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Hepatocellular Carcinoma (HCC) is one of the most predominant malignancies with high fatality rate. This deadly cancer is rising
at an alarming rate because it is quite resistant to radio- and chemotherapy. Different epigenetic mechanisms such as histone
modifications, DNAmethylation, chromatin remodeling, and expression of noncoding RNAs drive the cell proliferation, invasion,
metastasis, initiation, progression, and development of HCC. These epigenetic alterations because of potential reversibility open
way towards the development of biomarkers and therapeutics. The contribution of these epigenetic changes to HCC development
has not been thoroughly explored yet. Further research on HCC epigenetics is necessary to better understand novel molecular-
targeted HCC treatment and prevention. This review highlights latest research progress and current updates regarding epigenetics
of HCC, biomarker discovery, and future preventive and therapeutic strategies to combat the increasing risk of HCC.

1. Introduction

Hepatocellular Carcinoma (HCC) is the fifth most common
cancer in the world that causes 250,000 to 1 million deaths
annually [1]. This alarming incidence is attributed to several
different genetic and epigenetic alterations. HBV and HCV
infections, smoking, alcohol, dietary exposure to aflatoxins,
diabetes, and obesity are the other risk factors of HCC
[2]. Epigenetic changes that contribute to HCC metastasis,
invasion, and dissemination encompass noncoding RNAs
regulation, DNA methylation, and histone modification. All
these changes are associated with initiation and progression
of HCC [3].

2. Epigenetic Changes in HCC

Epigenetics refers to heritable states of gene expression
without alteration to the DNA sequence itself. Epigenetic
changes such as DNA hypermethylation or hypomethylation,
dysregulation of histone modification patterns, chromatin
remodeling, and aberrant expression of micro-RNAs (miR-
NAs) and long noncoding RNAs (lncRNAs) are associated
with HCC [4]. Different epigenetic mechanisms that drive
cell proliferation, metastasis, progression, and development
of HCC are discussed below.

3. DNA Methylation

DNAmethylation, specifically methylation of cytosine at 5th
carbon, is a well characterized epigenetic mechanism of gene
regulation that occurs inmammals at promoter-rich region of
gene that is, cytosine-phosphate-guanine (CpG) (Figure 1).

CpG dinucleotides occur throughout human genome in
nonuniform manner with the frequency of about one per
eighty nucleotides [5]. Approximately 1 to 2% of human
genome is referred to as CpG islands or CpG-rich regions
containing hundred to several thousand base pairs and exists
in proximity to different gene promoter regions [6]. Nearly
70% of human genes harbor CpG islands at 5 region that
consist of promoter as well as transcription sites [7].

In HCC and other wide range of tumors, specific pro-
moter hypermethylation and global hypomethylation have
been associated with inactivation of tumor-suppressor genes
(TSGs) and genomic instability, respectively. Silencing of
tumor-related genes and tumor-suppressor genes such as
SOCS1, hMLH1, and RASSF1A is achieved by hypermethy-
lation of CpG islands in promoter sequences that down-
regulates mRNA transcript expression. Epigenetic silenced
genes play an important role in molecular pathways of
carcinogenesis such as cell adhesion or DNA repair, apop-
tosis, and cell cycle regulation [8]. Set of proteins known as
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Figure 1: CpG methylation. (a) DNA methylation is catalyzed by three methyl transferase genes (DNMT1, DNMT3a, and DNMT3b) that
add methyl group (CH

3
) at 5th carbon position of pyrimidine ring of cytosine. S-adenosyl methionine (SAM-CH3) acts as a methyl donor.

(b) Cytosine to cytosine sulfonate: sulfonation of cytosine causes C to T transition followed by deamination. Cytosine sulfonate to uracil
sulfonate: conversion of cytosine sulfonate to uracil sulfonate leads to alkali desulfonation. Uracil sulfonate is converted into uracil. PCR
distinguishes methylated CpG from unmethylated CpG because methylated cytosine resists this chemical treatment [124, 125].

ten-eleven translocation (Tet1–3) demethylates methylcy-
tosine via hydroxymethylcytosine (hmC) [9]. It has been
reported that level of hmC reduces in various types of cancers
[10]. However, the mechanism of this downregulation is still
to be determined [11].

Different DNA methylome patterns as compared to
adjacent normal tissues have been observed in independent
genome-wide methylation profiling studies. HCC and non-
HCC surrounding liver tissues can be distinguished eas-
ily because aberrant DNA hypermethylation is specific to
the cancerous tissues. Likewise, a set of hypermethylated
gene promoters, for example, FZD7, CDKN2A, RASSFIA,
and APC, were able to distinguish nontumor liver tissues

from HCC tumors. Another study recruited 27 patients and
revealed the significant level of DNAmethylation ofNFATC1,
GSTP1, CDKN2A, and BMP4 genes in HCC tissues [12].
Lambert et al. have recently analyzed the methylation status
of set of imprinted genes in HCC and found that 15q11-13
imprinting control region that includes maternally imprinted
GABRA5 gene was significantly hypomethylated in tumors
compared to their surrounding tissues. The study suggested
that imprinted gene methylation acts as a potential marker of
environmental exposures [13].

Poor tumor differentiation is attributed to promoter
methylation of DNMT1 [14, 15]. S100A8 can be used as prog-
nostic and diagnostic biomarker because of its overexpression
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observed in MHCC-97H and Huh-7 cell lines [16]. Likewise,
HK2 promoter CpG island (HK2-CGI) represents prognostic
biomarker of HCC because hypermethylation of HK2-CGI
induces HK2-CGI methylation phenotype (HK2-CIMP) [17]
(Table 1).

Other frequently methylated genes in HCC include RIZ1
(45.2%), CDKN2A (69.7%), SCARA5 (30%), EFEMP1 (50%),
TIP30 (47%), WIF1, FBLN1 (50%), DLEC1 (70.6%), FBP1
(80%), ITGA4 (23%), KLK10 (94%), LIFR (47.9%), MTIG
(60.4%), HHIP (53.6%), HINT1 (55%), SYK (12%), and TAT
(54%) [18, 19].

Bead array analysis of 1505 CpG sites in thirty HBV-
or HCV-associated HCC infected patients revealed the
correlation of specific methylation signatures with tumor
progression stage in HCC tumor patients. Hypermethylation
of SYK (spleen tyrosine kinase) or CHFR (checkpoint with
fork-head associated and ring finger) occurs specifically in
advanced stages of HCC, whereas abnormal DNA methy-
lation of p15, GAAD45a, SFRP1, DOK1, CHRNA3, GSTP1,
CRABP1, p16, and RASSF1A occurs at all stages of HCC
[20–23]. HBV-encoded protein (HBx) affects themethylation
and expression by directly interacting with DNMT (DNA-
methyltransferase). The prevalence of TSGs methylation,
for example, p15, APC, STAT1, GADD45b, and SOCS-1, has
been observed to be higher in HCV-positive HCC compared
to HCV-negative HCC [24, 25]. Hernandez-Vargas et al.
revealed that panel of hypermethylated genes, for example,
DCC, CSPG2, and NAT2, was specific to HBV-related HCC
[26, 27] and methylation of constitutive androstane receptor
(CAR) suppressesCYP2C19 inHBV-associatedHCCpatients
[28]. According to Shih et al. methylation of PAX6 frequently
occurs in HCV-associated HCC tissues (61.3%) compared
to HBV positive (22.1%) and double negative HCC tissues
(33.3%) [29].

A genome-wide methylation study including 69% HBV-
associated HCC patients demonstrated that PAX4, WFDC6,
SCGB1D1, ATK3, and CCL20 were top five hypomethylated
genes, whereasCDKN2A, SPDY1, ZFP41, BMP4, andDAB2IP
were found to be top five hypermethylated genes [30].
Nishida et al. demonstrated that DNA methylation is an
important mechanism in silencing the set of 8 TSGs that
predict HCV progression to HCC [31]. NEFH and SMPD3
have been proved as potent tumor-suppressor genes in HCC
[32]. Based on the above findings it can be concluded that
early diagnosis and prognosis of HCC can be achieved by
methylation profiling because of close association of aberrant
gene methylation with clinical outcome and HCC disease
stage. However, specific gene methylation signatures must
be validated [26]. Recent study has suggested that DNA
methylation of miRNA genes may provide a promising
strategy for alternative adjuvant therapy in HCC [33].

4. Histone Modification

Histone modifications also known as “histone code” have
direct impact on gene expression and chromatin structure.
These epigenetic changes are of paramount importance in
gene silencing during tumorigenesis [107]. Modifications
such as ubiquitination, phosphorylation, methylation, and

acetylation that occur at N-terminal tails of nucleosomal
histones work together with other epigenetic mechanisms
to regulate gene activities and cellular processes. Orderly
and coordinated activities of diverse histone modifications
regulate cellular processes, for example, DNA repair, DNA
replication, and gene transcription. It has been reported that
control of chromatin-based processes (responsible for cancer
development and oncogenic transformation) is deregulated
by functional changes in protein complexes and histone-
modifying molecules [108].

DNAmethylation is closely associated with histonemod-
ification because inhibitors reverse the histone modification
changes on H3-K4 and H3-K9 codes [109, 110]. Another
distinct histone modification involved in Polycomb-based
silencing and X-chromosome inactivation in women is
H3K27 trimethylation that is one of the candidates for a
silencingmechanism for tumor-suppressor genes [111]. Over-
expression of enhancer of zeste homolog 2 (EZH2) is asso-
ciated with different types of cancer and it has been studied
that EZH2 catalyzes histone H3-K27 triMe [112]. Histone
methyltransferases (HMT), SUV39H1 and G9a, mediate the
histone H3-K9 trimethylation and dimethylation (H3-K9
diMe), respectively [113]. H3K9 methylation is associated
with silencing of several tumor-suppressor genes [114]. Sig-
nificant decrease in histone H2A ubiquitination was noticed
in HCC [115].

Researchers have reported several histone modifications
that are associated with HCC and alter normal cellular pro-
cesses; for example, Magerl et al. found negligible expression
of dimethylation of histone H3 at lysine 4 (H3K4diMe) in
HCC [116] whereas, according to Shon et al., Patt1 (a GNAT
family acetyltransferase) is downregulated in HCC and it
is overexpressed in healthy liver [117]. Somatic mutation
that induced inactivation of MLL1–5 enzymes responsible
for H3KYMe has been reported in 1–6% of HCC [118].
Integration of HBV into MLL2 and MLL4 gene loci has also
been identified inmany cases ofHCC [119]. In contrast to this,
elevated H3K4me3 is associated with mutations in SMYD3
methyltransferase resulting in poor prognosis specifically
during the initial stages of HCC [120]. Likewise, upregulation
of SETDB1, another histone methyltransferase for H3K9,
was observed in HCC. Overexpression of SETDB1 that is
closely associated with metastasis and cancer progression
actually is triggered by downregulation of miR-29 and gain
of chromosome 1q21 [121, 122]. About 2.6% of cancer patients
experience mutations in SETD2 gene [118, 123].

Histone deacetylases (HDACs) are the enzymes that
play an important role in regulation of gene expression by
removing acetyl group from histones that make the DNA
more compact leading to gene silencing. About 18HDACs are
knownwith activity not limited to just histones because it has
been reported that HDACs remove acetyl-lysine on diverse
nonhistone proteins like NFkB, transcription factors p53, and
many others [128].

Accumulating evidence suggests the correlation of indi-
vidual HDACs overexpression with poor prognosis in dif-
ferent types of cancer including HCC [129]. Overexpression
of HDAC3 was correlated with early recurrence of HCC
after surgery and advance tumor stage. Tumor-suppressor
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Table 1: Aberrant DNA methylation markers for HCC.

Gene and its location Function Methylation frequency%
in adjacent normal tissue

Methylation frequency%
in HCC

Ref.

WT1 Urogenital development 0 54 [34]
11p13
TIMP3 Cell adhesion 0 13 [35]
22q12.3
SOCS-1 Cytokine inhibitor 0–7 43–65 [36]
16p13.13
SEMA3B Apoptosis — 83 [37]
3p21.3
RB Chromatin structure 0 32 [34]
13q14.2
RASSF1A Apoptosis 0 59–75 [35, 37]
3p21.3
RaR-Beta Retinoic acid signaling 7 12 [36]
3p24.2
P73 Tumor suppressor 0 6 [36]
1p36.32
P53 Tumor suppressor 0 14 [34]
17p13.1
P300 Growth/cell division 0 65 [34]
22q13.2
P27 CDK inhibitor 0 48 [34]
12p13.1
P21 CDK inhibitor 10 63 [34]
6p21.2
P16INK4a CDK inhibitor 0–10 16–83 [35, 36]
9q21.3
P15 CDK inhibitor 0 42–47 [36]
18q12.2
P14 CDK inhibitor 0 6 [36]
11q13.1
hMLH1 Mismatch repair 0 0 [35]
3p21.3
GSTP1 Glutathione synthesis 0–7 41–76 [35, 36]
11q13
E-Cadherin Cell adhesion 7 33–67 [34–36]
16q22.1
E2F-1 Transcription factor 0 70 [34]
20q11.22
DAPK1 Apoptosis 0 10 [35]
9q21.33
CPS1 Urea cycling 0 80 [38]
2q346
COX2 Prostaglandin synthesis 0 35–50 [35]
1q31.1
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Table 1: Continued.

Gene and its location Function Methylation frequency%
in adjacent normal tissue

Methylation frequency%
in HCC Ref.

BLU Unknown zinc-finger — 20 [37]3q21.3
APC Prostaglandin synthesis 0–14 53–81 [35, 36]
5q22.2

role of HDACs has also been noticed as overt HCC that
occurred as a result of liver-specific knockdown of HDAC3
[130]. Specifically, persistent inactivation of SMRT, NCOR, or
HDAC3 may lead to cancer development and DNA damage
by increasing the histone acetylation during S phase [131].
HDACsmay act as tumor suppressors and therapeutic targets
in developing tumors and advanced cancer, respectively [132].
Inhibition of HDAC may disturb a drug design due to
disruption of diverse pathways.

Some histone modifications also act as signature for
risk factor exposures; for example, protein arginine methyl-
transferase 1 (PRMT1) catalyzes histone H4 methylation on
arginine 3 and dephosphorylates damage-induced phospho-
rylation of H2AX (g-H2AX) to repair DNA. In case of
HCV infection, Protein Phosphatase 2A (PP2Ac) is overly
expressed and inhibits the activity of PRMT1 by binding
to it. Overexpression of this phosphatase is considered an
important event of viral hepatitis associated hepatocarcino-
genesis. Compromised histone H2AX phosphorylation and
histone H4 acetylation/methylation occur because of PP2Ac
overexpression in HCV-associated HCCs leading to signif-
icant changes in gene expression for hepatocarcinogenesis
and inhibition of DNA damage repair. Overexpression of
this phosphatase is considered a critical early event in
hepatocarcinogenesis in the context of chronic viral hepatitis
[24, 133].

The direct interaction of HBx with histone acetyltrans-
ferase complex CBP/P300 supports the transcription transac-
tivation property of an oncogenic transcription factor HBV-
encoded HBx protein that affects the expression of different
genes involved in apoptosis or cell cycle control. Recruitment
of CBP/P300 complex that is mediated by HBx promotes
transactivation and leads to acetylated (active) state of the tar-
get cellular genes [117, 134, 135]. Downregulation of CYP2E1
expression in response to deregulated histone modification
which resulted in decline in apoptotic potential has been
observed in alcohol-associated HCCs [136, 137]. Recent stud-
ies suggest that HCC progression can be repressed by
inhibition of O-GlcNAcylation [138]. Epigenetic silencing of
JMJD5 (jumonji C domain-containing protein 5), another
tumor-suppressor gene in HCC pathogenesis, downregulates
CDKN1A transcription to promote HCC cell proliferation
[139].

5. Chromatin Remodeling

Another important epigenetic mechanism that plays an im-
portant role in control of gene expression, differentiation,

DNA repair, and proliferation is chromatin remodeling
(Figure 2).

Nucleosomal restructuring byATP-dependent chromatin
remodeling complexes and enzymatic covalent histone mod-
ifications are the principal mechanisms involved in chro-
matin remodeling. Accumulating evidence in recent years
has demonstrated that these complexes perform tumor-
suppressor roles because of association of different malig-
nancies with inactivated mutations [140]. Recent study based
on SWI/SNF chromatin remodeling complex revealed that
expression of brahma (BRM) was markedly decreased in
HCC samples [141]. ARID1A, ARID1B, and ARID2 compo-
nents that belong to SWI/SNF-related chromatin remodeling
complexes aremutated at frequency of 16.8%, 6.7%, and 5.6%,
respectively [142]. ARID1A, ARID1B, and ARID2 mutations
are significantly observed in alcohol-associated HCC and
HCV-related HCC, respectively [143]. Mutations in other
components of SWI/SNF chromatin remodeling complex
such as SMARCC2, SMARCC1, SMARCB1, SMARCA4, and
SMARCA2 have also been commonly reported in HCCs.
SMARCA2mutations occur at frequency of 2.6% in alcohol-
associated HCC [118]. Chromatin remodeler CHD1L that
promotes HCC metastasis and progression may act as ther-
apeutic target to control HCC [144]. The analysis of whole
exome sequencing of 24 HCCs revealed that chromatin
regulators are the third most frequently mutated genes [142].

6. Noncoding RNAs

Different human cancers are associated with noncoding
RNAs based epigenetic mechanism of regulation of gene
expression (Figure 3).

Noncoding RNAs are further categorized into two main
types based on length: small/short noncoding RNAs that are
<200 nucleotides including endogenous siRNAs, snoRNAs,
piRNAs, andmiRNAs and long noncoding RNAs with length
>200 nucleotides [145, 146].Different functions ofmiRNAare
described in Table 2.

Significant decrease in miRNA-129-2 with associated
inhibition of HMGB1 (high mobility group box 1) has been
observed in HCC [51]. miRNA122 that regulatesWnt1, igF1R,
SRF, ADAM10, and cyclinG1 to play an active role in cell cycle
progression is downregulated in HCC [44]. miRNA-125b
and miRNA-26 induce cell-cycle arrest in HCC by targeting
oncogenic LIN28B and cyclin D2/cyclin E2, respectively
[43, 50]. Overexpression of miRNA-96 is observed in HBV-
related HCC. In HCC cell lines, miRNA-101 targets VEGF-
C resulting in the suppression of invasion [147]. miRNA-
21 has been found upregulated in HCC and its degradation
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Figure 2: Emerging signaling pathways in HCC: chromatin remodeling: restricting transcriptional and DNA condensation occurs as a
result of histone deacetylation catalyzed by HDACs in nucleosome. In contrast, transcriptional activation also occurs using chromatin
remodeling complexes by allowing access to transcription machinery via nucleosome restructuring. Notch signaling: NOTCH receptor is
cleaved photolytically when protein ligand binds to its extracellular domain. This binding releases its intracellular domain (NOTCH-ICD)
that enters into nucleus to modify target gene expression (such as SOX9, HEY, and HES). Hedgehog (Hh) signaling: nuclear translocation
of the transcription factor (TF) GLI occurs as a result of PTCH inhibitory effect on SMO and this event takes place in the presence of Hh
signaling. Hippo signaling: kinase complexes Lats1/2-Mob1 and MST1/2-SVA1 are activated with phosphorylation of the transcription factor
YAP resulting in prevention of its nuclear translocation.This event involves the use of upstream regulators of hippo pathway (i.e., FDM6, NF2,
and FAT). Microbiota and lymphotoxins: NF-k𝛽 signaling activates and produces proinflammatory molecules such as TNF-𝛼 and cytokines
due to recognition of microbial ligands (LPS/PAMPs) by TLKRs (e.g., TLK4) on the hepatic stellate cells [126].

can be used as target in therapeutics [148]. Likewise, recent
study has demonstrated the tumor-suppressor activity of
miRNA-214 by inhibiting CDK6, CDK3, and E2F2 [149].
In addition to inhibition of cell proliferation of HCC by
miRNA-449a, lentivirusmediated overexpression ofmiRNA-
199a, miRNA-133b, and miRNA-185 has also been reported

[53, 59, 150, 151]. Oncogenic miRNA-221 and miRNA-1180
target cell cycle inhibitors (CDKN1C/p57, CDKN1B/p27) and
repress TNIP2 expression, respectively, resulting in increased
proliferation of HCC cells [39, 152]. Likewise, cell prolifer-
ation is suppressed in HCC due to let-7a and let-7 g that
regulates the oncogenic STAT3 and cMyc, respectively [42].



BioMed Research International 7

miR-372

miR-9

IGF2BP1

miR-17 family

PCNA mRNA stability

IL-11 mRNA stability

PCNA

PCNA-AS1

Ap
op

to
sis

Invasio
n

Tumorigenicity
Cell

 cy
cle

MigrationProliferation

M
eta

sta
sis

miRNA

mRNA

lncRNA

lncRNA-ATB

IL-11
HOTTIP

miR-125b

PRKACB

Degradation of MALAT1

MALAT1

PTENP1

let-7

H19

HULC

HOXA

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Other proteins

Figure 3: Role of miRNA, mRNA, and lncRNA in regulation of apoptosis, migration, metastasis, tumorigenicity, cell cycle, invasion, and cell
proliferation. PCNA (Proliferating Cell Nuclear Antigen) regulation is related to PCNA-AS1 effects and this event involves the formation of
RNA hybridization that increases PCNAmRNA stability. (b) H19 affects let-7 mediated genes involved in promotion of metastasis specifically
IGF2BP1 (insulin-like growth factor 2 mRNA-binding protein). (c) Autophagy genes, for example, p62, ATG7 (autophagy-related gene 7),
and ULK1 (unccoordinated-51- (unc-51-) like kinase 1), are regulated by PTENP1 that is targeted by miR-17 family. (d) The stability of IL-11
(interleukin-11) mRNA is increased by lncRNA-ATB. (e) miR-125b negatively targeted byHOTTIP. (f)The regulation ofMALAT1 is regulated
in the nucleus after being binded with miR-9 following AGO2-dependent path. (g) The activity and expression of miR-372 are repressed
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miRNA-135a targets fork-head box O1 and miRNA-155-3p
suppresses FBXW7 leading to an increased invasion and
migration in HCC [56, 153]. miRNA-186 targets Yes-associ-
ated protein 1 and acts as a potential therapeutic target in
treating HCC [48].

Long noncoding RNAs also play an important role in
different types of cancers including HCC. Scaffold, signal,
guide, and decoy are the molecular mechanisms of lncRNAs
[154, 155]. The most widely studied lncRNAs are described in
Table 3.

Potential utilization of noncoding RNAs as novel can-
didates in treatment, detection, diagnosis, and prognosis of
HCC are promising. During the last decade, accumulating
evidence suggests the use of noncoding RNAs as potential
therapeutic targets for HCC. However, pathological and bio-
logical aspects as well as molecular mechanism of noncoding
RNAs in HCC are an emerging area of science that needs
more research to develop potential therapeutic intervention
and treatment against HCC.

7. Epigenetic Biomarkers of HCC

Epigenetic alterations such as DNA hypermethylation, DNA
hypomethylation, and noncoding RNAs or histone modifica-
tions may serve as diagnostic and prognostic biomarkers of
HCC.

Overexpression of histone phosphorylation proteins such
as ARK1 and ARK2 and histone-modifying genes, such as
histone methyltransferases G9a, EZH2, and SUV39HZ, in
HCC tissues predicts tissue invasion and poor prognosis
[130, 156].

DNA methylation acts as potential biomarker of HCC
because of higher frequency of aberrant methylation found
in HCC tissues that can help a clinician or researcher to
distinguish healthy liver from cirrhotic liver or liver of HCC
patient [157]. Likewise, deregulated expression level of several
noncoding RNAs can be used for diagnosis and prognosis
of disease. Downregulation of miR-122 is associated with
poor prognosis of HCC [158]. Studies showed decreased
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Table 2: Role of different miRNAs in HCC.

miRNA Function of miRNA Gene target involved Reference
miRNA-221 Oncogenic DDIT4, CDKN1C/p57, CDKN1B/p27 [39]
miRNA-125b Tumor suppressor LIN28B [40]
miRNA-214 Tumor suppressor c-Myc, TCF-1, Cyclin D1 [41]
let-7 family Tumor suppressor c-Myc, STAT3 [42]
miRNA-26 Tumor suppressor MMP2, cyclin D1, Mcl-1, Bcl-2 [43]
miRNA-122 Tumor suppressor ADAM10, igF1R, SRF, Cyclin G1, Wnt1, AKT3, Bcl-w [44, 45]
miRNA-96 Oncogenic ephrinA5 [46]
miRNA-101 Tumor suppressor Mcl-1 [47]
miRNA-186 Tumor suppressor Yes-associated protein 1 [48]
miRNA-29 Tumor suppressor Mcl-2, Bcl-2 [49]
miRNA-125b Tumor suppressor ILL- 6R, Bcl-w, Mcl-1, Bcl-2 [50]
miRNA-129-2 Tumor suppressor High mobility group box 1 [51]
miRNA-193a-3p Oncogenic SRSF2 [52]
miRNA-133b Tumor suppressor SIRT1 [53]
miRNA-199a-3p Tumor suppressor c-Met, mTOR [54]
miRNA-199a-5p Tumor suppressor ATG7 [55]
miRNA-155-3p Oncogenic FBXW7 [56]
miRNA-222 Oncogenic PPP2R2A, p27 [57]
miRNA-21 Oncogenic PTEN, kinase 3 [58]
miRNA-449a Tumor suppressor ADAM10 [59]
miRNA-139 Tumor suppressor ROCK2, Rho Kinase 2 [60]
miRNA-125b Tumor suppressor LIN28B, PDZ binding motif, Sirtuin 7 [40, 50, 60]
miRNA-182 Oncogenic ephrinA5 [46]
miRNA-125a Tumor suppressor VEGF-A, MMP11 [61]
miRNA-1180 Increase apoptotic resistance to HCC Through activation of NF-𝜅B pathway [62]
miRNA-200 family Tumor suppressor ZEB2, ZEB1 [63]
miRNA-212 Tumor suppressor FOXA1 [64, 65]
miRNA-497 Tumor suppressor YAP1 [66]
miRNA-519d Metastasis PTEN [67]
miRNA-106b Apoptosis Bim [68]

expression of miR199a/b-3pis and increased expression of
miR-21 inHCC tissues [159]. Deregulation of long noncoding
RNA has also been reported in HCC tissues. Upregulation of
HOTTIP and HOXAIR in HCC tissues has been associated
with poor patient survival, tumor progression, andmetastasis
[74]. Recently, researchers predicted HCC with 100% speci-
ficity and 95.6% sensitivity based on DNA methylation level
approach in preneoplastic liver tissue [160].

All these findings are encouraging to develop an epi-
genetic-based biomarker; however, more research regarding
specificity, sensitivity, and reproducibility is needed to make
the usability of methylated DNA, modified histones, and
noncoding RNAs as novel and reliable biomarkers.

8. Nutritional Epigenetics

Occurrence of HCC can be reduced and the development
of HCC can be delayed because of epigenetic mechanisms
deregulated by nonnutrient dietary bioactive components
and several different nutrients. Liver carcinogenesis is under
the influence of chemopreventive potential of epigenetic food

components such as dietary methyl-group donors, that is,
sulforaphane, sodium butyrate, curcumin, resveratrol, and
epigallocatechin-3-gallate (ECGC). Food-based deregulation
of epigenome contributes towardsHCC-related angiogenesis,
oxidative stress, apoptosis, inflammation, and cell prolifera-
tion.

Several in vivo and in vitro preclinical models of HCC
have demonstrated the antihepatocarcinogenic effects of
polyphenolic compound curcumin that demethylates DNA
and expresses DNMTs to reactivate abnormally silenced
cancer related genes [161]. Green tea beverages are enriched
with EGCG that have enough potential to inhibit progres-
sion and development of HCC via DNA demethylation of
abnormally hypermethylated tumor-suppressor genes [162].
Two coffee polyphenols, that is, chlorogenic acid and caffeic
acid, inhibited liver carcinogenesis in rat and the inhibition
of human DNMT1-mediated enzymatic DNA methylation
reaction has also been reported [163, 164].

Abundant HDAC inhibitors are of natural origin and
present in different plants such as broccoli (sulforaphane),
grapes (resveratrol), blueberries (piceatannol), and garlic
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Table 3: The potential roles of widely studied HCC-related lncR-
NAs.

lncRNA Potential role in HCC Ref.

HOTAIR

Overexpression of HOTAIR is associated
with progression of HCC via activation of
Wnt/𝛽-catenin signaling pathway.
HOTAIR upregulates expression of ATG3
and ATG7 that ultimately activate
autophagy and promote HCC cell
proliferation.

[69, 70]

CCAT1 CCAT1 functions as let-7 sponge and
increases HCC progression.

[71]

HULC
HULC increases the metastasis and
tumorigenesis of HCC through
miR-200a-3p/ZEB1 signaling pathway.

[72]

H19
Low expression of H19 decreases HCC
progression and metastasis via
upregulation of miR-200 family.

[73]

HOTTIP
HOTTIP overexpression is associated
with metastasis in HCC patients. This
lncRNA is negatively regulated by
miR-125b.

[74, 75]

BANCR
BANCR is considered as an important
contributor of progression and initiation
of HCC and therefore can be used as
biomarker.

[76]

MALAT1
MALAT1 is associated with tumor
progression because of its upregulation in
HCC cell lines.

[77]

HEIH HEIH is oncogenic in nature and
promotes tumor progression.

[78]

PTENP1 PTENP1 represses tumorigenic properties
of HCC cells.

[79]

SNHG20 SNHG20 is upregulated in HCC and may
serve as prognostic biomarker of HCC.

[80]

MEG3 Tumor suppressor MEG3 is associated
with pathogenesis of HCC malignancy.

[81]

TUC338
Upregulation of TUC338 and TUC339
modulates cell growth and increases liver
cirrhosis.

[82, 83]

LINC-ROR

LINC-ROR acts as mediator of
chemotherapeutic response and increases
chemosensitivity in HCC because HCC is
highly resistant to chemotherapy. It also
promotes cell survival during hypoxia.

[84, 85]

MVIH MVIH confirms overall-survival and
recurrence-free survival.

[86]

lncRNA-ATB
lncRNA-ATB acts as a mediator of TGF-𝛽
signaling that increases metastasis in
HCC.

[87]

TUG1
Upregulation of TUG1 in HCC and
increasing apoptosis and cell growth by
epigenetic silencing of KLF2.

[88]

URHC
URHC expression is increased in HCC
tissues. It regulates apoptosis and cell
proliferation via downregulation of ZAK.

[89]

FTX
Binds to miR-374a and MCM2 and
inhibits metastasis and proliferation in
HCC.

[90]

Table 3: Continued.

lncRNA Potential role in HCC Ref.

PVT1

High expression level of PVT1 is linked
with tumor progression and may act as
biomarker of tumor recurrence in HCC
patients.

[91]

lncRNA-p21

lncRNA-p21 is downregulated in HCC
and its overexpression inhibits tumor
invasion by inhibiting Notch signaling
and EMT.

[92]

UCA1

Upregulation of UCA1 is associated with
progression of HCC via activation of
FGFR1-ERK signaling pathway and
inhibition of miR-216b.

[93]

MT1DP

MT1DP acts as tumor suppressor and
inhibits FOXA1 in liver cancer cells
because of negative regulation of MT1DP
by YAP and RUNx2.

[94]

UFC1 Upregulation of HFC1 promotes cell cycle
progression and HCC cell proliferation. [95]

SRHC

Downregulation of SRHC inhibits cancer
proliferation; however, the epigenetically
silenced SRHC promotes proliferation in
HCC.

[96]

PCNA-AS1
PCNA-AS1 can serve as therapeutic target
because it promotes tumor growth in
HCC.

[97]

lncRNA-LET
Downregulation of LET is associated with
reduction in HCC metastasis and
invasion.

[79]

lncRNA-Dreh

lncRNA-Dreh is important in tumor
suppression. Downregulation of Dreh
inhibits HCC metastasis by targeting
vimentin.

[98]

UCA1/CUDR UCA1/CUDR is involved in
chemotherapeutic resistance. [99]

(allyl mercaptan) [165]. Bioactive polyphenol resveratrol pro-
duced naturally in blueberries, grapes, and strawberries
exhibited chemopreventive effects in liver cancer by promot-
ing apoptosis [166]. In addition to this, resveratrol induced
anticancer properties such as inflammation and attenuation
of oxidative stress in hepatocarcinogenesis [167, 168].

Sodium butyrate produced as a result of metabolic degra-
dation of carbohydrates in human colon and an isothio-
cyanate sulforaphane found in cruciferous vegetables prevent
HCC by inhibiting HDACs [169, 170]. In a nutshell, nutritive
epigenetics may serve as potential strategy to prevent HCC
progression.

9. Epigenetic-Based Therapeutics for
HCC and Future Updates

It is evident that epigenetic alterations play an important role
inHCC and therefore can be targeted for treatment. In fact, in
recent years the epigenetic drugs are in progress that reverse
histonemodification andmethylation status. Combination of
epigenetic drugs may also treat HCC (Table 4).
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Table 4: Drugs that target epigenetic modifications in HCC [3].

Epigenetic modification Drugs Results Ref.

Histone deacetylation that
targets histone deacetylase

Suberoylanilide hydroxamic acid TNF-related apoptosis-inducing
ligand-induced apoptosis. [100]

Belinostat Tumor stabilization was observed in
nonresectable advanced HCC. [101]

Belinostat Induction of apoptosis and inhibition of
cell growth occurred. [102]

DNA methylation that
targets DNA
methyltransferases

5-Aza-2-deoxycytidine
Inhibition of telomerase activity and
reactivation of c-Myc and p16 were
observed.

[103]

Zebularine
Induction of apoptosis and inhibition of
cell proliferation were observed in HepG2
cell line.

[104]

Zebularine

Tumor growth was inhibited in xenograft
models. Genes involved in apoptosis, cell
cycle, and tumor suppression were
demethylated in KMHC and Huh-7 cell
lines.

[105]

Combined epigenetic
modifications that target
tyrosine kinase inhibitors
and histone deacetylase
inhibitors

Panobinostat + sorafenib
Combined activity of these two drugs
induced apoptosis, increased survival,
and decreased tumor density and tumor
volume.

[106]

HHC patients can be treated with HDAC inhibitors such
as valproic acid, TSA, panobinostat, ITF2357, resminostat,
givinostat, abexinostat, CUDC-101, and pracinostat that have
given encouraging results in HCC patients because aberrant
expression of HDAC is higher in cancer patients [101, 106,
171–174]. Epigenetic drugs can stimulate the immunity of host
by increasing tumor antigen presentation [175].

MiRNAs with tumor-suppressor nature are perfect anti-
cancer agents because of their ability to modulate multiple
signaling pathways in cancer growth. Modulation of expres-
sion of miRNAs or targeting any tumor-related deregulated
ncRNA may offer potential new therapeutic strategies.

Histone-modifying enzymes and DNMTs are the prime
candidates for future HCC therapy. Series of clinical stud-
ies are currently under research for the development of
epigenetic-based therapies to combat life-threatening condi-
tion HCC.

10. Conclusion

The above studies provide strong evidence that epigenetic
alterations are in close association with disease stage and
clinical outcome in HCC. The best-known genetic abnor-
malities in HCC are dysregulated expression of epigenetic
regulatory genes, aberrant expression of noncoding RNAs,
promoter methylation, and DNA methylation. Several dif-
ferent epidrugs target these aberrations and control the pro-
gression of HCC by reversing the expression of cell cycle and
apoptosis related genes. Epigenetic alterations can potentially
be considered an alternative option in cancer treatment
protocols because epigenetic changes are reversible unlike
genetic changes that are irreversible. Epigenetic changes

affect cellular transcriptome alterations and result in gene
expression and chromatin organization more extensively
than genetic changes. Many of drugs with the potential to
change the pattern or level of histone modification and DNA
methylation have been developed and are now in clinical
trials. As prognostic and diagnostic biomarker of HCC, it
has been shown that histone modification, DNA methyla-
tion, and differential expression of noncoding RNAs help
researchers to distinguish betweenHCC and cirrhotic liver or
between tumor and nontumor adjacent tissues. Multikinase
inhibitor, Sorafenib, is the first drug that treats HCC. HCC
can be suppressed by inhibition of expression or activity of
key proteins involved in carcinogenesis; therefore, epigenetic
modulation of histones and the expression regulation of
miRNAs serve as useful therapeutic strategies against HCC.
Detailed mechanisms of HCC-related epigenetic-based ther-
apeutics remain to be explored. Last but not least, targeted
and efficient use of epigenetic drugs makes them prime
candidates for future HCC therapy.
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