coefficient. The “prcomp” function in R was used for

principal component analysis (PCA) to evaluate the

distribution dispersion of clusters.

Development and evaluation of the
cuproptosis-related LncRNAs prognostic
signature

After establishing the univariate COX regression model, we

employed the LASSO regression analysis to avoid excessive

overfitting and delete redundant lncRNAs, and obtained the

prognostic model (CRGscore) containing four lncRNAs. The

CRGscore formula is as follows:

CRGscore � Σ(exp Genei × coef f icient Genei ) (1)

We calculated and obtained the CRGscore in the training set.

In the Kaplan–Meier survival analysis via the “survival” R

package, we defined the patients as high- or low-risk with the

optimal cut-off value, which was obtained via the

“surv_cutpoint” R function. The time-dependent receiver

operating characteristic (ROC) curves were employed in the

study with the “timeROC” R package. The true-positive rate

and false-positive rate of ROC curves represent the percentage of

patients who were correctly and incorrectly judged as dead

according to the prognostic signature, respectively. The model

was strongly verified in the test cohort and overall TCGA cohort.

Clinicopathological correlation of
cuproptosis-related LncRNAs signature

The CRGscore in clinicopathological subgroups of the TCGA-

KIRC cohort was differentially analyzed. The prognostic value of

CRGscore was verified by the univariate and multivariate COX

regression analyses, and the clinicopathological parameters related

to the prognosis were selected. A nomogram model contained

CRGscore and selected parameters were established by the “rms”

R package. The effectiveness of the nomogrammodel was evaluated

with the calibration curves.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is an unsupervised

algorithm to evaluate the biological signatures at the gene set

level (Subramanian et al., 2005). We used the “clusterProfiler,”

“enrichplot,” and “DOSE” R packages to perform GSEA on each

sample in the cohort. Specific gene sets were supplied by the

Molecular models database (MSigDB), including “c5. go.bp.v7.4.

symbols”, “c2. cp.kegg.v7.4. symbols”, “h.all.v7.4. symbols”, “c2.

cp.reactome.v7.4. symbols”, “c2. cp.biocarta.v7.4. symbols”, and

“c2. cp.pid.v7.4. symbols”. Through the difference in GSEA score,

we got the enrichment information of the risk score-defined groups

in different biological processes.

Analysis of the infiltration of tumor-
infiltrating immune cells

ESTIMATE algorithm calculated the composition of TME of

each sample, including stromal score, immune score, and tumor

purity. ssGSEA algorithm obtained immune cell infiltration and

the enrichment fraction of inflammatory responses of a single

sample by analyzing the expression pattern of the marker gene set

of specific tumor-infiltrating immune cells (TIICs) (Bindea et al.,

2013; Charoentong et al., 2017).

Evaluation of the medicine response

The Genomics of Drug Sensitivity in Cancer (GDSC)

provided the prediction of chemotherapy and targeted drug

efficacy, which was quantified by half inhibitory concentration

(IC50) (Geeleher et al., 2014). “pRRophetic” R package realized

this analysis (Yang et al., 2013).
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FIGURE 1
Research flow chart.
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FIGURE 2
Selection of the cuproptosis-related prognostic lncRNAs differentially expressed in the KIRC. (A) Network of cuproptosis-related mRNAs and
lncRNAs. (B) Volcano plot to identify differentially expressed lncRNAs. (C) Expression profile of the differentially expressed lncRNAs. (D) Univariate
COX regression analysis to select prognostic lncRNAs. (E) Sankey diagram to visualize the relevance between mRNAs and lncRNAs.
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RNA extraction and real-time quantitative
polymerase chain reaction (RT-qPCR)

TRIzol reagent (Beyotime, Jiangsu, China) was used to

extract total RNA from cells. Total RNA was reverse

transcribed into cDNA using the Servicebio®RT First

Strand cDNA Synthesis Kit (Servicebio, Wuhan, China),

and SYBR Green qPCR Master Mix (Servicebio, Wuhan,

China) was used to perform RT-qPCR assay in ABI prism

7300 system (Thermo Fisher Scientific). GAPDH was used

as a reference gene, and 2 − ΔΔ CT was used to calculate the

fold change of target genes. The primers applied

were displayed in (Supplementary Table S5). One-way

ANOVA was used to analyze the significance of statistical

results.

Statistical analysis

R software (version 4.1.2) realized all the above statistical

analyses. We used the Chi-square test to determine the

distribution of clinic characteristics in subgroups (McHugh,

2013). When comparing two or more groups of continuous

variables, Wilcoxon rank-sum test and the Kruskal–Wallis test

were applied respectively (Rosner et al., 2003; Guo et al., 2013).

The correlation analysis between continuous variables was

calculated the Pearson’s analysis (Pripp, 2018). The “maftools”

R package visualized the mutation spectrum. The “pheatmap” R

package was to realize the heatmap. The Sankey diagrams were

produced through the “ggalluvial” R package. Statistics were

significant when p-value < 0.05 (*p < 0.05; * *p < 0.01; * *

*p < 0.001; ns = no significance).

Result

To reveal our research process concisely, Figure 1 is a flow

chart.

Acquisition of the cuproptosis-related
lncRNAs

Set the criterion with |Cor| > 0.4 and p-value < 0.001,

188 cuproptosis-related lncRNAs were identified (Figure 2A).

Then we further selected 79 lncRNAs that were differentially

expressed in the normal and KIRC tissues (Figure 2B). The

expression profile of differentially expressed lncRNAs was

shown in Figure 2C. Next step, we employed the univariate

COX regression analysis and obtained 31 prognostic lncRNAs

(Figure 2D). Figure 2E visualized the correspondence and

regulation of the prognostic lncRNAs and cuproptosis-related

mRNAs.

Cuproptosis-related patterns in KIRC
based on NMF clustering

In clustering analysis, the optimal clustering number was

determined as k = 2 (Figure 3A). Therefore, KIRC patients were

divided into Cuproptosis. C1 and Cuproptosis.C2. In the

Kaplan–Meier survival analysis, C1 had an obviously worse

outcome (Figure 3B, p < 0.001). Then the direction of patient

distribution of the two patterns was significantly discrete in the

PCA analysis (Figure 3C). PC1 and PC2 reflected 24.7 and 14.5%

characteristic differences in the expression profile, respectively.

And the transcription profile heatmap visually shows the

expression profile of the 31 prognostic lncRNA (Figure 3D).

Figure 3E showed the attribution relationship of 526 samples in

the CRGscore-defined groups and cuproptosis-related patterns.

Additionally, we calculated the differences in clinicopathological

features of patients in patterns and found the distribution of

pathological stage, histological grade, gender, and prognostic

events was distinct (Figure 3F).

Tumor immune microenvironment in the
cuproptosis-related patterns

It has been proved that the cytotoxicity caused by the

imbalance of copper homeostasis leads to a variety of

inflammation-related biological processes, such as apoptosis

and oxidative stress (Chen et al., 2021). Quantitative analysis

of ESTIMATE revealed obvious differences in the composition of

TME between the two patterns, and C2 possessed the lowest

immune score and highest tumor purity (Figure 4A). C1 had

higher expression of PDCD1, LAG3, TIGIT, and CTLA4

(Figure 4B). And the infiltration level of most TIICs in

C1 was significantly higher than in C2, except for eosinophils,

DCs, mast cells, and neutrophils (Figure 4C). The results of the

most immune function enrichment scores in C1 were also higher

in C2 (Figure 4D).

Establishing of CRGscore in the training
cohort

We categorized the overall TCGA cohort into the training

cohort (n = 264) and test cohort (n = 262), whose

clinicopathological characteristics have no significant

difference (Table 1).

We constructed a cuproptosis-related prognostic signature

(CRGscore) to evaluate the predictive value of cuproptosis in

KIRC. After constructing the univariate COX regression model,

we selected the minimum standard coefficient according to the

LASSO regression method. Finally, a total of four lncRNAs, and

the risk score formula was: CRGscore = (0.113077 ×

LINC01605 expression) + (0.000545 × AGAP2-AS1
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expression) + (0.130230 × FOXD2-AS1 expression) +

(0.212716 × LINC02195 expression). We selected the optimal

cut-off value (cut point = 1.547335) in Kaplan-Meier analysis

according to the CRGscore and defined the patients as high-risk

and low-risk.We drew the OS curve of the two groups of patients.

And high-risk patients had obviously worse survival (Figure 5A,

hazard ratio (HR) = 5.25 (3.35–8.22), p < 0.001). Then we

evaluated CRGscore with the time-dependent ROC curve to

reveal its accuracy. The AUCs were 0.814 at 1 year, 0.709 at

3 years, and 0.701 at 5 years (Figure 5B). Andmore deaths existed

in high-risk patients (Figure 5C). The expression of LINC01605,

AGAP2-AS1, FOXD2-AS1, and LINC02195 was up-regulated

with the increase in CRGscore (Figure 5E).

Verification of CRGscore in the test cohort
and overall cohort

To further verify the stability of CRGscore, the same

CRGscore formula was applied to quantify the test set and

overall cohort, and the same cut-off value was to divide

samples. Consistent with the training set, high-risk patients

possessed the worse prognosis event (Figure 6A, test cohort:

HR = 2.11 (1.28–3.48), p = 0.004; Figure 6F, overall cohort: HR =

3.38 (2.43–4.70), p < 0.001). The AUCs were 0.713, 0.647,

0.629 in the test cohort (Figure 6B), and 0.764, 0.681, 0.670 in

the overall cohort (Figure 6G). The distribution of CRGscore, OS

status, and hub lncRNAs expression was also proved to be

consistent (Figures 6C–E, and Figures 6H–J).

Association of CRGscore with
clinicopathologic features in KIRC

Due to the clinicopathological heterogeneity of KIRC, we

further investigated whether there was a significant relevance

between CRGscore and clinicopathological features (Figures

7A–D). As shown in Figure 7A, CRGscore in stages III and

IV was obviously higher than that in stages I and II. CRGscore

was also significantly elevated in G4 (Figure 7B). CRGscore has

no significant correlation with gender and age (Figures 7C,D).

These results suggested that CRGscore could distinguish

different clinicopathological features of KIRC patients.

Furthermore, we found that pathological stage, histological

grade, age, and CRGscore were independent prognostic

factors, which had statistical significance in univariate and

multivariate regression analyses (Figures 7E,F).

3.7 Construction of the nomogram model

Nomogram is a predictive model integrating multiple

clinicopathological factors affecting prognosis. Four

independent prognostic indicators were included in the

nomogram model in this study, including pathological

stage, histological grade, age, and CRGscore (Figure 8).

Calibration curves were drawn in Figures 9A–C, F–G,

K–M, which indicated the accurate coincidence of the

nomogram in the training, test, and overall cohorts,

respectively. After determining the optimal value (cut

FIGURE 3
NMF clustering of cuproptosis phenotypes. (A) Consensus matrix heatmap. (B) Survival analysis of cuproptosis-related patterns. (C) PCA
analysis. (D) Expression profile of prognosis-related lncRNAs. (E) Sankey diagram to reveal the distribution of samples. (F) Clinical relevance of
cuproptosis-related patterns.
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point = 0.764,068), the cohorts were divided. And the

survival of the high-risk group was obviously worse (d N).

The AUCs of the training cohort were 0.931, 0.829, and

0.780, the AUCs of the test coh Figures 9D,I, anort were

0.780, 0.770, and 0.733, and the AUCs of the overall cohort

were 0.861, 0.800, and 0.755 (Figures 9E,J,O). The above

results prove that the nomogram model provided a more

accurate and stable tool for predicting prognosis.

FIGURE 4
Tumor immune microenvironment between cuproptosis-related patterns. (A) The composition of TME in cuproptosis-related patterns. (B)
Difference analysis of immune checkpoints expression. (C,D) TIICs-infiltrated phenotype (C) and enriched immune functions (D) of cuproptosis-
related patterns.
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3.8 Functional enrichment analysis

To comprehend the potential biological function in high-risk

patients, we characterized the expression data of the samples with

GSEA (Figures 10A–F). Figure 10A showed that the high-risk group

was highly concentrated in several immune-related biological

processes, including activation of the immune response, adaptive

immune response based on somatic recombination of immune

receptors built from immunoglobulin superfamily domains, B cell

activation, and so on. Some pathways, such as the chemokine

signaling pathway and cytokine-cytokine receptor interaction,

were also highly expressed (Figure 10B). And the high-risk group

indicated several enriched hallmarks, such as allograft rejection, E2F

target, G2M checkpoint, epithelial-mesenchymal transition (EMT),

IL6-JAK-STAT3 signaling, and inflammatory response

(Figure 10C). Additionally, some other immunological functions

were also differentially expressed between the CRGscore-defined

groups (Figure 10D).

Association of CRGscore with tumor
immune environment in KIRC

To study the effect of cuproptosis on KIRC TIME, we employed

ESTIMATE and ssGSEA to evaluate the infiltration level of TIICs in

TME. The high-risk group with poor prognosis had higher immune

and ESTIMATE scores, and lower tumor purity (Figure 11A). And

CRGscore was significantly positively correlated with multiple

immune checkpoints (Figure 11B). ssGSEA analysis

demonstrated that various TIICs infiltrated significantly distinct,

among which the infiltration of B cells, CD4 T cells, CD8 T cells,

natural killer (NK) cells, Myeloid-derived suppressor cells (MDSC),

macrophages, regulatory T (Treg) cells, Type 1 T helper (Th1) cells,

and Th2 cells was obviously higher in the high-risk

group. Contrarily, eosinophils, dendritic cells (DCs), mast cells,

and neutrophils were more highly infiltrated in the low-risk

group (Figure 11C). The enrichment scores of the immune

function were shown in Figure 11D.

TABLE 1 Clinical information of the training cohort and test cohort.

Characteristic Training Test p-value Method

n 264 262

T stage, n (%) 0.736 Chisq.test

T1 131 (24.9%) 136 (25.9%)

T2 37 (7%) 32 (6.1%)

T3 89 (16.9%) 90 (17.1%)

T4 7 (1.3%) 4 (0.8%)

N stage, n (%) 0.857 Chisq.test

N0 121 (23%) 117 (22.2%)

N1 7 (1.3%) 9 (1.7%)

NX 136 (25.9%) 136 (25.9%)

M stage, n (%) 0.628 Chisq.test

M0 213 (40.6%) 205 (39.1%)

M1 37 (7.1%) 41 (7.8%)

MX 12 (2.3%) 16 (3.1%)

Pathologic stage, n (%) 0.825 Chisq.test

Stage I 130 (24.9%) 131 (25%)

Stage II 32 (6.1%) 25 (4.8%)

Stage III 61 (11.7%) 62 (11.9%)

Stage IV 40 (7.6%) 42 (8%)

Histologic grade, n (%) 0.623 Chisq.test

G1 4 (0.8%) 9 (1.7%)

G2 118 (22.6%) 108 (20.7%)

G3 102 (19.5%) 103 (19.7%)

G4 36 (6.9%) 38 (7.3%)

GX 2 (0.4%) 3 (0.6%)

Gender, n (%) 0.667 Chisq.test

FEMALE 89 (16.9%) 94 (17.9%)

MALE 175 (33.3%) 168 (31.9%)

Age, median (IQR) 61 (52, 69) 60 (51.25, 69.75) 0.684 Wilcoxon
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Association of CRGscore with somatic
mutation in KIRC

Due to the damage to DNA caused by a high concentration of

copper, we explored the correlation between CRGscore and somatic

mutation of KIRC. As shown in the mutation spectrum in Figures

12A,B, the top three variated genes were VHL, PBRM1, and TTN in

high-risk patients, while SETD2 was also highly mutated in low-risk

patients. Survival analysis confirmed that high TMB trended to

indicate a noticeably worse survival in KIRC (Figure 12C).

CRGscore was also significantly positively correlated with the

TMB in KIRC (Figure 12D).

FIGURE 5
Construction of the prognostic signature. (A) Survival analysis of the CRGscore-defined training set. (B)Time-dependent ROC curves. (C–E)
Distribution of the CRGscore (C), OS outcomes (D), and hub lncRNAs expression (E) in the training cohort.

FIGURE 6
Verification of the prognostic signature. (A) Survival analysis of the CRGscore-defined test cohort. (B)Time-dependent ROC curves. (C–E)
Distribution of the CRGscore (C), OS outcomes (D), and hub lncRNAs expression (E) in the test cohort. (F) Survival analysis of the CRGscore-defined
overall cohort. (G)Time-dependent ROC curves. (H–J) Distribution of the CRGscore (H), OS outcomes (I), and hub lncRNAs expression (J) in the
overall cohort.
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Association of CRGscore with response of
drugs in KIRC

The first-line treatment for patients with advanced KIRC is

chemotherapy and targeted therapy, thus we predicted the

IC50 of different drugs in cancer cells. In Figures 13A–C, low-

risk patients possessed significantly higher IC50 when treated

with Axitinib and Sorafenib, which indicated these drugs possibly

provide more benefits to high-risk patients. And Gefitinib is

more suitable for low-risk patients.

FIGURE 7
Clinical significance of the prognostic signature. (A–D) Clinic relevance of CRGscore, including pathologic stage (A), histologic grade (B),
gender (C), and age (D). (E,F) Evaluation of the prognostic value with the univariate (E) and multivariate (F) Cox regression analyses.

FIGURE 8
Nomogram to predict overall survival rate at 1, 3, and 5 years.
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FIGURE 9
Evaluation of the nomogram. Confirmation of the nomogram coincidence at 1, 3, and 5 years with calibration curves in the training cohort
(A–C), test cohort (F–H), and overall cohort (K–M). Evaluation and verification of the prognostic value with survival analysis and ROC curves in the
training cohort (D,E), test cohort (I,J), and overall cohort (N,O).
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Verification with RT-qPCR

To further validate CRGscore, we detected the expression of

LINC01605, AGAP2-AS1, FOXD2-AS1, and LINC02195 in the

normal renal cell line (HK-2) and human renal cancer cell lines

(786-O and Caki-1) using RT-qPCR. The results showed that the

mRNA expression of LINC01605, AGAP2-AS1, FOXD2-AS1,

and LINC02195 in renal cancer cells was higher than that in

normal renal cells (Figures 14A–D). This result confirms the

reliability of our study.

Discussion

KIRC originates from renal tubular epithelial cells and is a

type of highly vascular heterogeneous malignant tumor (Hsieh

et al., 2017; Atkins and Tannir, 2018). It is reported that more

than 100,000 KIRC patients die each year due to tumor

progression (Capitanio and Montorsi, 2016), so there are still

limitations in assessing the survival of KIRC patients based on the

current clinicopathological stages, and blood biochemical test

results, and imaging evaluation (Hsieh et al., 2017). Therefore,

finding new effective independent prognostic factors is the key to

implementing individualized treatment and predicting the

prognosis of the disease. Previous research has demonstrated

that copper plays an anti-tumor role by regulating cell death,

which is different from apoptosis, necroptosis, and some other

known pathways. The study identified 10 cuproptosis-related

genes through genome-wide functional deletion screening,

including seven positive and three negative regulatory genes

(Tsvetkov et al., 2022). The research on the biological

function, treatment, and prognosis of cuproptosis in KIRC is

blank. Therefore, in this study, we calculated and evaluated the

cuproptosis-regulated lncRNAs with the phenotypic

characteristics of multi-omics, to elucidate the potential

regulatory mechanism and predictive value of cuproptosis

in KIRC.

In this study, 526 valid samples from the TCGA-KIRC cohort

were included and divided into the training set and test set. After

identifying the prognostic lncRNAs differentially expressed in

normal and KIRC tissues, we comprehensively employed the

univariate and LASSOCOX regression analysis to determine four

lncRNAs (LINC01605, AGAP2-AS1, FOXD2-AS1, and

LINC02195) and construct the prognostic signature

(CRGscore) associated with the OS. LINC01605 has been

demonstrated in triple negative breast cancer, nasopharyngeal

FIGURE 10
Functional enrichment analysis with GSEA. (A) Gene Ontology Biological Process (GOBP), (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG), (C) Hallmark, (D) Reactome, (E) BioCarta, and (F) PID.
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FIGURE 11
Immune cell-infiltrated phenotype of the CRGscore-defined groups. (A) The composition of TME was calculated through the ESTIMATE
algorithm. (B) The correlation between CRGscore and the expression of immune checkpoints. (C,D) TIICs infiltration (C) and enriched immune
functions (D) were calculated with ssGSEA.
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carcinoma, colorectal cancer, and other cancers to promote

tumor proliferation and invasion through multiple pathways

(Hu et al., 2021b; Wang et al., 2022a; Zhao et al., 2022).

AGAP2-AS1 was confirmed to be a prognostic marker of

KIRC through the TCGA-KIRC cohort and a self-collected

independent cohort (Gao et al., 2020; Nakken et al., 2021).

FOXD2-AS1 can upregulate and activate the Notch signaling

pathway in glioma, thus promoting tumor differentiation and

proliferation (Wang et al., 2022b). LINC02195 was found to be a

favorable prognostic marker in head and neck squamous cell

carcinoma, which is opposite to the role in KRIC (Li et al., 2020).

Therefore, the specific mechanism needs to be further explored.

Then we assessed its prognostic value in the training set.

CRGscore was confirmed as the independent prognostic factor

of KIRC patients. Additionally, we integrated pathological stage,

histological grade, age, and CRGscore to construct a more

effective predictive tool for OS with the nomogram model.

In the GSEA, we found that several immune-activated and cell

cycle-related biological processes were overexpressed in high-risk

patients. The reversal of drug resistance of copper ions and copper

compounds to cancer may involve the remodeling of the immune

system (Valente et al., 2021). The molecular mechanisms of the cell

damage caused by copper, such as oxidative stress, have a significant

immune correlation (Khansari et al., 2009; Jomova and Valko, 2011;

FIGURE 12
Somatic variants of the CRGscore-defined groups. (A,B) Mutation spectrum of the top 20 mutated genes. (C) Survival analysis of the TMB-
defined groups. (D) The relevance of TMB with CRGscore was revealed through the correlation analysis.
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FIGURE 13
Predict potential drug treatment options. (A–I) The IC50 of chemotherapy and targeted drugs based on the TCIA database, including, Axitinib
(A), Gefitinib (B), and Sorafenib (C).

FIGURE 14
RT-qPCR of the four hub lncRNAs. (A) LINC01605, (B) AGAP2-AS1, (C) FOXD2-AS1, and (D) LINC02195.
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Chen et al., 2021). The E2F family plays a key role in the regulation of

periods in cell division (Kent and Leone, 2019). High levels of

E2F1 will lead to cell cycle arrest and apoptosis (Pützer and

Engelmann, 2013). G2M checkpoint as a target can induce cell

arrest and play an anti-tumor role (Reddy et al., 2019). EMT can

enhance the migration and invasion of tumor cells, and endow cells

with resistance to apoptosis. Moreover, EMT and inflammation have

a mutually supportive relationship in tumors, which can enhance

their malignant potential (Suarez-Carmona et al., 2017). IL6-JAK-

STAT3 signaling pathway has a great impact on several ways of tumor

progression, such as migration, invasion, and angiogenesis, and it also

has the potential for prognostic evaluation in KIRC (Ni et al., 2020;

Pan et al., 2020; Zhan et al., 2021).

Next, we analyzed the TIMEof the CRGscore-defined group. The

high-risk group was found to have an elevated immune score and a

depressed tumor purity. Previous studies have revealed that patients

with a high immune score or low tumor purity were trended to escape

from tumor immunity and have a worse prognosis (Zeng et al., 2018;

Gong et al., 2020). Highly infiltratedCD8T cells andNK cells in high-

risk patients have antitumor effects (Wu et al., 2020; Yanai et al.,

2021). However, highly infiltratedMDSCs have the ability to limit the

antitumor immunity and regulate TME (Weber et al., 2021). The

regulatory mechanism of eosinophil infiltration in the TME of KIRC

on tumor invasion and progression has not been clearly studied.

However, Davis BP et al. believe that the infiltration of eosinophils in

tumors is mostly related to the improvement of prognosis (Davis and

Rothenberg, 2014). It is consistent with our results. And eosinophils

respond to various stimuli, including the secretion of unique granule

proteins that may kill tumor cells (Grisaru-Tal et al., 2020).

Neutrophil to lymphocyte ratio has been proved to be an

unfavorable prognostic factor for KIRC in several studies (Xu

et al., 2020b; Życzkowski et al., 2020; Roussel et al., 2021), but we

found that neutrophils infiltrate deeper in low-risk patients.

Therefore, this requires further experimental validation and further

exploration of the mechanism of neutrophils in the remodeling and

regulation of TME. Moreover, high-risk patients had several highly

expressed immune checkpoints, which were more likely to form the

immunosuppressive microenvironment to lead to a worse prognosis

(Gong et al., 2020). These results indicated that cuproptosis played an

important regulatory role in TIME, whichmight affect the survival of

KIRC patients. In the somatic variant analysis, VHL has the top

mutation rate in KIRC, which directly leads to the imbalance of the

hypoxia pathway (Schödel et al., 2016). In addition, SETD2, a key

gene encoding modification-related enzyme, has a higher mutation

rate in the high-risk group (Linehan and Rathmell, 2012). And we

found that CRGscore was positively correlated with the TMB.

Consistently, high TMB suggested a worse prognosis in KIRC

patients. And studies have reported that a high level of immune

checkpoint expression and TMB is an indicator of the response to

immunotherapy (Chan et al., 2019; Sholl et al., 2020). Furthermore,

CRGscore has the potential to guide the treatment strategy of drugs

that have been used or have the potential to treat KIRC, including

Axitinib (Rini et al., 2019) and Sorafenib (Rini et al., 2020), which are

suitable for high-risk patients, while Gefitinib may be the ideal

targeted medicine for low-risk patients (Li et al., 2021).

There are still some limitations of this study. As a

retrospective study, our study was difficult to ensure the

integrity and authenticity of patients’ clinical data, and the

final study results are prone to bias. An independent cohort

to validate our results is also valuable. The molecular mechanism

of lncRNAs in KIRC still needs to be demonstrated in vivo or

in vitro. Additionally, although CRGscore is related to the

sensitivity of several anti-KIRC drugs, the mechanism of drug

resistance in individual patients is complex, so this correlation

needs further experimental or clinical verification.

Conclusion

In conclusion, we first clustered the TCGA-KIRC dataset

according to the lncRNA transcription level and divided it into two

cuproptosis-related patterns with significant differences in prognosis

and TIME. Then the cuproptosis-related signature (CRGscore)

containing LINC01605, AGAP2-AS1, FOXD2-AS1, and

LINC02195 was established and verified to quantify the cuproptosis

phenotype and provide an effective and stable prognostic prediction

tool for patients. And a comprehensive and systematic characterization

of cuproptosis in terms of prognosis, TIME, somatic mutation, and

drug sensitivity in KIRC was carried out.
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