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ARTICLE INFO ABSTRACT

Keywords: Firstly, we consider an animal-human infection model of brucellosis with three distributed delays, representing
Brucellosis the latent period of brucellosis in infected animal and human population and the survival time of brucella in
Delay

the environment, respectively. The equilibrium points and basic reproduction number R, are calculated. By
building appropriate Lyapunov functionals and applying LaSalle’s invariance principle, the sufficient conditions
for global asymptotic stability of two equilibria are given. Secondly, by introducing four control variables, we
set the corresponding optimal control model and drive the first order necessary conditions for the existence of
optimal control solution. Finally, we perform several numerical simulations to validate our theoretical results
and show effects of different control strategies.

Stability analysis
Optimal control

1. Introduction

Brucellosis is a zoonotic infectious disease that spreads in three main ways. One is the transmission through contact with the mucous membrane
of the skin and is believed as the most important way of transmission. Human or animals infection caused through direct contact with infected
livestock, or contact with their excreta, vaginal secretions and so on. Humans also can be infected by careless feeding, milking, shearing, slaughtering
and processing of the skin, hair and meat of infected animals through minor cuts in the skin, or the conjunctiva of the eye. The second route of
transmission is through the digestive tract, which is spread by eating contaminated food and water, drinking raw dairy products, eating undercooked
meat and internal organs. The third is transmission through the respiratory tract. Brucella discharged by infected animals can pollute the environment
and after the formation of polluted aerosols floating in the air, taking into the respiratory tract by breathing also causes the infection [1]. Although
human-to-human transmission is rare, but there is still some reported cases [2].

In animals, main symptoms of brucellosis are abortion and orchitis, which have adverse effects on reproduction and fertility, newborn survival
and milk yield, thus leads to huge economic losses [3, 4]. Human brucellosis usually presents as an acute febrile illness with weakness, drowsiness
and fever. According to the national notifiable diseases report released by the Chinese center for disease control, human brucellosis also has a very
low mortality rate, but may further develop into a chronic and disabling disease with serious complications such as bone and joint complications,
gastrointestinal complications and expiratory tract complications [5, 6]. Based on the statistical data of China, there were 44,036 new human
brucellosis cases in 2019 and 47,245 in 2020. Since 2021, a total of 44,134 cases of brucellosis have been reported nationwide until October.
According to the data of newly released cases of brucellosis every month since 2021, we can reasonably predict that the number of newly released
cases of brucellosis this year will exceed that of 2020, forming a trend of annual increase of newly released cases of brucellosis for three consecutive
years [7].

Mathematical modeling is always recognized as one of the effective tools for better understanding and controlling the transmission of epidemic
diseases. Since the latent period of the disease is not negligible in the process of transmission, many scholars have established and discussed
the epidemic models with latency delay [8, 9, 10, 11]. As for the brucellosis model, the latency period, immune period and the time required
to detect and eliminate infected animals are mainly studied. Hou et al. have done a series of works on brucellosis modeling. For example, the
literature [12] established a general SEIB dynamic model for the transmission of brucellosis in animals. The authors considered the general incidence
of brucellosis in animals and the discrete delay of latency r and analyzed the dynamic behavior of the model equilibrium. A general dynamic model
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and its corresponding discrete time-delay model are established in [13]. It is found that the time delay has no effect on the equilibrium stability of
the discrete time-delay model.

Based on the transmission mechanism of brucellosis, many scholars have established dynamic models of brucellosis and analyzed dynamical
behaviors. As we mentioned earlier, brucellosis is a zoonosis, so some scholars have analyzed the human-animal infection models of brucellosis. Hao
[14] et al. considered a dynamical model of human-animal brucellosis infection, indicated that Brucella in the environment is also a major means
of brucellosis transmission. In practice, the disease can be effectively controlled by controlling the amount of introduction, timely and effective
sterilization and slaughtering of infected animals. Li [15] et al. evaluated the brucellosis control strategy in China based on their model. The scale
of human brucellosis in mainland China can be quantified by selecting 11 provinces (and the entire country) and estimating the basic reproduction
number. These preliminary estimates allow for better implementation of control strategies. Zhou [16] et al. studied the transmission dynamics of
Brucellosis in Inner Mongolia by establishing a multi-population epidemiological model, and discussed the control strategies of brucellosis. Their
theoretical and numerical results suggest that brucellosis will increase gradually over the next few decades and peak around 2030.

It is known that the people infected with brucellosis are mainly animal husbandry employees, veterinary students and residents in the epidemic
areas, and the infection rate is at a relatively high level. Therefore, the study of human-animal brucellosis infection model is still of great interest.
As the brucellosis infection, both in human and in animals, has the latent period in the process of infection. In addition, Brucella can live in the
environment for a long time, which can create a “cumulative” infection. Based on these considerations, we firstly established a animal-human
brucellosis infection model with distributed delays and analyzed stability of the model. Then considering different control measures, we set an
optimal control model and studied the existence of optimal control solution.

2. The model and equilibria

The animal population is classified into the susceptible compartment S,(¢), the vaccinated compartment V,(¢) and the infectious compartment
I,(1). The number of brucellosis pathogens in the environment is denoted by B,(r). The human population is also classified into the susceptible
S,,(1), the acute human brucellosis 7,(f) and the chronic human brucellosis R, (f). The latent period of animal-to-animal transmission and the latent
period of animal-to-human transmission are represented by r; and 7; respectively. As mentioned earlier, brucellosis pathogens can survive in the
environment for a long time, so we need to consider a persistence of pathogens when we think about pathogens in the environment. z, is the survival
time of pathogens in the environment, and [, ¢, (0,) e"#a*%)%2 (I, (t - 0,)) do, is the accumulated number of pathogens from 0 to z,. Therefore,
we have the following model:

d;;“ =A,+eV,—(u+0)S, - S, (f (1) +g(B,)),

dav,

= 08— Vo= uVo =1V, (f (L) +g(B,)).
7

o= [ 01 (o)t (5, (1= 0)) # 1V, 1= 1)
0
(fHa(t=01)) +8(By(1=01))) doy = (o +84) Los

aB, | s

dt =/(/’2 (02) ™20 (1, (1= 0,))doy = (r + @)B,, @D
0

s,

7=A,,+<1—,1)/31,,—,4,,5,,—S,, (p(L,)+a(B,)).

ar, 1

e =/¢3 (03) e #0)935, (1= 03 (p (1, (1= 03)) + 4 (B, (1 — 03))) do.
0
— (up + B) 1,

Ry 1 R

T—Hﬂ n— Hp Ry

Here, A, and A, represent the recruitment rates of human and sheep respectively, u, and u,, represent the natural elimination rates of human and
sheep population respectively. The slaughtering rate of individuals in compartment I,(¢) due to disease is the constant §,, § denotes the vaccination
rate of individuals in compartment S,(7), ¢ denotes the rate of immunity loss in compartment V,(¢), # is the invalid vaccination rate, « represents the
decaying rate of brucella, y is the product of the number of disinfection times and the effective disinfection rate, % denotes the acute onset period
of human brucellosis, » is the fraction of acute human brucellosis turned into chronic cases, ¢;(s;)(i = 1,2,3) are non-negative continuous functions.

The initial conditions of system (2.1) are given as

S (8) =15, V, () =d2(D), 1, (&) = $3(8), B, (§) = p4(9),
Sy (8) =58, 1), (&) = Pp6(&), R, (§) = (D), (2.2)
¢;(&) € C([-7,0],R,),§€[-7,0],i=1,2,...,7,

where 7 = max{t,7,,73}.

Assume that f, g, h,p and g are second-order continuous differentiable functions and satisfy assumptions (H,)—(Hjs) in order to make the system
(2.1) have epidemiological significance.

(Hy) f(©0)=g0)=h(©0)=0and f(I,),g(B,),h(I,) >0 for I,, B, > 0;
(H,) f'U,).¢'(B,)>0and f"(I,).g"(B,) <0 for B,,1,>0;
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(H3) h'(I,)>0and h”(I,) <0 for I, >0;
(Hy) p(0)=q(0)=0 and p(I,),q(B,) for I,, B, > 0;
(Hs) p'(I,).q'(B,)>0and p"(I,).q"(B,) <0 for B,,1,>0.

2.1. Positivity and boundedness of solutions

For the positivity and boundedness of solutions for system (2.1), we have the following result.

Theorem 2.1. Let (S,(1),V, (1), I,(t), B,(t), S, (1), I,(t), R, (1)) be arbitrary solution of system (2.1) with initial conditions (2.2), then (S,(1),V,(), I,(t), B (1),
S50, I,(1), R, (1)) are non-negative on [0, +o0) and ultimately bounded.

Proof. Assume that S,(7) is the first to reach the r-axis in the maximum existence interval of the solution, then 3¢, € [0,T), such that S,(r,) =0 and
S,(t)> 0 for all t € [0,1,). Therefore, we can easily see that S,(¢;) < 0. On the other hand, from the second equation of system (2.1), we can see that
S,(t;) = A, +€V,(t;) > 0. This leads to a contradiction.

Similarly, we can prove that (V,(¢), I,(t), B,(1), S,,(1), I,(?), R,,(t)) are not reaching the z-axis for all 7 € [0, T). Therefore, (S,(1), V, (), I,(t), B,(1), S, (1),
I,(1), R,(1)) is non-negative for all € [0, 7).

Next, we prove that solutions to the system (2.1) are bounded. Define

71

F(H= / @ (o)) e Wt (S (t = o)+ V,(t —0)) doy + I(0).
0
We have
7
F

T~ [ o1 (o) e 01 (4, =y (5, (1= 1) 4, (1= 1)) oy = (s +8) 1,0
0

7]
- Hq / @1 (01) Wt Syt = 0) + V(1 = 01)) doy + 1,(1)

0

I\

71
+/Aa(p1 (o)) e Wata)o1 g
0
=—u, F0+A,m,
where m; :forl @ (0))e"Hatdao1dg,
This implies that
miA,

lim sup F)(t) < .
=00 Ma

We know that h(I,) is convex, and convex functions are upper bounded on bounded closed intervals, so h(I,) is upper bounded.
)

= / @(02)e” T2 (I (1t — 6,))doy — (¥ + @) B,
0

dB

a

dt

2

< / M0y (03) €020y — (7 + a) B,
0

where M, is the upper bounded of 2(I,). This implies that
li B <M
Jim sup B < 5
where m, = [ ¢,(0,)e” "2 d g,
This implies that B,(¢) is bounded on ¢ € [0,T).
Similarly, define
73
F(t) = / @3(03)e” W3S, (t — 63)dos + I, ().
0
Then
3
=/ @3(03)e” Wt (A, 4 (1= )BT}, — pp Syt — 03)) dog — (uy, + I,
0

dF,(1)
dt
73

<— / @3(03)e” W03 S, (1 — 63)d oy + I, (1)
0
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7
+/Ah(p3(63)e_("h+ﬂ)"3do3
0

= — up Fy(t) + Ayms,
where m; = /013 @5(03)e”ntldosde,,
This implies that F,(¢) is bounded on ¢ € [0,T), then .S}, I, is bounded on ¢ € [0,T) too. As we have
1
lim sup R;, < y—h
-0 Mh
So R, is bounded on r € [0, T). This ends the proof. []

2.2. The basic reproduction number and the endemic equilibrium

. . . 1s1os 0 _ 0 1,0 0 0 _  Agletu,) 0 _ 0A, 0 _
For system (2.1) there is always a disease-free equilibrium P° =(S_,V,0,0, S,.0,0), where S = atet 9),Va = et 9),Sh . The basic

reproduction number Ry, is calculated using the method described in [17] and given as follows:

B my (SO + V) f; (0) . mymy(S9+nV)h; (0)gp (0)
- He + 8, (7 + ), +8,)

are monotonic decreasing for I1,, B, > 0.

Lemma 2.1. Assume that conditions (H,)-(Hj) f(II”) Mo 889 gng w

’ IH ’ B[!
Proof. Since f'(I,) <0, it shows that f/(I,) is monotonic decreasing, it follows that
f(Ia) fUy) - f(O)

I I,-

a

=f'Epz Uy, &€e01,),

and

<0.

! fUy,)
FA)Y AL, -,y YD TE ey - e
I B 2 B I, B I

a a

That is to say, L)) is a monotonic decreasing function. Using the similar steps, we can show that
(1
Noting that

g(h,)) _ g(h,)) — g(h(0)) h(,)

I, h(1,) = h(0) 1,
=g'(h(&)H' (&)
2 g/ (WU (1), &.& €(0,1,).
It can deduce that

8(h(1)) " _ &' (hI DI )1, = 8(hI, ))
I, 12

a

(I B - .
( 2 and % are also monotonic decreasing.
a

Therefore, w

is also monotonic decreasing. []

Furthermore, for all I,,, I}, B,. B}, we have
fa) <l_f(l*)1a>
f(12) FUN;
8B <1 ) g(B*)1a>
g (B) 8B,
AR AN
h(I) h(1,)B;

Next, we calculate the endemic point (S, V", I, B}, S}, I, R;). The value of S,V *, 17, B} does not depend on the fifth to seventh equations of

S o ol S N
the system (2.1), so we use equations (2.3) to solve the endemic equilibrium S7,V*, I, B}

IA

0,

IA

0,

and

Ay = (g +O)S* +eV* — S*(fF(I*) +g(B2) =0,
0SF — (g + OV, =V (L) +g(B2) =0,

(2.3)
my(SE+ VI UD) + g(BE) = (py + 6,15 =0,

myh(I7) = (y + @)B; =0.
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From the last equation in (2.3), we can obtain
myh(I})
- y+a

5
a

L HIH. (2.4

Substituting (2.4) into the first two equations in (2.3), we get

€0S*
A+ . (g + S, =S (fU)+g(H(I})) =0
e+, +n (FUD) +gHU))) ( )
S* OS: I HUI* S =0
™ < a +r]€+”a+n(f(l:)+g(H([:;)))> (LD + sCHULD) = o + 3915 =

Let us define

€0,

Gr(Sa L) 2 Agt s = (ot 0080 = S, L)+ g(HU)),
A esll
oSy L) 2 my (sa AL ey ,u)))> (FUL) + 8HUu)) = (g + 6,) -

Since G4(S,, I,) is monotonic decreasing for .S, > 0 and

G,(0,1,)G(S%,1,)

Al A €9 S? 0150 — S0Py 4 g(H )
= + s ) N
N et u, Hn(fU,) +g(H(L,)) (Ha 0~ S, () +gHU,

€050 0
<4, Aa+€+”a =g +0)S; | =0,

for I, > 0, the equation G,(S,, I,) =0 can be uniquely solved with .S, as a function of I, for all I,. That is to say, there is a function .S, = £,(/,)
which satisfies

Ay H(ug +e+0) +n(p, +0)(fU,) + g(H(I,))
¢i1y) €+ g +n(f,)+g(H(,))

Since f(I,) + g(H(I,)) is monotonic increasing, it follows that £, is monotonic decreasing. From (2.3) and (2.4), we have lim1”—> maqg E(I1)=0.

=fU,)+g(HU,)).

Ha

Noticing that G,(S,, I,,) is monotonic increasing for .S, >0 and G,(0,1,) <0 for all 1,,.

dGy(S2,1,) m
—| =Sy V) (f;a(O) + h,a<0>g3ﬂ<0>—2> = (pg +8,)
a 1,=0 y+a

1
+ 9,

(Ry— 1),

Ha

G,(S9,0)=0.

a

So G»(89.1,) is positive for 1, close to 0 if R, > 1. Since we are searching for a unique endemic equilibrium and for a uniquely corresponding I},
it needs the local solvability of the equation G,(.S,,1,) =0 on a certain condition.

When R > 1, the equation G,(S,, I,) =0 can be uniquely solved with S, as a function of I, (locally for I,). That is, there is a function S, = &,(1,)
which satisfies

on &) = (g +6,)
e+, +n(fU(@) +gHI(@)) ™+ )~ [d@)r+sB@)’

a

my <§2(la)+

From Lemma 2.1 we know that w is strictly decreasing for I, > 0, then &, is monotonic increasing.

a

Since £, is monotonic decreasing, £, is monotonic increasing and limlﬁm £,(I,) =0, the curves defined by S, = ¢&,(1,) and S, =¢&,(1,) have a

Ha
common point (S7, I?) with S* >0, I¥ > 0 on condition that if and only if & (0) > &(0).

Y I (e+ w0 (7 (1) & (1(1,))))
O o )+ 8 (H (1)) (e + s+ 0n 0 (7 (1) + (A (1,))))
Mg+ 0, €+ H,

=50_
™ (et g+ 0n) (£1,0)+ hy 015, 022 )
(€+Ha) (Sa+1v7)
Ry (e + p, +0n)

0

a

SO(Ry—1
= M > 0.
Ry
So, when R, > 1, the equations (2.3) have a unique positive solutions (S, V*, I, BX). The system (2.1) also has a unique positive equilibrium
P*=(S;, V) 1%, B, S, I R}).
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3. Local stability
3.1. Local stability of disease-free equilibrium P°

The following conclusions can be drawn about the stability of PV of the system (2.1).
Theorem 3.1. The disease-free equilibrium P° of system (2.1) is locally asymptotically stable if R, < 1 and unstable if Ry > 1.

Proof. The characteristic equation can be obtained by linearizing the system (2.1) at PV.
2
(A4 ny) (A+up+B) (A+up) (A+u,+0+¢)
|Gty a) (2 sag 8, =y (S9+nV0) 11,007 )
—mymy (SO +7V2) g5 (Oh; (0)e (" +T2>] -0.
Obviously ;5 = —u,, A3 = —py, Ay = —(uy + B), As = —(u, + 6 + ¢) are negative, and the other two eigenvalues are determined by the following equation

O =Gty +a) (4 g+ 64— my (S)+1V0) £1,0077 )

(3.1)
—mymy (SO +7V?) gBa(O)h,a(O)e—ﬂ(flﬂz) =0.

When R < 1, rewrite the equation (3.1) as

my (89 +0V2) (G4 7+ @01, 0071 + mygp Oy, (O)e™(42) )

=1.
GA+r+a)(A+u,+8,)

Let A=x+iy(x,y € R) be the root of equation (3.1), and x > 0, then we have

my (89 +0V2) (47 +) f1, O e +mygg O hy, O (142

1| =
I (/1+y+a)(l+ﬂa+6a)

f1, @)
A+ p,+ 6,

mygp (0) h[q 0) e~Alri+72)

<m (Ss + r]VO)

a

A+y+a)(A+p,+6,)

<my (Sg+1vy) (

=Ry < 1.

f1,0) . mygp (0)hy (0)
Hq 0, (r+a) (Ma+5a)

This is contradictory. So if R, < 1, then the roots of equation (3.1) have negative real parts, that is to say P is locally asymptotically stable.
When R; > 1, we have

000) = +a) (Ma +8,—my (SO +nv0) f,a(0)> —mymy (S0 4+1V2) g5 Oy (0) <0
and lim,_,, , O(1) = +o0. So Q(4) = 0 has at least one positive root. Therefore, PY is unstable. [J
3.2. Local stability of endemic equilibrium P*

Theorem 3.2. The endemic equilibrium P* of system (2.1) is locally asymptotically stable if R, > 1.

Proof. The system (2.1) is linearized at P* and the characteristic equation is written

(A+up+8) (/1+;4,,)2 [(A+7+a)(A+p,+68,) (A+p,) (A+u,+0+¢)
w1 (£ (17) +2(B)
+n(f(17) +5(B;)

)

+(f () +g(BY))A+r+a) (A+p,+6,) (A+u,+e)

A+r+a)(A+u,+36,)

)
JA+y+a) (A+p,+6,) (A+p,+0)
(

—myfr, (12) (SE+nV)) A4y +a) (A+ ) (A+p, +0+€) e

—mymagp, (By) hy, (17) (S5 +nV)) (A k) (44, +0+e) e (177
—minfy, (17) (S; +nV;7) (£ (17) + 8 (B)) Aty +a) (A+pg) 0
—mimangy, (BY) hy, (1) (S5 +nv,) (£ (1) + & (B)) (3 ) e1+2) | =o.

Obviously A, = —uy,, 43 = —(uy, + p) are the negative eigenvalues, and the other four eigenvalues are given by the following equation

OMN=U,+U,-U;-U,; =0, (3.2)
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where

U=(A+y+a) (A+pu,+8,) (A+u,) (A+p, +0+¢),

Uy=n(f (1) +2(B)) G4y +a) (A+p,+35,)
+n(f(I)+g(BY))A+y+a)(A+pu,+8,) (A+u,+96)
+(F(I)+8(B))A+y+a) (A+p,+6,) (A+u,+e),

Us=my f1, (I2) (Si+nV}) A+y+a) (A+p,) (A+p,+0+¢) e
+mimogy, (BY) hy, (I7) (S5 +nV;) (A4 ug) (4+ ug +0+¢) e e12),

Uy=minfy, (13) (Sq+ V) (1 (13) + & (B;)) G4y + ) (A+p,) e
+mimongg, (B;) hy, (I7) (S5 +V;) (7 (17) + 8 (B])) (A ug) e (1772,

The equation (3.2) is sorted as

U +U,=U;+U,. (3.3)

Set A=x+iy(x,y € R) is root of equation (3.2), and x > 0, then we have

|U3|§)(/1+y+a)(/1+/40)(/1+/4a+0+e)|

mygp (B*)hl ([*)e—/l(rl+r2)
) o a’ g M a
: (ml(SZJf’TI’a*))[fla(I:)e T+ Aty +a

S)(/1+y+a)(/1+ua)(/1+/4a+19+e)|

B h, (I*
| (mi (S5 V) (f,,,<1:>+ M)

Yy +a

<l () (s 04 ) | oS VDU L) e m‘

I*
a

<|a+ 80 Gty + @) (24 1,) (241 +0+¢)]
s)(/l+y+a)(/1+;4a+6a)(/1+;40)(/1+;4,,+0+e))
=|U1|,

|Uﬂ>ki+y+aﬂl+ﬂﬁ

(n(r (1) +8(B) + @+ D (1 (1) +8(B])) (wa+3.) )

my i+ 1) (S2+0v7) (£ (17) +2(B]))?
I*

>)(/1+y+a)(/1+ya)

min (S +V7) (£ (17) +2(B))?
I;

2|2y +a) (24 4,)

5

Ual =[G4y + ) (24 1,)

mygg (BX)hy (I e i(mm)
- mm(SZJrV:)(f(15)+g(35))[fla (1) -0 228 B P ) ]

s)(ﬁ+y+a)(i+ﬂa)

y+a

' m1"<S:+V:)<f(I:>+g(B;>)(,r,ﬂ (1;)+w>‘

min (Sy+V2) (0 (1) +5 (B2))"
I

<|G+y+a (24 4,)

Thus, |U; + U,| > |U; + Uy|. This is contradiction with equation (3.3). Therefore, if R, > 1, then the roots of equation (3.2) have negative real parts,
that is to say P* is locally asymptotically stable. []
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4. Global stability

Let us first consider subsystem with variables S,V,I,B,:

d ; —A g+ €V, = 1Sy — 05, — S,(f(I,) + g(B,)),
% =05, — €V, = ugVy = V(S (I,) + g(B,),
7]
) d dl;’ = / @1(op)e”HatPOU(S, (1 — 01) + 0V, (t = 6)))
0
(Ut = 01) + g(By(t = 6)))d oy = (g + 6,1,
)
% = / ©2(05)e" T 02 p([ (t — 6,))doy — (v + @) B,.
0
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4.1

Note that system (4.1) can be considered independently of system (2.1). Similarly, system (4.1) also has a unique disease-free equilibrium (52, ¥.2,0,0)

and a unique endemic equilibrium (S3, Vi, 1%, BY) if Ry>1.

4.1. Global stability of the disease-free equilibrium

Theorem 4.1. The disease-free equilibrium (S°,V2,0,0) of the system (4.1) is globally asymptotically stable when R, < 1.

Proof. We define a Lyapunov functional L as follows:

L) = L)+ Ly(1),

where

(S +nVgp (0)
e p

S, V. 1
L =S,-S—S'm=2 4V, —vO-vom—2L4+—7
a a SS a a Va() m; y+a

a

7| t
L2=mi / @1(o))e”Watbalen / (S4(0) + 1V, (O)(f (L, (0)) + §(B,(0)))dOd 5|
1
0 -0}

T t
. (S0 +nV)gp, (0) [

e / PRCS A / h(I,(0))d0dc,.
0

t—oy
Then the derivative of L, and L, along with the solution of system (4.1) is
dL . 1 dI
- = <1 - S_a> (Ag— (g +0)S, + €V, = S,(fU,) +g(B,)) + o dr
(SS + '1V£,0)g3a © 4B

12
+ (1— 7) (65, = (uy + eV, —nV,(f,) +g(B,)) + e ar

a

SO 5 sy sy
=pSp| 2— <=5 | 0S| 3- < - =5 - ‘5”
S, S0 S, VO S0,

SO 0
+eV, <V—‘; Sl i 1) +(Sq 1Yy = (S + V) (L,) +8(B,)
a

a a’q
7]
1 _ .
+— / @1(6))e”HatPoU(S (t — 6)) +nV,(t — 0)))

1
0

(Ut = 01)) + &(B,(t = 6)))doy = (4 +5,)1,)

(SO+nVDgp (0)

e B / @y(0y)e” YT p(I (t — 6,))doy — (7 + @) B, |,
y+a

0

7]
dL 1 _

e S| (S nv) (101 + (By) - / @1(oy)e” et

1
0

(St =) +nV,(t —o))(fU,(t =)+ g(B,(t — 01)))d01)

)
(S% +1V0g5 (0)
bt e hr,) - / 02(0,)e" T2 (L (1 — 6))d o, |.
y+a
0
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So there are

0 0 0 0
dLl dLZ _050 3 Sa Va SﬂVa Vv Va Su SaVﬂ 1
r Ta TS\t ooy )Yl ot s TS50
a a a a a

a

my (SO +nV)gp, (0)h(L,)
y+a

+(SY+ VO rU,) +g(By) +
! ), — (SO + V0 0)B
—m—l(lla‘l' Do = (S, +n1V,)gp, (0)B,
Ky A v. SO sy
<08°(3- L -2 -2 )yer, [ L2+ 2 -2
S, Vo sy, vo S, S§,V0

my(S0+ V)8 (O)hy, (O)I,
y+a

+ (S + VU0 f1,(0) + Bogp, (0) +
_ L g0 0
p (Mg + 001, — (S, +1V, )gBH(O)Ba
1

Ry 7O 740 v, SO sy
=05°(3- -2 - 22 )yeV, [ L2+ -2
S, VO S0, VoS, S0

a

Ia
+— (U, +6,)(Ry— 1).
ny

o shy,
Casel.V—‘g)+—"— % —1<0, we have
Va Sa a’a
dL, dL,
— +—=<0
dt dt
S0 shy,
Case2. Zo 422 Zaa _ 150,
VO TS, sV

Since eV, =050 — 41,V0 < 059, we have

sy, s v, S0 s,
0S)3— - % - ) eV (s + - - )
S, VO S0, VoS, sV
0 0 0 0
Sy V., S, Vo, Sa_SVe

<0803 - L - & _ 22y 98024 2 _
al S, Vo SOV) ”(a

svy o sy,

=05%02 - 22 _ .
a SOy, S, V0

So, % + % <0. The equality % =0 holds if and only if S, = 5%V, =V?,1,=0,B,=0and Ry = 1. Since (S°,¥2,0,0) is the only invariant set of

system (4.1) in {(S,,V,.1,, B,| ‘Z—f =0)}, the disease-free equilibrium (S?,7°,0,0) is globally asymptotically stable by LaSalle’s Invariance Principle
[18]. O

Theorem 4.2. The disease-free equilibrium PP of the system (2.1) is globally asymptotically stable when R, < 1.

Proof. According to theorem 4.1, the disease-free equilibrium of system (4.1) is global asymptotically stable if R, < 1. To prove the globally stability
of the equilibrium (SS, VGO,O,O, 52,0,0) of system (2.1) with the animals components already at the disease-free steady state given by

dsy,
— =A, + (1 =n)pl, — Sy,

dt

N

dar Hp h»

dR, o R

27 "By —muy Ry,
Solving:

A, + (1 —n)pl, npl,
5, = 2 A -mp1, + Dot I, = Dye~ ¥t R, = A1y + Dyehnt,

Hn Hn
where D, D,, D; are integrating constants.
It is clear that .S, — Sg, I, — 0and R, » 0 when 7 — o and so P° of system (2.1) is globally asymptotically stable. []

4.2. Global stability of the endemic equilibrium

Theorem 4.3. The endemic equilibrium (S, V", I, B?) of the system (4.1) is globally asymptotically stable when R, > 1.
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Proof. Define a Lyapunov functional L as follows:

L@#)=L(0+ Ly®,

where

S 12 1 . 1
_ * * a * * a * * a
Ly=S,-S, —SalnS—Z+Va—Va -V, an_a*+m_l(l”_l” —IalnI—:)
(S +nV;)g(B;) B
#(BQ—B: —B:ln—”),

B;

oh(I7)
L =%(1’) O/T](pl(gl)e—<ua+6a>mt / (% “1-In %) dodo,
g
+S§gm_(13§) / (pl((,l)e—wuwﬂ)a,t_l: <% —1-1n %) d9ds,
. ’“’Tfl(’) 0/l (pl(al)e—mﬁsmlt / (Vi‘f”; ((Z()G)) “1-In Vif”; (5}()9)) > dodo,
A
D v [ (i i,
g
LS n’::*)g(Bj) j(pz (Gz)e_@mai / (”;I&?))) “1-In h;f&;”) dbdo,.
A

Then the derivative of L, along the solutions of system (4.1) is

dLl—leVSI B Sa (4 4oVt — S B
7-( _S_>< a T eV —S,(f,) +g( a))_S_:( ateVy — a(f( a)+g( u»))

a

v vV
+ (1 - 7a> <95a —nVo(fo) +8(By) — V—‘; (0Sk —nVI(fU) +g(B;‘))>

71

1 I, _
+— <1 - I—") /(pl(al)e Hat6a)01 (S (1 — 61) + 0V, (t — 67))
0

m a

mlla

Ut =01) +8(B,(t —o))doy — —

Sy +nVHU) + g(B;‘»)

)
(S, +nV,)8(B;) B B
_— |- = ~(y+a)o _ _ « Ba
myh(I*) (1 B > / @2(03)e 2h(1,(t — 0,))do, mzh(la)BZ
0

a

S¥ 8 v, S, SV, S, vV, SV
=AQR- L - per (4L - L1 ¢
S, S @ Ve SE SV T

a a

= (Sa = SO+ g(B)) —n(V, = VS U) + (B + (S, + nVo)(fI) + g(By)

1 — I_; —(Hq+64)0 — —
+ 1 7 @(07)e (S,t—0o)+nV,(t—0y))
0

my a

1
(fU,t=061) +8(B,(t—01))do) - I—Z(S,f +nVIO(fU;) +g(B))

)

B\ h(I(t— B
+ (S: +,1Va*)g(3:) L / ¢2(62)e—(r+a)62 (1 — _a> Mdaz +1--24
my
0

B, h(IY) B:
=A (2——:)+6V*(1— : ")+.9S*(1—S”V”*)— S, —u,V,
a Sa a SaV: a S:Va HaPa — HaVa

= (Sa = SHUfU) +8B)) —nV, = VfU,) +8(By)

T

1 13 l (g +6,)0

+ — 1—[— @(0))e” HaT%1(S (t —06)) + 3V, (t —061))
0

m a
1
“(fU(t —01) + g(B,(t — 61)))doy — I—Z(S;‘ +nVO(fU;) +8(B))

10
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7

] |1 B\ h(1,(t - 0,)) B,
* * BH| — —(r+a)oy 1-— _a a d +1--4
+ (S, +nV,)g(B)) = /‘P2(52)€ B, 7}1(1:) ) B
0
KN K N 2 S, VE S,
=S 2 - L = D) u VB - L - - ) eV (- - - 20
S, Sx S, Vr S, SEV, SV

fU) S, fU)  S; 1,

say  S;rdy S, I

7|
I3\ S, (t— I,(t—
+ L/(pl(al)e—wﬁanm <1_ _a> o1 =0 fU( 61))‘1‘71
m
0

+SEfUD) (2 +

1 SEfUD

a

g¢B,) S,&B) S, I, B,
g(B:) S:g(By) S, I* B:

+Sred)) <3 +

a a
71 «
+ L /(pl(gl )e*(ﬂaJrSa)zT] <1 _ I_ﬂ) S4(t —0)g(B,(1 —61)) do,
) 1, Sa8(B))

]
L —(y+a)oy 1— & h(lu<t _62))d
i 0/ e B) " 7

) Vordy Sy SV I,

I viran s, S, T

7|
L —(Hg+8,)0 _ I_: Va(t - Gl)f(la(l_ 0'1))
+ o /(Pl(Gl)e H 1<1 7 ) Vo) do;
0

a

+aV; fo(I)) (3+

§B,) V.gB) S, SV 1, B,

g(B:) Vreg(BYH S, SV, If B

7]
1 —(ty+68,)0 < [: ) I/a(t — 0] )g(Ba(t — 0 ))
+— op)e Watlaor (1 - 2L : do
m 0/(p1( v I V*g(B*) !

a

+nV e}) <4+

T .
1 —(y+a)o; Ba h(la(t - 62))
+— 21— — | —————d .
my 0/ #2(o2)e B, A 2

Thus

dL, , dL,
dt = dt

S S, AN S, fU)I
fa)  Si 1, SafUIg M(”f(")”>

''''' SiFaI,

<5/ 0o) <2+ Fan s, T sant, -

Syt = o) f Ut = o ) )
doy

7]
1 (g +6,)0
+ — [ @(o))e”Watdaor pp
m 0/ 1o SHfUNI,

gB,) hd) S, I, B, Sag(Ba)[:_h(la)BZ
gB)  n(Iy) S, 1r B Srg(BHI, B,

a a

+5g(BY) <3 +

! * *
R Y L e ATA PN
mJ Sxeg(B)1, Sxeg(B1,

%3 .
1 (), h(1,(t — 0,))B; ~ h(1,)B?
+m2 /<P2(0'2)e M <—h(Iu*)Ba oy H()B,
0

fU) S SVe A, Va/Ulg M<Vaf(fa)1jf>

______ Vi,

e ) (34 08 - 5 - S 2 vt -

7] .
1 N A N Y N
— o300 pp d
o /(pl(al)e Vrfani, ‘1
0

gB,) hd,) S; SV 1, B, VigB)l; h(,)B;
a a a

g(BY) h(IY) S, SV, I B Vrg(B, h(I})B,

+nVyed}) <4+

“ _ 5 *
+ L [ o1 trin M<V“(""')g(3“(’ o), )d - (Lg(B“)I")
m ) Veg(BI, Vre(BI,

11
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n
h(I(t — 6,))B? h(I,)B}
+L /(pz(az)e_(7+”)"2 M <72> doy — M ( >
m
0

(1B, h(IB,
N2 f(1§)1a> <S;: > (f(la)lj,">
<SS 1 -1 1- M| — M
=S/ o) <<f<1;> ) ( raor: ) T\, ) T Fan,
S * 5
. ( ST ) > ( S, U ))
SyfrUNI, S A1,
woope [ 8B 8(B)I, h(1,) h(I*)B: S*
+Sa8(B,) <<g(B;;> B 1) <1 T B ) " <h(1:) B 1) <1 ~h1,)B, ) M (?)
y <g<Ba>17> . M(h(lawu) . M(Sag@g ) . (h(lawa )
(B h(1,)B; Skg(B¥)I, h(I*)B,
S * *
. ( JE(BI? ) > < h(1,)B: >>
Sie(Bo, h(I)B,
R f) f(I,f)I,,> <Sj> <SaVa*> <f(Ia)Ij>
vV 1 -1 1- M| — M M
Vi /e ")<<f(l;“) >< raor: ) TMs, ) M s ) M\ Ao,
V * *
N ( SN ) i ( AR ))
VEfUNI, VErani,
(8B eBILN [ h(l,) h(I?)B s
MRACERE <<g<3;;) - 1) (1 - g(Bm:) " <h<1;> - 1) <1 ~ n1,)B, > M <S_>
SV §(BI, h(I*)B, V,e(BI h(1,)B:
M < 53, > M <g<Ba>I:: ) M ( h(1,)B: ) M ( VeaBoI, > M <h<I:>Ba )
S8BT h(I,)B?
M (S::g(B;)IH ) M < (B, >>

<0.

The equality % =0 holds if and only if S, =SV, =V*,1,=1;,B, = B}. Since (S},V*,I},B}) is the only invariant set of system (3.1) in
{(S,.V,.1,,B,| % =0)}, the endemic equilibrium (S?,V*, I}, B}) is globally asymptotically stable by LaSalle’s Invariance Principle. []

Theorem 4.4. The endemic equilibrium P* of the system (2.1) is globally asymptotically stable when R, > 1.

Proof. According to theorem 3.3 the endemic equilibrium of system (4.1) is global asymptotically stable if R, > 1. To prove the global stability of
the equilibrium (S}, V", I, B}, S, I, R}) of system (2.1) with the animals components already at the endemic steady state given by

a’>"a’

% =Ay+ 1 =mBI, — upSy— Sy, (pU7) +a(BY)),
3
% =/ (03(0'3)6_(Mh+ﬁ)63 Sp(t = o3)(p(I}) + q(B)))dosy — (pp + P,
0
DR o1, — i R
ar h— Hn -

Then it follows

A+ =nply + Do tpI B

"+ p(I¥) + q(BY)
o I 03(03)e™ D% S, (1 = o3)(p(I ) + q(B2)d o

—(up+p)t
h + Dse ,
Hpt+ B

npl
R, =ﬂ + DgeFnl,
Hp
where D,, Ds, D¢ are integrating constants.

It is clear that S, — S} I, —» I and R, — R} when 7 — co and so P* of system (2.1) is globally asymptotically stable. []
5. The optimal control

In reality, financial support is limited and cannot meet all the actual needs of brucellosis control. With a limited financial budget, it is important
to achieve the best control effect. In this section, we consider optimal control measures for distributed delayed brucellosis model (2.1) and introduce
four control variables. The control v, (r) represents the vaccination rate for susceptible compartments S,. The control v,(7) represents the slaughtering
rate of individuals in compartment I,(¢) due to disease. The control v;(¢) represents disinfection rate of environment. The control v,(r) represents
educational campaign to the compartment .S,.

12
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o A+ eV 1,5, = 105, ~ S, 1) + 8B,
e 008, ~ V= V= MVF U + 8B,
L / @1 (e Ut (S (1 = ) + 1Vt - 1)
8‘(1,,(: — )+ 8Byt — ), — (g + 0y,
o
3 dj“ = / ©(02)e” 32 p([ (t — 5,))doy — (7 + 03(1)) B,
0
oy (= WBI, = Sy = (1= 0D, + (B,
% = /3 @3(03)e HntP (1 — 0y(1 = 03))S,(t — 03)
-0<p<1a<z — 63) + 4By (t — 03)do3 — Gty + P,
d% =npl, — upR,,.

We construct the following objective function of system (5.1):
T
J(01(1),05(2), 03(1), 04(2)) = / L(S,(),V,(1),1,(1), B,(1),Sy(®), I,,(1), R,(1))dt,
0
with
L =B v ()S,(t) + By, (1)1 ,(t) + B3v3(t) B, (1) + B4v4()S), (1)
+ %(Cl(vl(t))z + Goo,(0)? + C303(1)% + +C,04(0)%),

where B;,C;(i = 1,2,3,4) are positive weights that balance the size of the terms.
Our aim is to find out an optimal pair (v}*(#),v5*(®), v;‘*(t), v;*(1) such that

J O] (1), 03" (1), 057 (1), 0" (1))
= min{J (v, (1), 02(), v3(), V4| (V1 (1), V2 (1), V3(1), V4 () EU },
where the admissible control set U is given as
U ={(v1(1), (1), 03(), 04()) |0, ()i = 1,2,3,4)is Lebesgue measurable,
v;(t) €[0,11,1 €[0,T1}.

5.1. Existence of optimal control

We can rewrite system (5.1) in the following form:

dW (1)
dt

= AW W)+ F (WO.W,, 0.Wey (0. W, () + Cos,, WO W, (00,

3°

where W (1) = (Sa(t), V,(0),1,(1), B,(1), S, (1), 1,(1), Rh(t))T s VVT,- =W(t—1;), v=_(0;(1),0,(), 1)3(1‘),1)4(t))T,1)T3 =0t - 13),

—HU, € 0 0 0 0 0

0 —(ug+e) 0 0 0 0 0

0 g 0 0 0 0
A=| o 0 0 -y 0 0 0

0 0 0 0 - dA-mp O

0 0 0 0 0 —(up+p O

0 0 0 0 o0 np —Hy
F (W@, W 0, W, 0. W, 0)

A, =S (fU,)+g(By)
—nV,(f,)+g(B,)
Jot @l(o)eWat2@on(S (1 — 61) + nV,(t = o)) ,(t = 01)) + &(By(t = 61))d

= /0’2 @y(0y)e” 13D J(T (t - 6,))d oy R

Ap = Sp(p,) +q(By)
Iy @3(03)e” W t073 8, (1 — 63)(p(1,(t = 03)) + q(B,(t — 63)))d o3
0

13
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C(v, 0, W (1), W, (1)

730

—01(1)S,

01(HS,

0,1,
= v3(t)B,

0,(O)SK(p,) + q(B,))

= /32 03(03)e” Wt P30, (1 — 63)8),(t — 63)(p(I,(t — 63)) + q(B,(t — 63)))d o3
0

System (5.1) is a nonlinear system with bounded coefficients. Let
G (W@ Wy (0. Wy (0. Wy () = AW () + F (W (0, Wi (0. W, (0. W, ).

The function F (W(z), W, (1), W,, (), WT3(I)) satisfies

| (mio.(w.,), 0.(ws,), 0. (W), @) = F (w0 (W, ), 0 (W) @ (W), <t>)‘
(w.), 0= (w, ), 0|
(w.), 0= (w.,), 0]+ | (w.,) 0= (ws,), 0.

where M|, M,, M5 and M, are all positive constants that don’t depend on the state variables .S, (t), V(). I,(t), B,(1), S, (1), I,(t), R;,(¢) and

<M W (1) = W] + M,

+ M;

Wi - Wa01=|(S,), ()= (S (z)\ (V) 0= (Vo) 0]+ (1), 0 = (1), @)
+|(5, (r)—( (r)\+|sh <r>—(sh L O +|(1), 0= (1), 0)
+|(R), 0= (Ry), ).

'(W,{)“t)—(W,I)Z(t):‘(Sa)](t—q)—(s) (t==)|+|(Va), (=) = (V2), (1= =)

+‘(Ia)1(’_Ti)_(Ia)z(t_"i)"")(Ba)l(t_ri)_(Ba)z(’_Ti)|

#[080), (=) = (Sa)y (=) [+ | (1), (1=7) = (1) (1= =)

+|

(Ry), (1=7) = (Ry), (1= 7)|.

where i =1,2,3.
Moreover, we get

G (W10, (W0, (W )1 (0. We )1 0) = G (Wa(0), (W, (00, (W 0 (W,3)2<r))‘
< L (Wi = Wyto)] +| W, 10 = W, )0
| W0 = W 0] + | e 0 - W0

where L =max { M|, My, M3, M,,||A||} < co. It implies that function G is uniformly Lipschitz continuous and system (5.1) admits a solution.

Theorem 5.1. There exists an optimal control pair v** = u’f* ”z* v** **) € U and a corresponding optimal state (S¥, V=, 17, B:™, SZ*, I ;;* RZ*) such that
J @70, 037 (1), 03 (1), 03 (1))
=min{J (v; (1), 0,(1), v3(0), v ()] (V1 (1), (1), V3 (1), 04 (D)) EU },
subject to the control system (5.1) with the initial conditions (2.2).
Proof. We will use the results of Fleming and Rishel [19, 20] to prove the existence of optimal control. Firstly, the solution set of system (5.1) is
non-empty with the control variables in U. Because according to theorem 2.1 we know that the solutions of the system (5.1) are bounded for each
bounded control variable v; € U(i = 1,2,3,4), and that the right-hand side functions of the system (5.1) satisfy the Lipschitz condition about state
variables. Secondly, the admissible control set U is closed convex, and the system (5.1) can be rewritten as a linear function of the control variables

whose coefficients depend on the state variables. Thirdly, the Hessian matrix H (L) = diag {CI,CZ, Cs, C4} is positive definite with C; > 0(i = 1,2,3,4),
so L is convex. Besides, there exists constants 7,1, >0, p > 1 such that

L (S V. 1,, Sh,Ih,Rh,vl,vz,v3,u4)
=B 0,(1)S,(t) + By, (1)1 ,(t) + B305(t)B,(t) + B,v,(1)S), (1)
+ %(c1 (01(0)* + Cr05(1))? + C303(1)* + C404(1)?)

2 2 2 N
201 (o) |7 + [0a] " + 03] + |49 2 =1,

14
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This ends the proof. []
5.2. Characterization of optimal control

In this section, based on Pontryagin’s maximum principle [21], the optimal control is characterized by deducing the necessary conditions for
optimal control. For simplicity, let’s first define a characteristic function y, () as

o 1, iftela,b),
I =
[a.] 0, otherwise.

The Hamiltonian is defined as follows:

H(x, XesXey s Xpps 0,0y A)

=B, 0;(1)S,(t) + By0, (1)1, (1) + Byv3(1) B, () + B4y (t)S,(1)
+ %(Cl(ul(t))z + Co05(1))? 4 C305(1))? + Co4(1)%)
+ 4 () [Ag + eV, = pySy —0,(DS, — S,(fU,) +g(B,))]

+ ) [0S, — €V, —u,V, =V, (f(,) + g(By)]

7

+43(0) / @1(o))e” Hat2 @IS (1 = 61) + V(1 — 61))
0

(fU(t = 0))) + 8(B,(t — 0))))doy — (4 + 03 ()1 ,]
-
+ 24(0) / ©3(0)e” @2 ([ (1 — 6,))doy — (7 + 05(1)B,
L0
+ 450 [Ap + (L= )T, — Sy, — (1 = 0,(0)Sy(p(I,) + q(B,))]

3

+ A6(t) / @3(03)e”HtPo3 (1 —0,(t — 63))S),(t — 63)
0

(P4t = 63)) + q(B,(t — 63)))d o3 — (upy + H)I,]
+ A7(0) [nBI, — pp Ry (5.2)

where x(¢) = (Sa(t), V,(0),1,(1), B,(1), Sy(1), I,,(2), Rh(t)) X 1) =x(t —1;).

Using the necessary conditions for the optimality problem [22, 23], there exists a continuous function A(f) on [0,T] satisfies the following
equations:
the state equations

dx _oH
dr~ 01’
the optimal condition

3

0H 0H
0= g(t) +IIO,T—T3J(I)<()D (t)> B
1=t473 |y

and the adjoint equation

dA oH oH oH
“ =l s "+ I[o,Tm(U(ax (U) +)([0,Tr2](1)<ax (0)
t=t+7] 1=t+7)

1 2

o0H
2107231 (dx_(t)) .
& 1=ty [

Applying this necessary conditions, we can draw the following conclusion.

Theorem 5.2. Let x** = (S**, V., I**, B*, ¥, R;‘l*) be an optimal state solution associated with the optimal control variable v** = (o’l‘*v;* or, oj*)
for the optimal control problem. Then there exist four adjoint variables 4;(t)(i = 1,2, ---,7) satisfying the adjoint equations as follows

— Ay =B 0 = (g + 07 + S+ g(BENA (1) + 0} A1)
+ o7 —e ) Omy () + gBEN A3t + 7)),
—In(®) =41 (0) = (g + €+ n(FT) + gBIN A1)

+ Lo —e ) Omn(f (I + g(BE N At + 1),
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—h3()=Byy* = f1 (IS A @) + 0V, Ao () + (1= 0S5 45(0))
+ 207-e ) O (ST + 0V 1 (I7) = (ug + 05 A3(t +7)
+ 2007y Omyhy (17 A4t + 1)
+ X 07—e) Omy(1 = 055 py (1) Ag(t + 73),
—Ay(t) =By0y* — g (BI)SI* A1) + V" dy(t) + (1 = 0}") S5 As(0))
+ 2007 Oy (ST + 0V g (B ) A3t + 7)) — (r + 037 A4(1)
+ X101 ) O3 (1 = 0})SE™ - qp (By)As(1 + 73),
—As(0) =~ (up + (1= 0;")py, (") + ap, (B ))As(1),
+ 20071 (O3 (1 = 0383 (™) + q(B") A6t + 73),
—A6(0) =(1 = mP2s(t) = (pp + B)A6(1) + A7 (1),
— A (1) == pyAy (1) (5.3)

sk ek

with transversality conditions 4,(T)=0, i=1,2,---,7. Moreover, the optimal controls o, 03,

(A1) = A,(1))S** — B, S™**
v’{*:max{min{ ! 2(C 4 7a ,1},0},
1

Ay — B, I*
03" :max{min{M,l},O},
G

A4(t)B** — By B**
o} =max{min{w,l},0},
G

) { . {Sh(p(Ia)+q(Ba))(X[O,T—z;](t)mfi)”()(t+73)_)'5(1))_B4Sh } }
0™ = max { min = 15,0 ».

v3* and v}* are characterized in the following

4 C4

Proof. By differentiating the Hamiltonian (5.2) with respect to x(r) = x**(¢), we obtain

_% = -ﬁ + ([)L |
dr |05, T FOT oS =) |
_& = -E + (I)L |
dr v, T AT Gy ey | ey
_d_&;— E.}. ([)Ll + ([)Ll
dt o1, X10,7-7] (1) (t+7)) TX[0,T-15] oLt —1y) (t+7)
oH
+ Ne—— ,
Z[O,T—r3]( )()Ia(t - 73) |(T+73)] (X,0)=(x** ,0**)
diy, _[oH oH oH
—— ==+ HN—— + e ,
dt _aBa X[O,T*‘r]]( )aBa(I - Tl) |(t+Tl) Z[O,T*‘l}]( )aBa(t - T3) |(Z+T3) (X,0)=(x**,0**)
dis [oH oH
——= =+ Do ,
ar |os, " ¥ f0.7-231( )as,,(t -1;) livey ROy 5%
_d%s _ 'E]
dt [0 | oymixrs o)
dy [ o

5.4

dt L ORy, ] (X,0)=(X** **)

The adjoint equation (5.3) is obtained by substituting the corresponding derivatives %, :XH s ;XH and ;X—H into (5.4).
1 2 3

Further, by the optimal conditions, we have

% =B, S, +Cyo,(t) = A,(1)S, + 4n(1)S, =0,
1

IH _B 1, + Cyoy(t) — A5(1I, =0,

0v,

9H _p B, +Cyos(t) - 44(1)B, =0,

ovy

oH

S =B+ Cutsl) 4 As0,(pUL,) + a(B,)

— A6(t + T3) 110,72, (OM3.S3,(p(1,) + a(B,)) =0,

which indicates
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Table 1. Parameters and their values (unit: year™').

Parameter Value Comments Source
A, 13146980  The recruitment rate of the sheep population [A]
Hy 0.22 The natural elimination rate of sheep [A]
Ay 1437640 The recruitment rate of the human population [B]
My 0.0566 The natural elimination rate of human [B]
8, 0.15 The elimination rate caused by brucellosis [24]
6 0.316 The sheep vaccination rate [24]
€ 0.4 The sheep loss of vaccination rate [24]
n 0.18 The invalid vaccination rate [24]
a 3.6 The decaying rate of brucella in the environment [24]
Y 0 The decaying rate of brucella caused by disinfection in [24]
the environment
np 0.6 Transfer rate from acute infections to chronic infections [24]
(1-n)p 0.4 Transfer rate from acute infections to susceptible [24]
B 1.1x107° The sheep-to-sheep transmission rate Assumption
bin 5x 10710 The brucella-to-sheep transmission rate Assumption
P 1x 1071 The sheep-to-human transmission rate Assumption
P 6x 10712 The brucella-to-susceptible human transmission rate Assumption
k 20 The brucella shedding rate by infected sheep Assumption

[A] sheep life span is about 4 — 5 years [24]. According to statistics published in the China
Statistical Yearbook [25], the annual total number of sheep in China in recent years is about
5.9759 x 107. We estimate that the average annual elimination rate of sheep y, is 41—; ~0.22. So
the recruitment rate A, is taken as 13146980.

[B] According to statistics published in the China Statistical Yearbook [25], the annual total
number of human in China’s Inner Mongolia in recent years is about 2.54 x 107 and the average
annual elimination rate of human , is 0.0566. So the recruitment rate A, is taken as 1437640.

o= (A () = A, ())S, — B, S,

1 C] 5
A1, — By,
2T
M (B, - B3B,
vy = Ciz’
Sp(p ) + a(B)) A6t + 73) X101 -2 (M3 — A5(1) — By S),
vy = .
Cy

Considering the restriction conditions in the admissible control set U, we obtain

A1) — A, () S** — B, S™**
vT*:max{min{( 1@ 2(C 4 Za ,l},O},
1

Ay — B, I*
03" :max{min{#,l}ﬁ},
G

Ay(tB™ — ByB*
o} =max{min{w,l},0},
G

s . Sp(p) + 4(B))X(0,1-251(OM3 A6t + 73) — A5(1)) — By,
v," =max { min . c, ,1 5,0 5.

This completes our proof. []
6. Numerical simulations

In this part, several examples are given for numerical simulation. From [19], we indicate the similar kernel functions ¢,(c;) = e~%1% for all
o; € [-7;,0]. It is easy to verify that assumptions (H,)-(Hs) are satisfied if f(I)=p,,1,g(B) =, B,p(I) =, 1,q(B)=p,,Band H(I)=kI.

We use the parameter values shown in Table 1 and initial values: S, = 1189310, V,, = 375820, I, = 29730, B, = 164380, S, = 653150, I}, = 1000, R, =
2000. And let 7; =0.04,7, = 0.1, 73 = 0.02. Fig. 1(a) shows that the disease-free equilibrium point is globally asymptotically stable when the basic
reproduction number is less than 1. Similarly, Fig. 1(b) shows that positive equilibrium exists and is globally asymptotically stable when the basic
reproduction number is greater than 1.

In order to better understand the control strategy of brucellosis, we simulated the influence of some key parameters or factors through sensitivity
analysis. From Fig. 2(a) and Fig. 2(b), we know that the vaccination of sheep can effectively control the brucellosis in some extent but can not
eradicate it from either the sheep or human population. From Fig. 3(a) and Fig. 3(b), we know that increased culling rate of infected sheep can
reduce the incidence of brucellosis in humans and animals. When the culling rate reaches a certain level, brucellosis can even be eliminated. As
shown in Fig. 4(a) and Fig. 4(b), increasing the frequency of disinfecting the environment can control the spread of the disease to some extent
(assuming that the effective disinfection rate of the environment is 0.82. If disinfection could be placed every six days, that means disinfection about
61 times in one year, then G = 50). People and animals could be infected from exposure to brucella in the environment, so theoretically this way
of transmission could be cut off by adequately disinfecting the environment. From Fig. 5, we know that human brucellosis can be controlled to a
certain extent when people fully receive the education of brucellosis prevention and control and put it into practice. From Fig. 6(a) and Fig. 6(b),
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Fig. 1. (a) When p, = 0.3, the basic reproduction number R, =0.6132 < I, the disease goes to extinction. (b) When u, = 0.022, the basic reproduction number
R, =3.5030 > 1, the disease persists.

7 5
5 X 10 12 % 10
45 1
theta=0.916
10 1
& ]
3.5
8 ]
sl |
=250 1 = 6f i
2t ]
4
1.5 1
3 )
2 s
0.5 1
o o
2020 2021 2022 2023 2024 2025 2020 2021 2022 2023 2024 2025
time t time t
(2) (b)
Fig. 2. Influence of vaccination (#) on animal and human brucellosis.
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Fig. 3. Influence of disinfection (y) on animal and human brucellosis.

we can see that different control strategies have different control effects. It is clear that the best results are achieved when all available control
strategies are implemented.

7. Conclusions and discussions

Based on the transmission mechanism of brucellosis, a dynamic model of human-animal brucellosis with time delay was established. The
results show that the disease-free equilibrium is globally asymptotically stable when R, < 1. When R, > 1, the endemic equilibrium is also globally
asymptotically stable. In other words, delay does not change the dynamic properties of the system. In order to study the influence of different control
strategies, an optimal control problem described by a delay differential equation with multiple delays is considered, and the necessary conditions
for the existence of optimal control are obtained. From the numerical simulation, we can see that elimination of infected animals, disinfection of
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Fig. 6. The relationship between the basic reproduction number and the peak values of animal and human infections under different control strategies.

the environment, vaccination and education of people are the effective prevention and control strategies. Fig. 6 shows that killing sick animals may

be the most effective means.

In the numerical simulation part, we simulated the prevention and control effects of different control strategies. Unfortunately, due to the
limitations of statistical data, we can’t achieve the values of the corresponding optimal control variables really and effectively, which concluded to
some differences between our simulation results and the actual situation. We will focus more on real world application of theoretical results in our

future works.
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